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k-BITRANSITIVE AND COMPOUND OPERATORS ON BANACH SPACES

In this this paper, we introduce new classes of operators in complex Banach spaces, which we
call k-bitransitive operators and compound operators to study the direct sum of diskcyclic operators.
We create a set of sufficient conditions for an operator to be k-bitransitive or compound. We give
a relation between topologically mixing operators and compound operators. Also, we extend the
Godefroy-Shapiro Criterion for topologically mixing operators to compound operators.

Key words and phrases: hypercyclic operators, diskcyclic operators, weakly mixing operators, di-
rect sums.
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INTRODUCTION

A bounded linear operator T on a separable Banach space X is hypercyclic if there is a
vector x € X such that Orb(T,x) = {T"x:n > 0} is dense in X, such a vector x is called
hypercyclic for T. Similarly, an operator T is called diskcyclic if there is a vector x € X such
that the disk orbit DOrb(T, x) = {aT"x : « € C, |a| < 1,n € N} is dense in X, such a vector x
is called diskcyclic for T. In Banach spaces, hypercyclic (or diskcyclic) operators are identical
to topological transitive (or disk transitive, respectively) [3, 4].

Definition 1. A bounded linear operator T : X — X is called

1. topological transitive, if for any two non empty open sets U and V, there exists a positive
integer n such that T"U NV # &;

2. disk transitive, if for any two non empty open sets U and V, there exist a positive integer
nandwa € C,0 < |a| <1, such that T"aU NV # @.

For more information on hypercyclic and diskcyclic operators the reader may refer to [2, 3,
4, 11].

A sufficient condition for hypercyclicity, the well known Hypercyclicity Criterion, indepen-
dently discovered by Kitai [13] and Gethner and Shapiro [9]. Latter on, Godefroy and Shapiro
[10] created another hypercyclic criterion which is called Godefroy-Shapiro Criterion, that is a
set of sufficient condition in terms of the eigenvalues of an operator to be hypercyclic.

In 1982, Kitai [13] showed that if T; & T, is hypercyclic, then T; and T, are hypercyclic.
However, for the converse, Salas constructed an operator T such that both it and its adjoint
T* are hypercyclic, and so that their direct sum T @ T* is not. Moreover, Herrero asked in [12]

YAK 517.98
2010 Mathematics Subject Classification: 47 A16.

@ Bamerni N., Kilicman A., 2016



4 BAMERNI N., KILICMAN A.

whether T @ T is hypercyclic whenever T is. De la Rosa and Read [7] showed that the Herrero’s
question is not true by giving a hypercyclic operator T such that T @ T is not. On the other
hand, if T satisfies hypercyclic criterion, then T @ T is hypercyclic [4]. In 1999, Bés and Peris [5]
proved that the converse is also true; that is, if T @ T is hypercyclic, then T satisfies hypercyclic
criterion.

For diskcyclic operators, Zeana proved that if the direct sum of k operators is diskcyclic
then every operator is diskcyclic [14]. However, the converse is unknown. Particularly, we
have the following question:

Question 1. If there are k diskcyclic operators, what about their direct sum?

The main purpose of this paper is to give a partial answer to this question by defining
and studying a new class of operators, namely k-bitransitive operators. We determine condi-
tions that ensure a linear operator to be k- bitransitive which is called k-bitransitive criterion.
We use this criterion to show that in some cases the direct sum of k diskcyclic operators is
k-bitransitive. Then, we define compound operators as a general form of mixing operators [6]
to show that under certain conditions the direct sum of k diskcyclic operators is k-bitransitive.
Then, we studied some properties of compound operators. In particular, we give some suf-
ficient conditions for an operator to be compound which is refer to compound criterion. We
use this criterion to show that not every compound operator is mixing. Finally, we extend
Godefroy-Shapiro Criterion [1, Theorem 1.3] for mixing operators to compound operators. In
particular, a special case of Theorem 3 is when p = 1 which is Godefroy-Shapiro Criterion.

1 MAIN RESULTS

In this this paper, all Banach spaces are separable over the field C of complex numbers. We
denote by ID the closed unit disk in C, by IN the set of all positive integers and by 5(X) the set
of all bounded linear operators on a Banach space X.

Let k be a positive integer and T; € B(X) for all 1 < i < k and let
T = @5‘:1 T; : @5‘:1 X — @5‘:1 X then we call each operator T; a component of T.

Definition 2. An operator T is called k-bitransitive if there exist Ty, Ty, - - - Ty, € B(X) such that
T = 695:1 T; and for any 2k-tuples Uy, --- , Uy, Vi, -+, Vi C X of nonempty open sets, there
exist somen € N and ay, - - -, € D\ {0} such that

k k

It is clear from Definition 2 above that 1-bitransitive is identical to disk transitive which in
turn identical to diskcyclic.
To simplify Definition 2 above, we provide the following definition.

Definition 3. Let r € IN be fixed. For each1 < i < r, let T; be a bounded linear operator

on a Banach space X, and A;, B; be nonempty subsets of X. Assume thatT = @] _;T;, A =
i 1Ajand B = @)_ B;. The junction set from the set A to the set B under T is defined as

Jr(A,B) ={(n,aq,--- ,0,) € Nx D"\ {(0,---,0)} : T"(D}_, w;A;) N (Bi_, B;) # &}
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In Definition 3 above, we sometimes write J7(A, B) as J(A, B). The next proposition gives
an equivalent definition to k-bitransitivity in terms of junction set.

Proposition 1. Let T = @;‘:1 T;. Then T is k-bitransitive if and only if for each1 < i < k and
any nonempty open sets U; and Vj, there exist a; € D\ {0} and n € IN such that

(1’1, “i) € ]Ti(ui’ ‘/1)

The proof follows immediately by applying the definition of junction sets to Definition 2.
To answer Question 1, we need the following proposition, which gives a set of sufficient
conditions for k-bitransitivity.

Proposition 2 (k-bitransitive criterion). Let T = @5{:1 T;, and let {n,},.n be an increasing
sequence of positive integers. Suppose that for each 1 < i < k there exist a sequence {)\Sr)} C

D\ {0}, dense sets X;,Y; C X, and amap S; : Y; — X such that for all (x1,--- ,x¢) € @, X;
and (y1,- - ,Yx) € @;{:1 Y;, we have

() | @A T (|| = 0

(ii) H@ T k)

Afj,
(i) D TSI (y1, -+ ye) = (1, -+, Yk)
asr — oo. Then T is k-bitransitive.

Proof. Let U;, V; be open subsets of X forall 1 < i < k, then @le U; and 695-‘:1 V; are open in
BF | X. Also @*_, X; and @*_, Y; are dense in BF_; X. Let

k k
(x1,---,x) e PUNEP X;
i=1 i=1
and
k k
(]/1;" : /yk) € @‘/lm@yl
i=1 i=1

Suppose that z, = (x1, -, ;) + @5, ﬁs?f (y1,- -+ ,yx)- By (ii), as r — oo we have

k
1
llzr — (%1, -, x0) || = @T.)S?r(yl,- Yk (1)
i=1 /\n,
Since )
1
@Anr T?’lr Zr @Anr Tn" ( X1, P k)‘}'@wszl’(yl/ /yk)> ,
i=1 "‘n,
then by (i) and (iii), we have
k _ k .
@Ai(/llr)Tlnr(Zi’> - (}/1/ te /yk) @)\i(’lzy)Tz‘nr(xll o ,Xk> —0, (2)
] i=1
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as r —> oo From Equations (1) and (2), there exists N € IN such that zy € @, U; and

D nr Tn’( N) € @D |V, that is,
k ) k k
@AS)TP (@ Uz‘) NEPV; # @ forallr > N,
i=1 i=1 i=1

which is equivalent to

(e aT)" AU e - eAPu)ynvie - -ev) £2 forall r>N.

That is,
(nr, ) €Jr(U;,V;) forall 1<i<k

By Proposition 1, T is k-bitransitive.

The following theorem gives a partial answer to Question 1.

Theorem 1. If k operators satisty diskcyclic criterion for the same increasing sequence of posi-

tive integers {n, },., then their direct sum is a k-bitransitive operator.

Proof. Let T; € B(X) satisfies diskcyclic criterion with respect to the same increasing sequence
of positive integers {”r}re]N forall1 < i < k[2, Theorem 2.6]. Then for each 1 < i < k, there

exists a sequence {A,(li,) }re]N € D\ {0}, two dense sets D;, D! and a map S; such that for all

x; € D;jand y; € D!, we have

— 0,

4

’ )L,(llr) Tlﬁ’xi
_S;”lryl

1
A

(i)

ny

T"S!"y; — v

as v — co. By Equation (3), we get Zle ) )\Sj} TZ.”’ x;|| — 0O; that is,

k

@ 1y an ’ /xk)

=1

—0

as r — oo. Also by Equation (4), we get Y5, A%pS?’yi — 0; that is,
| 1
P T-)S?’(ylr L yk)|| — 0
i=1 /\n,

as r — oo. Finally, by Equation (5), we get (T;"S{"y1, -+, T,"S;"yx) — (Y1, -

k

BT S wa,ye) = Wi k)
i=1

as r — oo. By Proposition 2, we get T = @%_, T; is k-bitransitive.

3)
(4)
(5)

(6)

(7)

,Yx); that s,

(8)
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To give another partial answer to Question 1, we define another class of operators which is
called compound operators.

Definition 4. Let T € B(X). Then T is called compound if for any nonempty open sets U and
V, there exist some N € N and a sequence {a,}, . € D\ {0} such that

T (a,U) NV # &
foralln > N.

The following theorem gives another partial answer to Question 1. First, we need the fol-
lowing lemma.

Lemma 1. If T € B(X) is diskcyclic, then there exist an increasing sequence of positive integers
{mf}je]N and a sequence {’ij} C D\ {0} such that {(m]-,'ymj) j € IN} C J(U,V) for any
two nonempty open sets U, V C X.

Proof. Let (n1,a1) € J(U,V),andlet W =UNT™ ™ {XllV. Since W is open set, then there exist
ny € N and ay € D such that (np,ap) € J(W, W), that is,

1
T2aUN T M2V AUNT ™M=V # 2.
01 251
It follows that
T2a0,UNT MV #£ @,
Now, we have
T aaU NV = T (TPaaUN T MV) # 2,

that is,
(ny +ny, ) € J(U, V).

By continuing the same process, we get (Z{Zl n, [T_,a;) € J(U,V) for any j,n; € N and

a; € D. Letm; = Z; 1 niand Ymj = ]—H:l a; for all j € IN, then

{Omj,vm) :j €N} € (U, v),
UJ

Theorem 2. Let T = @*_, T;. If every component of T is disk transitive and at least (k — 1) of
them are compound, then T is k-bitransitive.

Proof. Without loss of generality, we suppose that k = 2 and T; is compound. Let Uy, Uy, V1, V>
be nonempty open sets, by hypothesis there exist Nj, N, € N, a1 € D\ {0} and a sequence
{Bn :n € N} C D\ {0} such that

Tleleul N U, # @ and T{’,anl NV, # 2
for all n > Nj. By Lemma 1, there exist N € IN and « € D\ {0} such that
TNalyNU, # @ and TNBNVI NV, # .

It follows that
(Tl ©® TQ)N(Déul ©® [SNV1) N (UQ ©® Vg) #+ .

Hence T is 2-bitransitive. O
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It is clear that every compound operator is diskcyclic. A special case of compound operator
iswhenwa, = 1foralln > N, and it is called mixing operators (see [6]). Therefore every mixing
operator is compound. However, not every compound operator is mixing as shown in the
following example. First, we need the following proposition which give sufficient conditions
for an operator to be compound.

Proposition 3. Let T € B(X), suppose that there exist a sequence {A,},.n C D\ {0}, two
dense sets D1 and D; in X, and a sequence of maps S, : D, — X and such that

(i) |[AnT"x|| — O for any x € D,

(i) |55y

’ — 0 foranyy € Dy,
(iii) T"Sp,y — y for any y € D,
asn — oo. Then T is compound and it is called compound with respect to the sequence {A, }.

Proof. Suppose that U and V be two nonempty open sets. Let x € UNDjandy € V N D;. Let
N be a large positive integer such that z = x + ﬁs NY, then by hypothesis we get

|z — x| = H%SNy‘ —0 and HANTNz—yH = HANTNxH — 0.

Thus T"A,U NV # @ foralln > N. So, T is compound. O

The following proposition gives another criterion for compound operators without the
need of the scalar sequence.

Proposition 4. Let T € B(X). If there exist two dense sets D1 and D, in X, and a sequence of
maps Sy, : Dy — X such that

(i) ||T"x|| ||Sny|| — 0 forall x € Dy andy € D,
(ii) ||Sny|| — 0 for ally € D»,

(iii) T"Sy,y — y forally € D,

asn — oo. Then T is compound.

The proof of Proposition 4 is followed by showing that both compound criteria in Proposi-
tions 3 and 4 are equivalent by using the same lines in [2, Proposition 2.8].

Example 1. Let T be a bilateral forward weighted shift on {,,1 < p < oo, with the weight
sequence

Rl/ ifn 2 0,
wn —
Ry, ifn <0,

where Ry, Ry € RT;1 < Ry < Ry. Then T is compound not mixing.
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Proof. By applying [3, Corollary 2.15] and taking {7, },.y = {1},en, We get

limﬁi— limﬁi— limi—O
noeol TW_f o n—eo; T Ry n—e RY

iy (I ) (1155 ) = i (1100 (I, ) = et o

k=1 k=1 k=1

It follows that T satisfies diskcyclic criterion with respect to the sequence {n}, . Then, by
Proposition 4, T is compound. Now, since

n
(1) =
then by [8, Theorem 3.2] T is not topological transitive and so not mixing. O

The following theorem extends the Godefroy-Shapiro Criterion [1, Theorem 1.3] for mixing
operators to compound operators.

Theorem 3. Let T € B(X). If there exists a positive integer p > 1 such that
A =span{x € X : Tx = ax for some « € C; |a| < p}

and
B =span{y € X : Ty = Ay for some A € C; |A| > p}

are dense in X, then T is compound.

Proof. Let U and V be nonempty open sets in X. Since A and B are dense, then there exist
x € ANUandy € BNV. Then x = Zi'(:l aix;jand y = Zi'(:l biy;, where a;,b; € C for all
1 <i <k Also, Tx; = a;x; and Ty; = A;y;, where |a;| < pand |A;| > pforall1 <i < k. Let
¢ € Cbe ascalar such that p < |c| < |A;| forall1 <i <k, and let

zn =y bi(=)"y; forall n>0.

Then

1
—T”x—X:aZ 'x;—0 and z,—0 as n— oo.

Also, % T"z, = y forall n > 0. It follows that there is a positive integer k such that for alln > k,
we have

1 1 1
x+z,eU and —T"(x+z,)=—T'x+—-T"2z,€V forall n>k
ch ch ch

Therefore, C%T”LI NV # @ for all n > k. It follows that T is compound. O

Note that in the above theorem, if p = 1, then it will be a Godefroy-Shapiro criterion for
mixing operators [1, Theorem 1.3].
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bamepsni H., Kininman A. k-6impansumusni onepamopu ma onepamopu cnoiyueHHs Yy 6aHaxosux npo-
cmopax // KapmaTceki MareM. my6a. — 2016. — T.8, Nel. — C. 3-10.

B mitt cTaTTi MM BBOAMMO HOBi KAACK OIIEPaTOPiB y KOMIIAEKCHMX HaHaXOBMX IPOCTOpaXx, sIKi MI
HasMBaeMO k-6iTPaH3UTUBHVMY OIlepaTOPaMy i oIlepaTopaMyl CIIOAYYEHHSI AAST BUBUEHHS TPSIMIIX
CyM AVMICKIIMKAIUHMX OIIepaTopiB. 3aIlpOIIOHOBaHO Habip AOCTAaTHIX YMOB AAsI TOTO, 106 orepa-
TOp 6YB k-6iTPaH3UTMBHMM UM OIEPAaTOPOM CIOAYYeHHsI. TakoXX BCTAaHOBAEHO 3B'sI30K MiX olle-
paTopaMy TONOAOTIYHOTO 3MilllyBaHHsI i oepaTopaMM CIOAYyYeHHs. TakoXX pO3IIMpeHO KpUTepin
T'oaedppya-Illanipo AAsI OepaTOpiB TOMOAOTIUHOTO 3MILITyBaHHS HA BUNAAOK OIIEPATOPIB CLIOAYUe-
HHSL.

Kontouosi csi08a i hpasu: TiMepIMKAIYHI OIlepaTOpy, AUCKIVIKAIUHI OllepaTOpH, olepaTopu cAab-
KOTO 3MiIllyBaHHsI, IPSIMi CyMI.
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PERIODIC WORDS CONNECTED WITH THE FIBONACCI WORDS

In this paper we introduce two families of periodic words (FLP-words of type 1 and FLP-words of
type 2), that are connected with the Fibonacci words. The properties of the families are investigated.
Key words and phrases: Fibonacci number, Fibonacci word.
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INTRODUCTION

The Fibonacci numbers F, are defined by the recurrence relation F, = F,_1 + F,_p, for
all integer n > 1, and with initial values Ffy = 0 and F; = 1. These numbers and their gen-
eralizations have interesting properties. Different kinds of the Fibonacci sequence and their
properties have been presented in the literature, see, e.g., [1, 6, 11].

Many properties of Fibonacci numbers require the full ring structure of the integers. How-
ever, generalizations to the ring Z,, and groups have been considered, see, e.g., [3, 5, 14, 16].
The sequence F, (mod m) is periodic and it repeats by returning to its starting values because
there are only a finite number m? of pairs of possible terms. Therefore, we obtain the repeating
of all the sequence elements.

In analogy to the definition of the Fibonacci numbers, one defines the Fibonacci finite words
as the concatenation of the two previous terms f, = f,_1fy,—2, n > 1, with initial values fy =1
and f; = 0 and defines the infinite Fibonacci word f, f = lim f, [2]. It is the archetype of a
Sturmian word [7]. The properties of the Fibonacci infinite word have been studied extensively
by many authors, see, e.g., [7, 8, 9, 10, 12, 15].

Using Fibonacci words, in the present article we shall introduce some new kinds of the
infinite words, namely FLP-words, and investigate some of their properties.

For any notations not explicitly defined in this article we refer to [4, 6, 7].

1 FIBONACCI SEQUENCE MODULO m

The letter p, p > 2, is reserved to designate a prime, m may be arbitrary integer, m > 2.

Let F;; (m) denote the n-th member of the sequence of integers F, = F,_1 + F,_» (mod m),
for all integer n > 1, and with initial values Fy = 0 and F; = 1. We reduce F, modulo m taking
the least nonnegative residues, and let k(m) denote the length of the period of the repeating
sequence F,; (m).
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The problem of determining the length of the period of the recurring sequence arose in
connection with a method for generating random numbers. A few properties of the function
k(m) are in the following theorem [14].

Theorem 1. In Z,, the following statements hold.
1. Any Fibonacci sequence modulo m is periodic.

2. If p = +1 (mod 10), thenk(p)|(p — 1). If p = £3 (mod 10), then k(p)|2(p + 1).

3. If m has prime factorization m = ﬁ pi, then k(m) = lem(k(p7'), ..., k(pi")).

i=1
4. Ifk(p*) # k(p), thenk(p') = p'~'k(p) fori > 1.

The results in Theorem 1 give upper bounds for k(p) but there are primes for which k(p) is
less than the given upper bound.

Let h(m) denote the length of the period of the repeating sequence 2 (mod m) and ¢(m)
be Euler’s totient function.

Theorem 2. Let m be odd and m > 1. Then h(m)|k(p(m)).

Proof. This follows from Euler’s theorem: if m and a are coprime positive integers, then
a?m) =1 (mod m). When reducing the power of a a modulo 71, one needs to work mod-
ulo ¢(m) in the exponent of a: if x =y (mod ¢(m)) then a* = a¥ (mod m). O

Corollary 1. Let p > 3. Then h(p)|k(p — 1).

2 FIBONACCI WORDS

Let fo = 1and f; = 0. Now f, = f,_1fu—2, n > 1, the concatenation of the two previous
terms. The successive initial finite Fibonacci words are:

fo=1, fi=0, f,=01, f;=010,
f2=01001, f5= 01001010, f, = 0100101001001, (1)
f7 = 010010100100101001010, ~ f3 = 0100101001001010010100100101001001, . ..

The infinite Fibonacci word f is the limit f = lim f,,. It is referenced A003849 in the On-line
Encyclopedia of Integer Sequences [13] and is certainly one of the most studied examples in the
combinatorial theory of infinite words. The combinatorial properties of the Fibonacci infinite
word are of great interest in some aspects of mathematics and physics, such as number theory,
fractal geometry, cryptography, formal language, computational complexity, quasicrystals etc.
(see [7]).

We denote as usual by | f,;| the length (the number of symbols) of f, (see [7]). The following
proposition summarizes basic properties of the Fibonacci words [7, 10].

Theorem 3. The infinite Fibonacci word and the finite Fibonacci words satisty the following
properties.

1. The words 11 and 000 are not subwords of the infinite Fibonacci word.
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2. For alln > 1 let ab be the last two symbols of f,, then we have ab = 01 if n is even and
ab = 10 if n is odd.

3. The concatenation of two successive Fibonacci words is “almost commutative”, i.e.,
fufn—1 and f,_1 fu differ only by their last two symbols for alln > 1.

4. Foralln |fy| = Fy11.

5. The number of 0 and 1 in f, equals F, and F,,_1, respectively.

3 PERIODIC FLP-WORDS

Let us start with the classical definition of periodicity on words over arbitrary alphabet
{110, ai,az,... } (See [4])

Definition 1. Let w = apaya; ... be an infinite word. We say that w is

1) a periodic word if there exists a positive integer t such that a; = a; for alli > 0. The
smallest t satisfying the previous condition is called the period of w;

2) an eventually periodic word if there exist two positive integers k, p such that a; = a;,,
foralli > k;

3) an aperiodic word if it is not eventually periodic.
Theorem 4. The infinite Fibonacci word is aperiodic.

This statement is proved in [10]. We consider the finite Fibonacci words f,; (1) as numbers
written in the binary system and denote them by b,,. Denote by d,, the value of the number b,
in usual decimal numeration system. We write b, = d,, meaning that b, and d,, are writing of
the same number in different numeration systems.

Example.
fo=1 fi=0, =01, f3 = 010, f4 = 01001, fs = 01001010, fs = 0100101001001, ...,
bp=1, b1 =0, b =1, b3 = 10, by = 1001, bs = 1001010, bg = 100101001001, ...,
dy=1,d,=0,dy=1,d3=2,dy,=9, ds =74, de =2377,....
Formally, for arbitrary n > 1 f, coincide with the b, taken with prefix 0: f,, = 0b,,.

Theorem 5. For any finite Fibonacci word f,, n > 1, in decimal numeration system we have
dy =d,_12"1+d,_,, wheredy =1 and d; = 0. (2)

Proof. One can easily verify (2) for the first few n : dy = b, = 1 = 04+ 1 = d; +do,

dy = b3 = 10 = 1040 = d2' +dy, dy = by = 1001 = 1000 + 01 = d322 + dy,

ds = bs = 1001010 = 1001000 + 010 = d423 + d3. Statement (2) follows from Theorem 3

(statement 4) and the equality d, = b, = b,_10...0+b,_» = dy_12Fn=1 4+d, . O
Fy1

Theorem 6. Let p > 3. The sequence d, (mod p) has period T(p) = p - h(p).
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Proof. By Theorem 1 we have ged(k(p — 1), p) = 1. By Corollary 1 we have h(p)|k(p —1).
Therefore ged(h(p), p) = 1. From (2) it follows that for arbitrary integer i, 0 < i < h(p), if
j runs from 0 to p — 1 then numbers d;_ j,(,) (mod p) runs all residues mod p or stationary.
Then sequence d, (mod p) has period p - h(p). O

Let do(m) = 1, wo(m) = 1 and for arbitrary integer n, n > 1, d,(m) = d, (mod m)
in binary numeration system, wy,(m) = w,_1(m)d,(m). Denote by w(m) the limit w(m) =
limy, s 00 wy, (m).

Definition 2. We say that
1. wy(m) is a finite FLP-word of type 1 by modulo m;

2. w(m) is a infinite FLP-word of type 1 by modulo m.
Theorem 7. The infinite FLP-word of type 1 w(m) is periodic.

Proof. The statement follows from (2) and Theorem 2 because there are only a finite number
of d, (mod m) and 2f»-1 (mod ¢(m)) possible, and the recurrence of the first few terms of
sequence d, (mod m) gives recurrence of all subsequent terms. O

Theorem 8. Let p > 3. The sequence subwords d,(p) of the infinite FLP-word w(p) of type 1

has period T(p) = p - h(p).

Proof. The proof is a direct corollary of Theorem 6. O
Using Fibonacci words (1) we define periodic FLP-word w*(m) (infinite FLP-word of type 2

by modulo m). We denote as usual by ¢ the empty word [7]. First we define words w};(m). Let

wy,(m) be the last F;; ; (m) symbols of the word f,,. If F,;; (m) = 0 for some 7, then wj;(m) = e.

Since F;(m) is periodic sequence with period k(m), the sequence |w;;(m)| is periodic with the

same period.

Theorem 9. The word length |wj;(m)| coincides with F}; ;(m).

Proof. This is clear by construction of w* (m). O

Theorem 10. The word w},(m) coincides with the word w’, k() (m).

Proof. Since f;, = f,_1fn—2, the last F,_; symbols of the word f,, coincide with the word f,,_»,
and therefore the last F,, elements of the word f,, o coincide with the word f,,_» for any natural
number k. The period k() is an even number [14], so the last F;;_ ; (m) elements of the words
fnand f,, k() are equivalent. O

Let f5 (m) = 1 and for arbitrary integer n, n > 1, f (m) = f;;_, (m)wj,(m). Denote by w*(m)
the limit w* (m) = lim, .« f,; (m).

Definition 3. We say that
1) f;i(m) is a finite FLP-word of type 2 by modulo m;

2) w*(m) is a infinite FLP-word of type 2 by modulo m.

Theorem 11. The infinite FLP-word w*(m) of type 2 is a periodic word and sequence subwords
*

w; (m) of w*(m) has period k(m).
Proof. The proof is a direct corollary of Theorem 10. O
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FOURIER COEFFICIENTS ASSOCIATED WITH THE RIEMANN ZETA-FUNCTION

We study the Riemann zeta-function {(s) by a Fourier series method. The summation of log |{(s)|
with the kernel 1/|s|® on the critical line Re s = % is the main result of our investigation. Also we
obtain a new restatement of the Riemann Hypothesis.
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INTRODUCTION

It is known that the integral [ log|{ <% + it) |dt, where {(s) is the Riemann zeta-function,

diverges. M. Balazard, E.Saias, M. Yor [1] summed log |((s)| on the critical line with the kernel
1/|s|*. Using the fact that f(z) = 1% (f:) ,|z] < 1, belongs to the Hardy space H3 and the

4
result of Bercovici and Foias [2] on the factorization of f(z), they have proved the following

theorem.

Theorem ([1]).

1 log ()],
27T/Res:% ‘5‘2 |t7lS| = Z log

where {p;} is the sequence of non-trivial zeroes of {(s).
In particular, the Riemann Hypothesis holds if and only if

1 log|C(s)| |, _
27T/Re 1 |s|2 ’dS‘—O.

A. Kondratyuk, P. Yatsulka [6], using the method of Fourier series, have established the
following fact.

Theorem ([6]). Let {p;} be the sequence of non-trivial zeroes of {(s). Then

1 loglis)l .,
27T/Res:;_ B ds| =1—7+2 Z log

LY (l0j|* — Repj)(2Rep; — 1)
! loj(pj — 1)I?

4

YAK 517.53
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where 7 is the Euler constant. The Riemann Hypothesis holds if and only if

L 10g|€()| sl 1

27T JR ]5]4

We make the next step studying the behaviour of the Riemann zeta-function on the critical
line. The summation of log |¢(s)| with the kernel 1/ s|® on the critical line Re s = 3 is the main
result of our research.

1 SECTION WITH RESULTS

Our result is the following.

Theorem 1. Let {p;} be the sequence of non-trivial zeroes of {(s). Then

1 / log |£(s)| 7 -7 Pj
|ds| =z —4y+ ———+6 lo
27t Jresmt |5 2 2 Re§>% &1 =,
— Rep;)(2Rep; — 1
y4 Z |P] epj)( 62'.0] ) )
Repe] loj(oj — 1)
1 Re(|oj|> —p;)?(2Rep; — 1)(2|pj|* — 2Rep; + 1)
> ey~ 1P '
Rep;>1 Pi\P;
where 7 is the Euler constant,
= — lim leo m—lOgZN
= N—oo m<nN ™M & 2 '
Also we obtain a new restatement of the Riemann Hypothesis.
Theorem 2. The Riemann Hypothesis holds if and only if
1 log |0(s)| T-7
— ds| = = — 4y + ——. 2
27T /Res—% ‘ ‘6 ’ ‘ Y 2 ( )
Proof of Theorem 1. Observe that the conformal map z = 1 — 1/s transforms the domain

{s :Res > %} onto the unit disc {z : |z| < 1}. Consider the function

f(z):(s—l)g(s):1izg<1iz>'

We have
(s—1)C6)=1+96-1) +91(s =12+ +y(s —1)F1 4., 3)
where ) -
(=1)" .. log * N
’yk:—hm —lgk ,kEN,
k! N—o0 m;N

([5, p-4]). Therefore f(z) is holomorphic in the unit disk. It was showed in [3] that the function
f(z) belongs to the Hardy class H?, 0 < p < 1. Earlier it was established in [1] and [2] that the
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function f(z) belongs to the Hardy class H 5 and o = 0, where ¢ is the singular measure from
the factorization (see [4])

. 1 271 i 1 27 plp .
f(z) = B(z) - exp(iC) - exp <—E/O Zi(Pi—sz(go)) exp(E/O Zi‘/’ i— i log |f(e'?)] dqo) ,
(4)

is the Blaschke product, {a;} is the sequence of zeros of f(z) and C = Im f(0) is a real constant.
Consider the Fourier coefficient of log | f(re')|:

2m )
ck(r, f) = %/0 e log|f(re®)|de, r < 1.

Note that c_(r, f) = ck(7, f).
It follows from (3) that f(0) = 1, and (4) yields

(1, f) = —log |B(0)] = zlog@
)

and
, , 1 27 i¢ 4 peif ‘
0y — i0 - ip
log | f(re”)| = log |B(re)| + 7 [ Re So—""r10g |f(e')] d. ©

In some neighborhood of the origin, the function F(z) = log f(z), log f(0) = 0, is holomor-
phic. Let F(z) = Ajz + Apz? + ... be its Maclaurin expansion. According to (3)

)
A1=7;A22%2’Y :
On the other hand,
) ) T ip —ig A2\ 2(2ip —2ig
log]f(re“P)\:Relogf(rel‘P):F;F:,W(e ;—e )+(’Yl ’)/)rie re >—|—...,

where r is sufficiently small.
The relation (5) implies, for small 7,

2

n-r ; T2 c_o(r,B) +1*c_»(1, f).

In [7], the expression for the Fourier coefficient of the Blaschke product was obtained

2 o0 1
c_o(r,B) = % ) — <’g]-‘4 — 1)

j=17%]
for r < |ay|. Thus,

- 1& 1
ea(1,f) = P =7 Y =5 (It - 1). ©
j=1%

1S
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1 1 por o, 1
c-2(L, f) = Z+E/() ¢ log C(l—e“’)

Return to the variable s. Taking (6) and (7) into account, we obtain

e [ ()

Note that

6. )

Res=3 . , (8)
_m-7r 1 y p; (2Rep; —1)(2oj|" — 2Rep; + 1)
- S _1)2 0.4
4 4 Reped (0 = 1)% lojl
Taking the real parts of both sides (8), we get
11 log [Z(s)] 1 log [Z(s)| 1 log [Z(s)|
4+2n/Res_% s 2n/Resl B |d|+2n/Res_%Re<s> B Sl sl
oy =1 Re(|p;|* —p;)*(2Rep; — 1)(2|pj|* — 2Rep; + 1)
Ta ik it~ DF '
Rep;>3 I
Note that
1 .
/ ke (5 >1og|€6 ||d|_2/ < >log‘é<2~l—;t)‘dt
Res—l | | <%+t2)
o log |C (1 +it o log (g (1 +it
ek, ),
0 1 0 14
(3+#) (1+#)
log|2(s)| log |Z(s)|
S ds| + ~ / ds
froouy oSl g [ B s
Using the results from [1] and [6], we obtain (1). The proof is completed. O

Proof of Theorem 2. 1f the Riemann Hypothesis is true, then the series at the right hand side of
(1) are absent, and we have (2)

1 log |3(s)| 71—
27.[/1{51 ||6 ’d‘— 4y + R

Now assume that relation (2) holds. If the Riemann Hypothesis is not true, then in (1)

6210g

Rep;>

fa Y (lojI> — Rep;)(2Rep; — 1)

> 0.
loj(o; —1)?

Re p; >
Examine carefully the series

y Re(|oj|* —p,)*(2Rep; — 1)(2p;|* — 2Rep; + 1)
Repr) lj(oj =1
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We are interested in when all terms of this series are positive. The following conditions

appear
Re(Jo; > = p,)? > 0.
If0 <Repj <land|Imp;|> 3+ \%, then Re(|o;|? —ﬁj)z > 0.
It is known (see [8]) that the first 102% 4 1 non-trivial zeros of the Riemann zeta-function lie
on the critical line. In particular, Im p; = 14,1347 ...
These facts imply Re(|pj|* — ﬁj)z > 0 for all non-trivial zeros p; that lie inside the critical

strip0 < Res < 1.
Hence, if the Riemann Hypothesis is not true, then

1 log |¢(s)| 7 -7
— ——d ~—4 —_
27T/R s:% |S|6 | S| >2 v+ >
This is a contradiction with (2) which finishes the proof. 0
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bactox IO.B., Tapactox C.I. Koegiyicnmu ®yp’e, acoyiiiosari 3 03ema-pynxyicto Pimana // Kapmarcbki
MaTeM. my6a. — 2016. — T.8, Nel. — C. 16-20.

Mu BuB4aeMo A3eTa-pyHkuito PiMaHa {(s), BUKOPUCTOBYIOUN MeToA KoeditienTis @yp’e. TTia-
cymosyBanHs log [{(s)| 3 stapom 1/s|® Ha xpuTuuHii mpsmiit Re s = 1 e rorosrnM pesyabraTom
HaILIOTO AOCAiAXKeHHS. TakoX OoTpMMaAM TBepAKeHHsI, PiBHOCMABHe rinoresi PiMaHa.

Kntouosi crosa i ppasu: xoedpiienTn Qyp’e, AseTa-pyHkuisa Pimana, rimoresa Pimana.
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OPTIMAL CONTROL PROBLEM FOR SYSTEMS GOVERNED BY NONLINEAR
PARABOLIC EQUATIONS WITHOUT INITIAL CONDITIONS

An optimal control problem for systems described by Fourier problem for nonlinear
parabolic equations is studied. Control functions occur in the coefficients of the state equations.
The existence of the optimal control in the case of final observation is proved.
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INTRODUCTION

Optimal control of determined systems governed by partial differential equations (PDEs)
is currently of much interest. Optimal control problems for PDEs are most completely studied
for the case in which the control functions occur either on the right-hand sides of the state
equations, or the boundary or initial conditions [8,22,26]. So far, problems in which control
functions occur in the coefficients of the state equations are less studied.

The main ideas and methods of solving different optimal control problems for systems
governed by evolutionary equations and variational inequalities are considered in monograph
[18]. Problem, where control functions occur in the coefficients of the state equations, is given
as only one among many other problems which were considered there by author.

A lot of various generalizations of this problem were investigated in many papers, includ-
ing [1,2,4,5,10-13,15, 20, 21, 24, 25], where the state of controlled system is described by the
initial-boundary value problems for parabolic equations.

In [1,21,24,25] the state of controlled system is described by linear parabolic equations and
systems, while in [1] and [21] control functions appears as coefficients at lower derivatives,
and in [24,25] the control functions are coefficients at higher derivatives. In [21] the existence
and uniqueness of optimal control in the case of final observation was shown and a necessary
optimality condition in the form of the generalized rule of Lagrange multipliers was obtained.
In paper [1] authors proved the existence of at least one optimal control for system governed by
a system of general parabolic equations with degenerate discontinuous parabolicity coefficient.
In papers [24, 25] the authors consider cost function in general form, and as special case it
includes different kinds of specific practical optimization problems. The well-posedness of
the problem statement is investigated and a necessary optimality condition in the form of the
generalized principle of Lagrange multiplies is established in this papers.

YAK 517.9
2010 Mathematics Subject Classification: 35K10, 49]20, 58D25.
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In papers [2,10-13, 15,20] authors investigate optimal control of systems governed by non-
linear PDEs. In particular, in [2] the problem of allocating resources to maximize the net benefit
in the conservation of a single species is studied. The population model is an equation with
density dependent growth and spatial-temporal resource control coefficient. The existence of
an optimal control and the uniqueness and the characterization of the optimal control are es-
tablished. Numerical simulations illustrate several cases with Dirichlet and Neumann bound-
ary conditions. In [11] the optimal control problem is converted to an optimization problem
which is solved using a penalty function technique. The existence and uniqueness theorems
are investigated. The derivation of formula for the gradient of the modified function is ex-
plained by solving the adjoint problem. Paper [15] presents analytical and numerical solutions
of an optimal control problem for quasilinear parabolic equations. The existence and unique-
ness of the solution are shown. The derivation of formula for the gradient of the modified cost
function by solving the conjugated boundary value problem is explained. In [16] the authors
consider the optimal control of a degenerate parabolic equation governing a diffusive popula-
tion with logistic growth terms. The optimal control is characterized in terms of the solution of
the optimality system, which is the state equation coupled with the adjoint equation. Unique-
ness for the solutions of the optimality system is valid for a sufficiently small time interval due
to the opposite time orientations of the two equations involved. In paper [20] optimal control
for semilinear parabolic equations without Cesari-type conditions is investigated.

In this paper, we study an optimal control problem for systems whose states are described
by problems without initial conditions or, other words, Fourier problems for nonlinear para-
bolic equations.

The problem without initial conditions for evolution equations describes processes that
started a long time ago and initial conditions do not affect on them in the actual time mo-
ment. Such problem were investigated in the works of many mathematicians (see [3,7,23] and
bibliography there).

As we know among numerous works devoted to the optimal control problems for PDEs,
only in papers [4,5] the state of controlled system is described by the solution of Fourier prob-
lem for parabolic equations. In the current paper, unlike the above two, we consider optimal
control problem in case when the control functions occur in the coefficients of the state equa-
tion. The main result of this paper is existence of the solution of this problem.

The outline of this paper is as follows. In Section 1, we give notations, definitions of func-
tion spaces and auxiliary results. In Section 2, we prove existence and uniqueness of the solu-
tions for the state equations. Furthermore, we construct a priori estimates for the weak solu-
tions of the state equations. In Section 3, we formulate the optimal control problem. Finally,
the existence of the optimal control is presented in Section 4.

1 PRELIMINARIES

Let n be a natural number, R” be the linear space of ordered collections x = (x1,...,X,)
of real numbers with the norm |x| := (|x{|> + ... + |x,4]?)!/2. Suppose that Q is a bounded
domain in R"” with piecewise smooth boundary I'. Set S := (—00,0], Q:=Q x §, X :=T x S.

Denote by L{° (Q) the linear space of measurable functions on Q such that their restrictions

to any bounded measurable set Q" C Q belong to the space L*(Q’).
Let X be an arbitrary Hilbert space with the scalar product (-,-)x and the norm || - ||x.
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Denote by L? (S; X) the linear space of measurable functions defined on S with values in X,
whose restrictions to any segment [a,b] C S belong to the space L?(a, b; X).

Letw € R, a € C(S) be such that a(t) > 0forallt € S, = a ory = 1/a, and let X be as
above. Put by definition

12,,(5X) = {feuxsx\/ﬁ Pt < eo).

This space is a Hilbert space with respect to the scalar product

()13, 5%) = /# 0 0, g0 a
and the norm

fa(s)ds 1/2
1£112,,5:x) = /7 o) at)

Denote by Cl(a,b), where —co < a < b < +oo, the linear space of continuously differen-
tiable functions on (a, b) with compact supports.
Let H(Q) := {v € L(Q) | vy, € Lo(Q) (i = 1,n)} be a Sobolev space, which is a Hilbert

n
space with respect to the scalar product (v, w) 1 (q) := [ { L vxwy, +vw} dx and the corre-
O =1
n 1/2 l
sponding norm |[v]| 1 () == (f { ¥ |ox, >+ [0]*} dx) . Under H}(Q) we mean the closure
O i=1

in H1(Q) of the space C®(Q)) consisting of infinitely differentiable functions on () with com-
pact supports. Denote by

[ Vo] dx
K:= inf 2 1
veH}(Q), 020 [ [0?dx M
@)

where Vo = (vy,,...,0y,), |Vo> = Z |0y, |2

It is well known that the Constant K is finite and coincides with the first eigenvalue of the
following eigenvalue problem:
—Av = Av, 0|y =0. (2)

From (1) it clearly follows the Friedrichs inequality

/|Vv|2dx > K/ I0[2 dx for all v € HY(Q). 3)

Also define dpz =z, 9djz = Zx; if j € {1,...,n}. Further, an important role will be played
by the following statement.

Lemma 1. Suppose that a function z € L?(t1,tp; H{(Q)), where t,t, € R (# < t2), satisfies
the identity

//{—ZW +Zg18¢<v}dxdt—0 Y € Hy(Q), ¢ € Cl(t, t2), (4)

t1 Q)
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for some g; € L%(t1,t2; L>(Q)) (i = 0,n). Then
(i) the function z belongs to the space C([t1,t]; L>(Q)) and for every 6 € C'([t1,t2]) and
forallt,p € [t1, 1] (11 < T2) we have

/\z x, t) lzdxt e -5 /]2\29'dxdt+//{2g18 z}0dxdt = 0; (5)
T

10 710 -

(i) the derivative z; of the function z in the sense D'(t1,ty; H~1(Q)) (the distributions
space) belongs to L?(ty,tp; H~1(Q)), furthermore

/ Izt (s ) mr ey t < 2 18R 110 ©)

Proof. The first statement follows directly from Lemma 2 of [6]. Let us prove the second state-
ment. Firstly note that the following continuous and dense embeddings hold

H(Q) c L2(Q) c HYQ). 7)

Let C(ty,t2) be the space of functions on (t1,t,) which are infinitely continuously dif-
ferentiable and have compact supports. Under D’(t;,tp; H-1(Q))) we mean the space of dis-
tributions which are defined on C®(t;,t,) with values in H1(Q) (see, for example, [14]).
Since the spaces L2(t1,tp; H{(Q)), L*(t1,t2; H1(Q))) can be identified with subspaces of the
space of distributions D'(t1, tp; H=1(Q))), then it allows us to speak about derivatives of func-
tions from L?(t1,t;H{(Q))) in the sense D'(t1,t;;H Q1)) and their belonging to the space
Lz(tl,tz;Hil(Q».

Let us rewrite equality (4) in the form

//21/J¢ dxdt = // Zgla Yodxdt, e HO( ), ¢ € C}(tl,tz). (8)

t1 Q) fQZ

According to the definition of the derivative of distributions from D’(t,t,; H~1(Q)), (8) im-
plies that z; belongs to the space L?(t1, to; H-1(Q))), and for almost all t € (t1, t5)

< zi(-, 1), 9(+) >Hi(Q /Zgl x, 1) (x

where < -, - > H(Q) denotes the canonical scalar product in H~1(Q) x H}(Q). From this,
using the Cauchy-Schwarz inequality, for almost all t € (t1,t) we obtain

| <z 1), 9() >mia !<Z|!gz, M2l ()l 2

< (Ll 0lEe) 19O ooy

From (9) it follows that for almost all t € (¢, t) the following estimate is valid

n
[EAON] N Zng ot

which easily implies (6). ]

)



OPTIMAL CONTROL OF PROBLEM WITHOUT INITIAL CONDITIONS 25

2 WELL-POSEDNESS OF THE PROBLEM WITHOUT INITIAL CONDITIONS FOR NONLINEAR
PARABOLIC EQUATIONS

Consider the equation
Yt — Z i (x,t,y,Vy) +ao(x, t,y, Vy) = f(x,t), (x,t)€Q, (10)

where y : Q — R is an unknown function and data-in satisfies following conditions:
(Ap) foreveryie€ {0,1,...,n}
QxR xR"> (x,t,5,&) —aj(x,ts,¢) €ER

is the Caratheodory function, i.e., a;(x,t,-,-) : R x R” — R is the continuous function
fora.e. (x,t) € Q,and a;(-,-,5,&) : Q — R is the measurable function for every (s,{) €
R x R"; moreover, a;(x,t,0,0) = 0 fora. e. (x,t) € Q;

(Ap) foreveryi e {0,1,...,n}, forevery (s,¢) € R x R", and for a.e. (x,t) € Q the following
estimate is valid |a;(x,t,5,8)] < Ci(Js| + |&]) + hi(x, t), where C; = const > 0, h; €
(S;L*(Q));
loc

(A3z) forevery (s1,&l), (s2,¢%) € R x R" and for a.e. (x,t) € Q the following inequality holds

n

Y (ai(x,t,51,8") — ai(x,t,52,8%)) (& — &F)
i—1
+ (a0 (x,t,51,81) — ao(x,£,52,6%)) (51 = 52) > a(B)[" = &2,
where a € C(S) such that a(t) > 0 forallt € S;
(F) f € L, (S L2(Q)).
Additionally, we impose the boundary condition
ylg =0 (11)
on a solution of equation (10).

Definition 1. The function y is called a weak solution of equation (10) satistfying boundary
condition (11) if it belongs to L2 (S; H}(€Q)) N C(S; L?(QY)) and the following integral equality
holds

loc

//{ _W/’qo’ + iai(x, t,y, Vy)azlqu)} dxdt
’ - (12)
= //fl[)q)dxdt, P e H%(Q), ¢ € Ccl(—OO,O).

Q
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There may exist many weak solutions of equation (10) satisfying boundary condition (11).
To ensure uniqueness of the weak solution of equation (10) satisfying condition (11), we have
to impose some additional conditions on solutions, for instance, some restrictions on their
behavior as t — —oo. We will consider the problem of finding a weak solution of equation (10)
satisfying boundary condition (11) and the analogue of the initial condition

-

) w [a(s)ds
lim e © ly( Dll2() =0, (13)

t——o0

where w € R. We will briefly call this problem by problem (10), (11), (13), and the function y is
called the weak solution of problem (10), (11), (13).

Lemma 2. Let w < K, where K is a constant defined in (1), and conditions (A;)-(A3) are
satisfied. Then two following statements are true.

(i) If y is a weak solution of problem (10), (11), (13) and

f S Lw 1/0((5; LZ(Q))f (14)
theny € L2, ,(S; H)(Q)) and the following estimates hold:

T T £

2w [a(s)ds ) . 2w [ a(s)ds
e 0 DRy <G [T 0 I Rt TES, (15)
||]/||L§,l“(s,-H3( < CZ”fHLZ L(SL2 ()7 (16)

where C1, C; are positive constants depending on K and w only.

(ii) If y; and y, are two weak solutions of problem (10), (11), (13) with f = fi and f = f
correspondingly, and

fe € Loa/a(SL2(Q)) (k=1,2), (17)
then the following estimates hold:
2w frrx(s) ds
e 1 1)~ 6 D)lk6
. 1 wafrx(s) ds (18)
<G [RO1e 0 IACGH = AEDE g TES,
1 =v2lliz, (smpc0)) < Callfi = £olliz | sz (19)
where Cy, C; are positive constants such as in (15) and (16).
Proof. First we prove statement (ii). For function z : Q — IR let us denote
a;(z)(x, t) == a;(x,t,z(x,t), Vz(x,t)), (x,t)€Q,i=0,n. (20)
From (12) for difference y15 := y1 — y» we get such an integral identity
n
//{ —y2pe + ) (aily1) — ai(yz))ai¢§0} dxdt
=0
° | @)

= //f12¢¢ dxdt, € Hé(Q), P € Cg(—oo,O),
Q
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where f1p := f; — f». According to Lemma 1, (21) implies that

/ o] - / [ lynal?e’ dxat
=0

e (22)
n
+// Z ]/1 — a; yz))alylz]f)dxdt //flzylzf)dxdt
n0 =0 T Q)
where § € C!(S) and 71, » € S (Ty < o) are arbitrary. Using Cauchy inequality with e:
ab<2a +—b2 ,beR, e>0, (23)
let us estimate the right side of equahty (22) as follows:
(]
‘//flzylze dxdt’ // |y12|29 dxdt + — 26 // 1|f12|29 dxdt (24)
1 Q T Q
where e > 0 is arbitrary From Cond1t10n (A3) we obtain followmg
n
// Z a;(y1) — a; yz))alylz dedt > //a]Vylz\Zdedt (25)
710 - 710
where Vy := (yxl, .+, Yx, ). According to (24) and (25), (22) implies the inequality
0( /|y12 X, T)|? dx — —6 (1 /|y12 x,1)|?dx — = //|y12|29’dxdt
10
+//a|Vy12|26dxdt <= //oc|y12|29dxdt+ 9 // 7Y f12 |0 dxdt,
Q0 10
where & > 0 is arbitrary.
2w _[t‘tx(s)ds
From this taking 6(t) = 2e 0 ,t € S, we obtain
Zw}z 2w i [ a(s)ds )
e /|y12 X, T)|?dx — e 0 /|y12(x,1'1)| dx
warx(s) Zw Ja(s)ds
- Zw//rx(t)e 0 ]ylz\zdxdt + 2// 0 |Vy1o|? dxdt (26)
Q) T Q
2 wattx(s)ds 2 2wffrx(s) ds
< s//(x(t)e 0 \yu]zdxdt%—%//[rx(t)]le 0 | fi2|* dxdt.
1 Q 710
Due to (26) using (3) we obtain
)
2w [ a(s)ds 2w [ a(s)ds
e 0 /]ylz(x,rz)lzdx—e 0 /]ylz(x,rl)lzdx
t (27)
Zw a(s) wazx(s)ds
x(K, w, e// 0 |Vy12|2dxdt < - // 0 | fio|? duxdt,

Q0 10
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where x (K, w, ¢) := (2(K—w) —¢)/Kif0 < w < K, and x(K,w,¢) := (2K —¢) /K if w < 0.
Taking e = Kif w < 0,and ¢ = K — w if 0 < w < K in (27), we obtain

Zw}z 2w Tla(s)ds )
e /|y12 X, T)|?dx—e 0 /|y12(x,1'1)| dx
o t (28)
T .
Zw rx(s) ds 2w [ a(s)ds
4G // 0 | Vynal? dxdt < Cy //[a(t)]*le 0 | fial? ducdt,
10 10
where C3, C4 are positive constants depending on K and w only.
From (13) it easily follows the condition
t
waa
e /|y12 x,t)?dx -0 as t— —oo. (29)

Taking into account (29) and (17), we let 7 — —oco in (28). As a result, adopting » = 7 € S,
we obtain

Zw a(s) ds
/Wm2x1-|¢»+c3//" 2 Ty

0 (30)
walX(S)dS
< c //[a(t)rle 0 | fia? docdt.

—oo()

Hence, using inequality (3), we easily obtain estimates (18) and (19).

Now let us prove statement (i). Using the condition (A1) one can easily see that y = 0
is a weak solution of problem (10), (11), (13) with f = 0, thus estimates (18) and (19) with
1=y f = fandy, =0, f, = 0 imply estimates (15) and (16). Estimate (16) implies that
v € L3, (S; Hi(Q). O

Lemma 3. If w < K, where K is a constant defined by (1), then problem (10), (11), (13) has at
most one weak solution.

Proof. Assume the opposite. Let i1, 2 be two weak solutions of problem (10), (11), (13). In case
w < K according to Lemma 2 we obtain the equality

T

2w [a(s)ds
e 0 / ly1(x, 7) —yz(x,r)\zdx =Qforall Tt €8S. (31)

From proof of Lemma 2 it follows that estimate (31) is correct in case w = K also. Indeed, if
w = K, then in (27) and (30) we have x (K, w, &) = 0 and C3 = 0, correspondingly, and its easily
follows from the proof that estimate (18) is correct.

Equality (31) implies equality y1(x,t) — y2(x,t) = 0 for a. e. (x,t) € Q, thatis, y1(x,t) =
ya2(x,t) = 0fora.e. (x,t) € Q. The resulting contradiction proves our statement. O
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Remark 1. Functions y.(x,t) = co(x)e ®, (x,t) € Q (c € R), where v is an eigenfunction of
problem (2) corresponding to the first eigenvalue, are weak solutions of equation (10) satisfy-
ing condition (11), when a; = &; (i = 1,n), ap = 0 and f = 0. In this case we have a(t) = 1,
therefore condition (13) takes on the form: e*!||y(-,t)|| 2(0) , 57 0. Obviously in this case for

nonzero solutions we have e ||y, (-, t) 200 i C = const # 0, ¢! ||yc(-, 1)l 12(q) ST if
——00 ——00
w < K, and ! ||y (-, t) 200 P 0 if w > K. This means that the condition w < K is essen-
——00

tial for ensuring the uniqueness of the weak solution of problem (10), (11), (13), i.e., it cannot
be simplified.

Theorem 1. Suppose that conditions (A;)—(A3) hold, and w < K, where K is a constant
defined in (1), and
f € Le,1 /(S L2(QQ)). (32)

Then there exists a unique weak solution of problem (10), (11), (13), it belongs to the space
L2, ,(S; H{(Q)) and estimates (15) and (16) are correct.

Proof. Lemma 3 gives us a uniqueness of a weak solution of problem (10), (11), (13). It remains
to prove the existence of a weak solution of this problem.

For each m € N we define f, (-, t) := f(-,t), if —=m < t <0, and fu (-, t) :=0,if t < —m,
and consider the problem of finding a function y,, € L?(—m,0; H(Q))N C([—m,0]; L>(Q))
satisfying the initial condition

Ym(x,—m) =0, x€Q, (33)

(as an element of space C([—m, 0]; L?(Q)))) and equation (10) in Q,, in the sense of the following
integral identity

//{ —ymg’ + anoai(ym)aiw} dxdt = //fmw dxdt, € Hy(Q), ¢ € C(—m,0).
Qu = Qu

The existence and uniqueness of the solution of this problem easily follows from the known
results (see, for example, [14]). For every m € IN we extend y,, by zero for the entire set Q and
keep the same notation y;, for this extension. Note that for each m € N, the function y,,
belongs to L2(S; HY(Q))) N C(S; L*(Q2)) and satisfies integral identity (12) with f,, substituted
for f, ie,

//{ — Ympp' + Xn(:)ai(ym)aﬂPQD} dxdt = //fm¢¢dxdt,1p € H}(Q), ¢ € CH(—c0,0). (34)
Q = Q

Consequently, we have shown that y,, is a weak solution of problem (10), (11), (13) with f,,
substituted for f. Then, in particular, statement (i) of Lemma 2 implies estimates

wazx(s)ds ) - . watzx(s)ds )
e 0 Dy G [ @) e 0 A R de TES, (39

iz, (sm10)) < Callflliz |, (51200 (36)
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where Cy, C; are positive constants such as in estimates (15), (16).

Let us take identity (34) with alternately m = k and m = [, where k, | are arbitrary positive
integers, [ > k, and apply statement (ii) of Lemma 2. As a result, we obtain estimates similar
to (18), (19), i.e.

wasz(s)d e wata(s)

S
e 0 ) =T Ry < G [l e o
-1
—k
e = will 2, sy < C2 [ (] e
-1

ds
IfC D qydt, TS, (37)

t
2w [ a(s
0

)ds
£ G172 )t (38)

Condition (32) implies that the right-hand sides of inequalities (37) and (38) tend to zero when
k and I tend to +co. This means that the sequence {y;, }°_; is a Cauchy sequence in the space

L2, ,(S; HA(Q)) and C(S; L?(Q2)). Consequently, we obtain the existence of the function y €
L2, ,(S; HA(Q)) N C(S; L?(Q))) such that

Ym =2 Y strongly in L2 ,(S;Hj(Q)) and C(S;L*(Q)). (39)
Note that (39) implies
diYm maiy strongly in L2 (S;L*(Q?)), i=0,n. (40)

Condition (Ajy) and estimate (36) gives us for each t1,t; € S(t; < t) the following:

ty t
//\ai(ym)\zdxdt < Cs // (1 + |V yu ? + [13]?2) dxdt < Cs, (41)
t1 Q) t Q)

where Cs and Cg are positive constants independent on m.

Hence, from (41) we obtain that a;(y,;) is bounded in L2 _(S; L?(Q))). This and (40) yield
that there exists a subsequence of {y,}"_, (still denoted by {yw}5_,) and functions x; €
L210c(S; L2(Q)) (i = 0, 1) such that

0iYm maiy ae.on Q, i=0,n, (42)
a;(Ym) 2 X weakly in  Lp10c(S; L2(Q2)), i=0,n. (43)

Condition (A;) and (42) yield
a;(Ym) W:))oai(y) ae.onQ, i=0,n. (44)

According to [17, Lemma 1.3], from (43) and (44) we obtain

ai(ym)moai(y) weakly in  Lp1,.(S; L2(QY)), i=0,n. (45)

Let us show that the function y is a weak solution of problem (10), (11), (13). To do this, we
let m — oo in identity (34), taking into account (40), (45) and the definition of the function f;,.
As aresult we obtain identity (12). Now, taking into account (39), we let m — 4-00in (35). From
the resulting inequality and condition (32), we obtain condition (13). Hence, we have proven
that y is a weak solution of problem (10), (11), (13). O
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3 FORMULATION OF THE OPTIMAL CONTROL PROBLEM AND THE MAIN RESULT

Let U := L*(Q) be a space of controls and Uy := {v ceu ’ v>0 a.ein Q} be the set

of admissible controls. We assume that the state of the investigated evolutionary system for a
given control v € Uj is described by a weak solution of the equation

" d
]/t - Z dX‘ai(x’ t;]// Vy) +ll0(x, t/y/ vy) +U(X, t)y = f(x, t), (x, t) c Q, (46)
i=1 t

satisfying conditions (11) and (13) (this problem is similar to problem (10), (11), (13)). This
means that y is a function belonging to the space L2 (S; H}(Q))) N C(S; L*(Q))) and satisfying
the integral identity

/ / {—ypo' + 2 ai(x by, V)i + oype | dxdt
Q = (47)
= //f¢¢dxdt, ¥ € H}(QY), ¢ € Cl(—00,0),

Q

and condition (13) under assumptions (\A1)-(.A3), (F).

A weak solution y of the specified problem will be called a weak solution of problem (46),
(11), (13) for control v, and will be denoted by y(v), or y(x,t), (x,t) € Q, ory(x,t;v), (x,t) € Q.
Further, we assume that condition (32) and the inequality w < K hold. From the previous sec-
tion (see Theorem 1), we immediately obtain the existence and uniqueness of a weak solution
of problem (46), (11), (13) (for a given v € Uj) and its estimates (15), (16).

We assume that the cost functional has the form

1) = lly( 0;0) — 20() 22y + Hllellim() 0 € UL, (48)

where zg € L2(Q), u > 0 are given.
We consider the following optimal control problem: find a control u € U such that

J(u) = inf J(0v). (49)

vely

We briefly call this problem (49), and its solutions will be called optimal controls.

The main result of this paper is the following theorem.
Theorem 2. Problem (49) has a solution.

4 PROOF OF THE MAIN RESULT

Proof of Theorem 2. Since the cost functional | is bounded below, there exists a minimizing se-
quence {v;} for J in Uy, i.e., J(vy) b inlf J(v). This and (48) imply that the sequence {v} is
—o0 vely

bounded in the space L*(Q), that is

esssup |vg(x, t)| < Cyforall k € N, (50)
(x1)eQ
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where C7 is a constant, which does not depend on k.
Since for each k € IN the function v, := y(v;) (k € IN) is a weak solution of problem (46),
(11), (13) for v = vy, the following identity holds:

//{ — Yk’ + iéai(yk)ai#’(/’ + vkyk¢¢} dxdt
S i=

= //f¢¢dxdt, ¥ € H}(Q), ¢ € Cl(—00,0). Y
Q
According to Lemma 2 for each k € IN we have the estimates
20 [ a(s)ds T 20 [ a(s)ds
e 0 D <G [ROIE S IFCOI] @ TES, (D)
lvelliz, (s;m100)) < Callfllz ,, (s2()) - (53)
where constants Cy, C; are independent on k € IN. From (.A;) and (53) it follows
LI L)
[ ol st < G [ [ (el + 1w+ f) de < € 54)

nQ = 10

where 71, 72 € S (11 < 1) are arbitrary, and Cg, Cy are positive constants independent on k.
Taking into statement (ii) of Lemma 1, from (51) for arbitrary 7, 0 € S (1 < 7») and k € N
we obtain

T T n
J il at < [ [ (X0 1) P+ low — f12 )t 55)
T no =0

Taking into account condition (32), (50) and (54), estimate (55) implies
%)
/ 1Yt 31y 4t < Cro forall k€ N, (56)
T

where 71, 2 € S (71 < T2) are arbitrary, C19 > 0 is a constant which depends on 77 and 1, but
does not depend on k.

According to the Compactness Lemma (see [19, Proposition 4.2]), and the compactness of
the embedding H}(Q)) C L?(Q) (see [18] c. 245), estimates (50), (53), (54), (56) yield that there
exists a subsequence of the sequence {v, v} (still denoted by {vy, yx}) and functions u € U,
y € L2, ,(S; H{(Q)) and x; € L2 _(S; Lo(Q)) (i = 0,n) such that

loc
Uk ]H—OZ u x-weaklyin L*(Q), (57)
Yk 2 weakly in L2, ,(S; Hj(QQ)), (58)
Ye = 2Y strongly in  L{,.(S; L*(€2)), (59)
a;i(yx) — xi weaklyin Lp1oc(S;L2(QY)), i=0,n. (60)

k—o0
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Note that (58) implies the following

alyk 2 aly weaklyin L2 (S;L*(Q))), i=0,n. (61)
Let us show that (57) and (59) yield

// YOk dxdtk—> // yup @ dxdt for all p € H}(Q), ¢ € Cl(—0,0). (62)
— 00
Q Q

Indeed, let ¢ := ¢ and t1,t, € S be such that supp ¢ C [t1, t2]. Then we have

//ykvkgdxdt // YUk — YOx + yog) g dxdt = //yvkgdxdt—l—// Y — Y)opg dxdt.  (63)

t1 Q) tQ tHQ

From (50) and (59) it follows

)]2 (yk—y)vkgdxdt) //]vkglzdxdt //\yk—y\zdxdt> IH—OZ(), (64)

tlQ tlﬂ tlﬂ

Thus, using (64) and (57), (63) implies (62). Similarly to (62) it can be easily shown that (57) and
(59) yield

//|yk|20kgodxdtk—>//|y|2ugodxdt forall ¢ € Cl(—co,0). (65)
—00
0 0

Using (61), (62), and letting k — oo in (51), we obtain
n
[ {=vwo'+ L xouwg+uyyo}dxat = [[ fpgaxdt, g € Hy(©Q), ¢ € Cl(=e,0). (66)
Q =0 Q

According to Lemma 1, identity (66) implies that y € C(S; L*(QQ)).
Now let us show that the equality

/ { gxiaitp} dx = ({ { gai(y)aﬂp} dx (67)

Q

is valid for every ¢ € H}(Q) and for a. e. t € S. For this we use the monotonicity method
(see [17]). Let us take an arbitrary functions w € L 1o.(S; HY(Q)) and 6 € Cl(—o0,0), 6(¢) > 0
for all t € (—o0,0). Using condition (Aj3) for every k € IN we have

Wy = // al (yx) — a;i(w))(diyx — aiw)}(? dxdt > 0.

From this we obtain

Wi = // iai(%‘)alyke dxdt — // i [ai(yk) 9w + a;(w) (djyx — dw)]6 >0, k€ N. (68)
o =0 g i=0
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According to Lemma 1, (51) implies
1 » L
—5//|yk| 9'dxdf+// Z (ve) ik + velyil? }Qdﬂﬁ //f]/kf)dxdf
Q g =
From (68), using (69), we obtain
1
Wi = // {310+ (fri—orlyi )} dxdt
Q
n
- // Y [ai(yk)diw + a;(w) (d;yx — 0;w)] O dxdt >0, k € N.
Taking into account (59) and (65) we have
Jim // {5 1el20/+ (fy—oilye ) 0} dxdt = // {510+ (fy—uly?)6} dxat.
By (60), (61) and (71) from (70) we get
0 < lim Wy = // {lly]29'+(fy—u\y\2)9} dxdt
T k—oo 2
Q
n
—//Z [xi9iw + a;(w) (9;y — d;w)] Odxdt.
G =0
From (66), using Lemma 1, we obtain
- Lo 2
//ZXiai]/Q dxdt = // {§|y| 0'+ (fy—uly| )9} dxdt.
g =0 Q
Thus, (72) and (73) imply that

// (1)) @y — aw) } dxdt > 0.

(69)

(70)

(71)

(72)

(73)

(74)

Substituting w = y — Ay in the above inequality, where ¥ € H}(Q), A > 0 are arbitrary, and

dividing the obtained inequality by A we get

// Xi —ai(u— Ap))o; ¢}9 dxdt > 0.

(75)

Letting A — 0+ in (75), using condition (A;) and the Dominated Convergence Theorem

(see [9, p. 648]), we have

// i (¥))2 }0 dxdt = 0.

i=1

(76)
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Since ¢ € H}(Q), 8 € Cl(—o0,0) are arbitrary functions, then (76) impliest (67).

Therefore y is a weak solution of equation (46), satisfying boundary condition (11). Hence,
the function y is a weak solution of equation (46) for v = u, satisfying boundary condition (11).
Let us show that y satisfies condition (13). First, we prove the following convergence:

forallt € S: y(-,7) — y(-,7) stronglyin L3(Q). (77)

k—o0

For this purpose, we subtract identity (51) from identity (47) with v = u, ¢ € H}(Q),
¢ < Cg (_Oor O>:

// (y—y)pe' + Z —ai(yx)) i + uy — Uk]/k} dxdt = 0. (78)

To the resulting identity (78), we apply Lemma 1 with 6(f) = 2(t—7+4+1), m = 7—1,
T) = T, where T € S is any fixed. Consequently, we get

T
/|yxr —uxT)Pdx— [ [ly =yl duat

—-10)

(79)
+ // —ai(yx))9i(y — yir) + (uy — veyi) (y — yk)] 0 dxdt = 0.
=10 =0
From (79), taking into account condition (.43) we obtain:
/ y(x,T) —yi(x, 7P dx < // [y = yi? = (uy — oyi) (v — yi)6] dxdt. (80)

—-1Q)

Inequality (80) implies

/|yxr —yelx, 7)1 x<2// 100)ly — il + [yl = oilly — wl]dxdt. 8D
10

Using (50) and Cauchy-Schwarz inequality, from (81) we obtain

[0 - mimnpax < cn(] [ [-ubaa) s [ [ly-wpaa), @
Q

7—10 7—1Q

where C1; > 0 is a constant which does not depend on k. From (82), according to (59), we
get (77). Taking into account (77), let k — oo in (52). The resulting inequality, according to
condition (32), implies

2w Tzx(s) ds

lim e o /|y(x,r|2 dx =0, (83)

T——00

that is condition (13) holds. Hence, we have shown thaty = y(u) = y(x,t;u), (x,t) € Q, is the
state of the controlled system for the control u.
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It remains to prove that u is a minimizing element of the functional J. Indeed, (77) implies

Iy 0) = 20() 222y — (- 0) = 20() 22 (84)

k—o0

Also, (57) and properties of x-weakly convergent sequences yield

1' i f o0 > [ee] .
Jim in [okllLo(0y = llullre(@) (85)

From (48), (84) and (85), it easily follows that klim J(vr) > J(u). Thus, we have shown that
—00

u is a solution of problem (49). O
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Kntouosi cnosa i ppasu: onTmMarbHe KepyBaHHsI, 3apada 6e3 I09aTKOBMX YMOB, HeAiHilHe Mapa-
boaiuHe piBHSHHSI.
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CONTINUOUS BLOCK-SYMMETRIC POLYNOMIALS OF DEGREE AT MOST TWO
ON THE SPACE (L )?

We introduce block-symmetric polynomials on (Le)? and prove that every continuous block-
symmetric polynomial of degree at most two on (Le)? can be uniquely represented by some “ele-
mentary” block-symmetric polynomials.

Key words and phrases: block-symmetric polynomial, symmetric function on Leo.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION

Firstly symmetric functions of infinite number of variables were studied by Nemirovski and
Semenov in [5]. Authors considered functions on £, and L, spaces. Some of their results were
generalized by Gonzalez, Gonzalo and Jaramillo [2] to real separable rearrangement-invariant
function spaces. In [3] Kravtsiv and Zagorodnyuk considered block-symmetric polynomials on
¢1-sum of copies of Banach space. In the joint paper of the author with Galindo and Zagorod-
nyuk [1] the algebra of symmetric analytic functions of bounded type on the complex space
L is studied in detail and its spectrum is described.

A map P : X — C, where X is a complex Banach space, is called an n-homogeneous poly-
nomial if there exists an n-linear symmetric form Ap : X" — C, such that P(x) = Ap(x,."., x)
for every x € X. Here “symmetric” means that

Ap(xT(l), .. .,XT(n)) = Ap(xl, .. .,xn)

for every permutation T : {1,...,n} — {1,...,n}. Note that Ap is called the symmetric n-
linear form associated with P. It is known (see e.g. [4], Theorem 1.10) that Ap can be recovered
from P by means of the so-called Polarization Formula:

1

Ap(x1,...,xy) = i Z €1...nP(e1x1 + ...+ €nxy). (1)
n: €1,.-,En==1

In the case n = 2 formula (1) can be written as

Ap(x1,72) = (Pt +32) — Plxi — ) ). e

It is also convenient to define 0-homogeneous polynomials as constant mappings.

YAK 517.98
2010 Mathematics Subject Classification: 46]20, 46E15.
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A mapping P : X — C is called a polynomial of degree at most m if it can be represented
as

P=Py+P +...+ Py,

where P; is a j-homogeneous polynomial for j =0, ..., m.
Let Lo be the complex Banach space of all Lebesgue measurable essentially bounded comp-
lex-valued functions x on [0, 1] with norm

Jelles = ess sup, o |x(1)]-

Let E be the set of all measurable bijections of [0,1] that preserve the measure. A function
F : Lo — C is called E-symmetric (or just symmetric when the context is clear) if for every
x € Lo and for every o € &

F(xoo) = F(x).

The functions R, : Lo, — C defined by

Ro(x) = /01 () dt

for every n € IN U {0} are called the elementary symmetric polynomials. In [1] it is shown that for
each continuous E-symmetric polynomial P : Lo, — C of degree at most m there is a unique
finitely many variables polynomial g such that

P(x) =q(Ro(x),...,Ru(x))

for every x € L.

Let (Lo)?> be the Cartesian square of the space L., endowed with norm
|(x,v)] = max{||x]|eo, |[¥]leo}. Clearly, (Ls)? is a complex Banach space. A function
F: (Le)? — C we call block-symmetric if for every (x,y) € (Le)? and for every o € 2

F((xoo,yo0)) = F((x,y))-

We restrict our attention to continuous block-symmetric polynomials of degree at most two on
(Lo )?. In Section 1 we prove that every such a polynomial can be uniquely represented as an
algebraic combination of the polynomials

Ro((x,y)) =1, Ryo((x,y)) = Ri(x), Roi((x,y)) = Ri(y),
1
Ryo((x,y)) = Ra(x), Rul((x,y)) = /o x(t)y(t)dt, Roa((x,y)) = Ra(y),

which we call the elementary block-symmetric polynomials of degree at most two.

1 THE MAIN RESULT

By 1 we denote the characteristic function of a set E C [0,1]. We also define functions
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Theorem 1. Every continuous block-symmetric polynomial P = Py + Py + P, where P; is a
j-homogeneous polynomial for j = 0,1, 2, can be represented as

P = agRoo + a10R10 + a1 Ro1 + @20R20 + a11Ry1 + a02Roz + a1010R3y + 1001 RioRo1 + a0101 RZ;,

where

ap =Py, ap= Pl((llo)), apl = Pl((O, 1)),

ax = P((r,0)), a1 = Ap((r,0),(0,1)), ae = P((0,1)),

a1010 = P2((1,0)) — P2((x,0)), a1001 = Ap,((1,0),(0,1)) — Ap,((r,0), (0, 1)),
agio1 = P2((0,1)) — P»((0,1)).

Here we denote by Ap, the symmetric bilinear form, associated with P;.
Proof. It can be easily checked that

Po((xy) = P(0,0), Pil(x)) = 5 (P((xy) ~ P((~x,~y)),
Pa((x,9)) = P((x,y)) — Prl(x,y)) — Pol(x,9))

for every (x,y) € (Lo)?. This implies that Py, P; and P, are continuous and block-symmetric.
By the linearity of P;

Pi((x,y)) = Pi((x,0) + (0,y)) = P1((x,0)) + P1((0,y))-

Let f1(x) = P;1((x,0)) for x € L. Clearly, f is a continuous linear E-symmetric functional on
L. It is known (see [1, 6]) that every such a functional f can be represented as

f(x) = F(DRy (). (3)

Therefore f1(x) = f1(1)Ry(x), i. e. P1((x,0)) = P1((1,0))Ry(x). Analogously, P;((0,y)) =
P;1((0,1))R1(y). Thus

Pi((x,y)) = P1((1,0))R1(x) + P1((0,1))R1 (v) = a10R10((x,¥)) + ao1Ro1 ((x,¥))-
Since Ap, is bilinear and symmetric, it follows that
Py((x,y)) = Ap,((x,0), (x,0)) +2Ap,((x,0), (0,y)) + Ap,((0,¥), (0,y)).

We define following bilinear forms:

Bi(x1,x2) = Ap,((x1,0), (x2,0)),  Bri(x1,x2) = Ap,((x1,0), (0, x2)),
Brri(x1,x2) = Ap,((0,x1), (0, x2)),

where x1, x3 € Leo. Note that By and Bjjj are symmetric. By the formula (2)

(4)

Apy((x190), (2,32)) = 3 (Pa((31 + 02,51+ 2)) = Pol(1 = 2,31~ 12)))-

Therefore by the symmetry of P,

Ap,((x100,y100),(x200,y200)) = Ap,((x1,y1), (x2,y2)) (5)
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for every o € Z and (x1,y1), (x2,¥2) € (Leo)?. By (5) we have that
Bj(x100,x200) = Bj(x1,x2), (6)

forevery j € {I,II,II1},x1,x) € Lo and 0 € E.

Let Q7 be the restriction of B; to the diagonal. By the continuity of B; and by (6) we have
that Q; is a continuous 2-homogeneous E-symmetric polynomial. It is known (see [1]) that
every continuous 2-homogeneous Z-symmetric polynomial Q on L« can be represented as

Q = aR? 4 BR,. (7)
It can be easily checked that « = Q(1) — Q(r) and B = Q(r). Note that
Qi(x) = Ap,((x,0), (x,0)) = P>((x,0)).
Thus
Ap((x,0), (x,0)) = (P2((1,0)) = Po((x,0)) ) R (x) + Pa((x,0))Ra(x)

= a1010R3 (%, ) + a20R20((x, v)).

Analogously
Ap,((0,), (0,)) = 20101 RTp((x, 1)) + a02Rao (%, y)).

The bilinear form Bj; can be represented as the sum of the symmetric and the antisymmet-
ric forms

1
Bi(x1,x2) = = <BII(x1/x2) + Bri(xo, xl))

2

and .
Bij(x1,22) = 5 <BH(X1,X2) - BII(erxl))
respectively. Let us prove that Bf,(x1, xp) = 0 for every x1, ¥ € Leo.

the other hand, since Bf; is antisymmetric, it follows that

1
27

1o 3y M) = =Bir(T Ao )

Therefore B‘}I(l[O ],1[%,1]) =0. O

1
2
Lemma 2. BY(1g, 1) = 0 for every measurable sets E C [0,1] and F C [1,1].

Proof. For every x € Lo, we define X € Lo, by

[ x(2t), ifte]o, ],
*(t) = { 0, ift € (%,21].

Let z € Lo be such that its restriction to [0, 1) is constant. Let f.(x) = BY,(%, z), where x € Le.

Clearly, f, is a continuous linear functional on L. Let us prove that f, is E-symmetric. For
every o € & let
1 ' 1
- s0(2t), ift € |0, 5],
F(t) =1 2 (2t) 1 = [1 )
t, ift € (5,1].
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Clearly, ¢ € Z and z o & = z. It can be checked that X o ¢ = X o ¢. Therefore by (6)
fulxo0) = BYy(¥50,2) = BYy(F07,205) = By(2,2) = f(%).
Thus fz is E-symmetric. By (3) f(x) = f2(1)Ry(x), i. e. Bf(%X,z) = B%(1,z)R;(x). Since
T=1p1),1e =1k and Ri(1g) = 2u(E), where 2E = {2t : t € E}, it follows that
Bii(1g,z) = B‘I’I(l[ol%],z)Zy(E).

Analogously it can be proven that B;(u,1r) = Bf,(u, 1 1])2y(P), where u € Lo such that its

restriction to (%, 1] is constant. Therefore
Bii(1e,1F) = B?l(l[oé]rlFﬂﬂ(E) = B?l(l[o,%]r1[%,1]>4V(E)P‘(F> =0
by Lemma 1. O

Lemma 3. B%(1g,1¢) = 0 for disjoint measurable sets E,F C [0,1] such that u(E) < % and
u(F) < 3.

Proof. By [1, Proposition 1.2] there exists o r € Z such that 1 = 1[0,,1] ocgrand 1f = 1[a,a 4] ©
orr, where a = u(E) and b = u(F). Let

t—a+%, ift € [a,a+ 1],
oi(t) =4 t—L1+a, ifte[}i+1]
t, otherwise.

Clearly, 0 € Ell[O,a] = 1[0,61] 001 and 1[a,a+b} = 1[

1144 ©01- Therefore 1 = 1jg 5 0 07 © 0, F and
1145 © oy o 0g,r. By (6) and by Lemma 2

B?l(l}g, 11:) = B?l(l[O,u] 0010 U—E,Frl[%,%_._b} 0010 UE,F) = B?l(l[O,a}ll[%,%J,_b]) =0.

Lemma 4. Bf,(1g,1f) = 0 for every disjoint measurable sets E, F C [0,1].

Proof. If u(E) = u(F), then u(E) and u(F) cannot be greater than 1 and B%(1g,1F) = 0
by Lemma 3. Note that Bf;(1g,1r) = 0 if u(E) = 0 or u(F) = 0. Let u(E) > u(F) >

0. Let N = @J . We can choose disjoint measurable subsets E,...,Exy C E such that

—

u(F)
u(E1) = ... = p(En) = pu(F). Set Eo = E\ UY | E;. Then
N
B1 (1, 1F) = ) Bf;(1g, 1¢) = Bf;(1g,, 1F).
j=0
Since p(Eo) < u(F) < 3, it follows that B%(1g,, 1) = 0 by Lemma 3. O

Lemma 5. Bf;(1g,1r) = 0 for every measurable sets E, F C [0,1].

Proof. Note that E = (E\ F) U(ENF)and F = (F\ E) U (ENF). Therefore

B11(1e,1r) = Bj;(1p\r, 1p\E) + Bi(Xe\r, 1EnF) + Bl i(Xenr, 1p\E) + BY (e, 1EnF) =0

by Lemma 4 and by the antisymmetry of Bf;. O
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Proof of the Theorem 1 (continuation). For the simple measurable functions xq, x, € Lo we have
BY,(x1,x2) = 0 by the bilinearity of Bf,. Since the set of simple measurable functions is dense
in Lo, the continuity of Bf; leads to Bf,(x1,xp) = 0 for every x1,x, € L. Thus By = Bj, i.
e. Bjris symmetric. Let Qj; be the restriction of By to the diagonal. Qy; is a continuous 2-
homogeneous E-symmetric polynomial. Therefore by (7) Q;(x) = (Q1(1) — Qui(r))R3(x) +
Qr(r)Ra(x).

By (2) Byi(x,y) = %(Qn(x +y) — Qu(x— y)) Since

Bii(x,y) = Ap,((x,0),(0,y)), Qu(1) = Ap,((1,0),(0,1)), Qr(r) = Ap,((r,0),(0,1)),
1
Ri(x+y) —Ri(x —y) = 4R1(x)R1(y), Ra(x+y)—Rap(x—y) = 4/0 x(t)y(t) dt,
it follows that

Ap,((x,0),(0,y)) = (Ap,((1,0),(0,1)) — Ap,((x,0), (0,1))) R1(x)R1(y)
1

+ Ap, ((1,0), (0, f))/o x(H)y(t) dt = a1001 R10((x,y))Ro1 ((x,¥)) + a11R11((x, ).
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HeTlepepBHII 6AOUHO-CMMEeTPUUHNI TTOAIHOM CTereHs! IIOHalbiAbIIe ABa Ha TIPOCTOPi (Lo)? MO-
KHa €AVHVIM YMHOM BMPA3WUTH depes AesiKi “ereMeHTapHi” 6A0YHO-CHMETPIIHI TOAITHOMIL.
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CONTINUOUS APPROXIMATIONS OF CAPACITIES ON METRIC COMPACTA

A method of “almost optimal” continuous approximation of capacities on a metric compactum
with possibility measures, necessity measures, or with capacities on a closed subspace, is presented.
Key words and phrases: capacity, metric compactum, approximation.
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INTRODUCTION

Capacities were introduced by Choquet [1] and found numerous applications in different
theories. Spaces of upper semicontinuous capacities on compacta were systematically studied
in [2]. In particular, in the latter paper functoriality of the construction of a space of capac-
ities was proved and Prokhorov-style and Kantorovich-Rubinstein-style metrics on the set of
capacities on a metric compactum were introduced. Needs of practice require that a capacity
can be approximated with capacities of simpler structure or with some convenient properties.
It was shown in[3] that each normalized capacity on a compactum is the value of a so-called
U-capacity (or possibility measure) on the space of N-capacities (necessity measures) under
the multiplication mapping of the capacity monad. Nevertheless it is impossible to represent
every capacity in this manner using only capacities of one of the two mentioned classes. We
can discuss only approximation of an arbitrary capacity with U- or N-capacities. A construc-
tion of the capacity from the class of U- or N-capacities that is the closest to the given one w.r.t.
the Prokhorov metric was described in [4]. A method of optimal approximation of a capacity
with a capacity on a closed subspace was also presented there. Although the proposed ap-
proximations are optimal (belong to the optimal ones), they does not depend continuously on
the original capacity. In this paper we consider the problem of continuous approximation. It
is proved that the space MX of subnormalized capacities on a metric compactum X is an I-
convex compactum, hence all elements of MX can be approximated with “almost optimal”
precision with elements of an arbitrary closed I-convex subset Xy C MX, in particular, with
U-capacities, N-capacities, or capacities on a fixed closed subspace Xy C X, so that the approx-
imation is continuous w.r.t. the original capacity and the chosen “tolerance”.

1 BASIC FACTS AND DEFINITIONS

We follow the terminology and notation of [2] and denote by exp X the set of all non-empty
closed subsets of a compactum X. The set exp X is considered with the Vietoris topology. If
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a metric d on X is admissible, then the Hausdorff metric d is admissible on exp X. For a point
xin (X, d) and a non-empty subset S C X we denote d(x,S) = inf{d(x,x’) | ¥’ € S}, and I is
the unit segment [0, 1].

We call a function ¢ : exp X U {@} — I a capacity on a compactum X if the three following
properties hold for all subsets F, G g X:

1 ¢c(@)=0;
2. if F C G, then ¢(F) < ¢(G) (monotonicity);

3. if ¢(F) < a, then there is an open subset U D F such that for all G C U the inequality
¢(G) < ais valid (upper semicontinuity).

If, additionally, c¢(X) = 1 (or ¢(X) < 1) holds, then the capacity is called normalized (resp.
subnormalized).

We denote by MX and MX the sets of all normalized and of all subnormalized capacities
respectively. It was shown in [2] that M X carries a compact Hausdorff topology with the sub-
base of all sets of the form

O_(F,a) = {c € MX | ¢(F) < a}, where F < X,a€el,
C

and
O+(U,a) ={ce MX | c(U) > a}

= {c € MX | there is a compactum F C U, ¢(F) > a},where U C X,a € I.
op
The same formulae determine a subbase of a compact Hausdorff topology on MX and
therefore MX C MX is a subspace.
We consider the following subclasses of MX.

1. M-X is the set of the so-called N-capacities (or necessity measures) with the property:
c(ANB) =min{c(A),c(B)} forall A,B C1 X.
C

2. M X is the set of the so-called U-capacities (or possibility measures) with the property:
c(AUB) = max{c(A),c(B)} forall A, B C1 X.
C

3. Class MXj of capacities defined on a closed subspace Xy C X. We regard each capacity ¢
on Xy as a capacity on X extended with the formula ¢(F) = ¢o(F N Xp), F Cl X.
C

Analogous subclasses are defined in MX, with the obvious denotations. It was proved in
[3] that the subsets M~ X, M, X, and MXj are closed in M X, hence for a compactum X they are
compacta as well.

From now on we restrict to M X, results for M X are quite analogous. We consider the metric
on the set MX of subnormalized capacities on a metric compactum (X, d) :

d(c,c') = inf{e > 0| c(Oc(F)) +¢& > ¢/(F),c'(Oc(F)) +¢& > c(F),VF - X}.
C
Here O(F) is the closed e-neighborhood of a subset F C X. This metric is admissible [2].

Recall some definitions and well-known facts on compact topological semilattices and compact
idempotent semimodules.
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A poset (X, <) is called an upper semilattice is pairwise suprema x V y exist for all x,y € X.
A subset Y of an upper semilattice Y is called an upper subsemilattice if the supremum of each
two elements of Y is in Y. Then Y is an upper semilattice as well, and suprema of all finite
non-empty subsets of Y in X and in Y exist and are equal.

An upper semilattice (X, <) is called topological if a topology is fixed on X such that the pair-
wise supremum x \V y depends on x,y € X continuously.

A topological semilattice is called Lawson [7] if in each its point it possesses a local base
consisting of subsemilattices.

An upper semilattice is complete if each it non-empty subset has the least upper bound. It is
well-known that any compact topological upper semilattice is complete and contains agreatest
element [6]. A compact Hausdorff topological upper semilattice X is Lawson if and only if
the mapping sup : exp X — X that assigns the least upper bound to each non-empty closed
subset A C X is continuous w.r.t. the Vietoris topology.

We call (X,®, ®) a (left idempotent) (I, max, x)-semimodule if X is a set with operations
D: XXX =X ®:IxX = Xsuchthatforall x,y,z € X, a, B € I the following holds:

L xSy=ydx;

2. (x0y) ©z=x0(y®2);

3. there is a unique 0 € X such that x ® 0 = x for all x;

L a®(xy) = (a9 ) & (2@ y), maxie, f} ® ¥ = () & (B ®x);
5. (axp)@x=a®(B®x);

6. 1®x =x;

7. 0®x=0.

In the sequel we use a shorter term “I-semimodule” for (I, max, *)-semimodule.

A triple (X, ®,®) is called a compact Hausdorff Lawson I-semimodule if (X,®,®) is an I-
semimodule and a compact Hausdorff topology is fixed on X that makes it a compact Lawson
upper semilattice with @ being pairwise supremum (hence the partial order is defined as
x <y <& x Dy =y), and the multiplication ® is continuous.

For all points xq,x2,...,x, € X and coefficients ay,ap,...,4, € [ such that
max{ay, &y, ..., ay} = 1 we define the I-convex combination of a finite number of elements a7 ®
X1 Dap®x2 D ... D wa, ® xy,, which from now on is denoted simply as a1 x1 B apxp B ... D ayXy.
It can be calculated stepwise using pairwise convex combinations of the form x @ ay, which in
fact are values of a mapping X x I x X — X.

If the mentioned pairwise I-convex combination is continuous, then (X, ®,®) is called
an [-convex compactum [5]. Hence an I-convex compactum is a compact Hausdorff space X
with a Lawson continuous pairwise [-convex combination (x,a,y) — x @ ay, X x I x X — X,
which (for & = 1) makes X a compact Hausdorff Lawson upper semilattice.

In compact Hausdorff Lawson [-semimodules we can define an I-convex combination of
an infinite number of elements using finite combinations as follows:

@ a;x; = inf{supa; ® supx; @ ... ®supa; ®supx; | n € NI =T UL, U...UL,}.
i€l iel; iel; i€Ly i€,
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Observe that the above [-convex combination does not depend on «;x; such that the respec-
tive «; are equal to zero. Theorem [5, 5.9.2] implies an important property of the mapping that
sends each collection of elements with coefficients to their I-convex combination.

Lemma 1. Let (X, ®, ®) be an I-convex compactum and exp, (X x I) C exp(X x I) the sub-
space of all closed subsets of X x I that contain at least one pair of the form (x,1). Then
the mapping h : exp,(X x I) — X defined for A - X x I by the formula

C

h(A) = i?z{“ixi‘(xir‘xi) € A}

is continuous.

2 SOME MAPPINGS IN METRIC [-CONVEX COMPACTA

We need some auxilliary statements. Let S C X be a non-empty closed I-convex subset
of a metric I-convex compactum (X, ®,®), i.e. S contains all I-convex combinations of its
elements. Then S is known [5] to be an I-convex compactum as well. For the product topology
on X x R the metric p((x1,a1), (x2,a2)) = max{d(x1, x2), |41 — az|} is admissible.

For an element x € X consider the set §; = {(x,a)|x € S,d(x,x") < a < diam X}.

Proposition 1. The set §x C S x [0, diamX] is closed and the mapping
f: X — exp(S x [0,diam X]) that assigns §x to each x € X is continuous.

The proof relies on the two following lemmas.

Lemma 2. Let (X,d) be a metric compactum, then for all x € X the set
Fx ={(x,a)|x’ € X,d(x,x") < a < diam X} is non-empty and closed in X x [0, diam X].

Proof. Obviously (x',diam X) € F, for all ¥’ € X, hence the set in question is non-empty.

We show that the complement X x [0,diam X] \ Fy is open. Let a point (x/,a) belong to

d(x,x') —a

the complement, i.e. d(x,x’) > a. Pute = . Then ¢ > 0 and for any point

(y,b) in the e-neighborhood of (x’,a), which is a ball B¢(x") x (a — ¢,a + ¢), the inequalities
d(y,x) >d(x',x) —d(x',y) > (a+2¢) —e = a+ & > b are valid. Hence the e-neighborhood of
the point (x/, 2) is contained in the set X x [0, diam X] \ F. O

Therefore the set §y = F» N (S x I) is non-empty and closed in S x [0, diam X] as well.

Lemma 3. Let (X, d) be a metric compactum and S its non-empty closed subset, then the map-
ping f from X to the space exp(S x [0, diam X]) of all non-empty closed subsets with the Haus-
dorff metric that sends each x € X to the set §y, is non-expanding.

Proof. Let x,y € X, x # y, hence r = d(x,y) > 0. If (x',a) € Fy, ie. d(x,x') < a, put
b = min{a +r,diam X}. Thus |b —a| = p((x',a), (x',b)) <randd(y,x’) < d(x,y)+d(x,x') =
d(x,x") 4 r. Taking into account d(y, ") < diam X we deduce d(y,x") < b, hence (x’,b) € §,.
Thus for each point (x/,a) € §Fy there is a point (x',b) € §, at a distance < 7, and vice
versa. Thus the Hausdorff distance py between §, and §, does not exceed r = d(x,y),ie. fis
non-expanding. This completes the proof. O



48 HLUSHAK I.D., NYKYFORCHYN O.R.

Assignto all x € X and & > 0 the set &, C S x I of the form

/ —
Gy = {(x’,a)|x’ €S, acl, n SmaX{O,l— d(xlx)e d(x,S)}}.

Observe that a point (¥, «), with & > 0, can belong to &, only if x’ € S, d(x, x") < d(x,S) +«.
Proposition 2. The following statements hold:
(1) the set &, is closedin S x I;

(2) the mapping g : X x (0, +00) — exp(S x I) that assigns ®, to each element x € X and
¢ > 0 is continuous;

(3) forall x € X, ¢ > 0 the equality max{a € I | (x/,a) € &, for some x’ € S} =1 is valid.
Proof. The set &x C S x I is the image of the set §x C S x [0, diam X], namely &, = (1x x
Oxe)(Fx), where 0y, : [0, diam X] — I is defined by the formula
0. c(a) = max{1— a—d(x,5)
a continuous mapping of compacta (1). Moreover §y and 6, depend on x and ¢ continuously,

therefore the same holds for &, (2). Compactness of S C X implies existence of x’ € S such
that d(x,x') = d(x,S), hence (x',1) € & (3). O

,0}. Hence &, is closed as the image of a closed set under

Proposition 3. The mapping ® : X x (0, +0c0) — S defined as
D(x,e) = @ {aixi|(x;, a;) € Gy}
i€l
is continuous.

Proof. Continuity of @ is a corollary of Proposition 2 and Lemma 1 because @ is the composi-
tion of the continuous mappings g and / (cf. Lemma 1). O

3 CONSTRUCTION OF ALMOST OPTIMAL APPROXIMATIONS OF CAPACITIES

Consider the space MX of subnormalized capacities. For reader’s convenience we present
and prove properties of MX [5] in the following statement.

Proposition 4. The triple (MX,V, A) is a (I, max, min)-convex compactum, if the operations
V:MXx MX — MXand A :1Ix MX — MX are defined by the formulae:

c1V ca(F) = max{cy(F),c2(F)}, a Ac(F) = min{a, c(F)}
forci,co e MX,a € I, F C1 X.
C

Proof. It is almost obvious that the defined above functions c¢; V¢, : expX — I,

aAc:expXU{@} — Iare capacities on X. Put & = V, ® = A and set the zero element

0 € MX to the “zero capacity” with the values 0(F) = 0 for all F C1 X. Itis easy to observe that
C

axioms (1)—(7) from the definition of semimodule hold. Thus (MX, V, A) is a (left idempotent)
(I, max, min)-semimodule. Recall (see [2]) that the subbase of all sets of the form O_(F,a) and
O+(U,a), for A Cl X, U C X, a € I, determines a compact Hausdorff topology T on MX.

C op
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It a partial order at M X is defined as

c1<cpe Ve =c < q1(F) <c(F), forall F g X,

then the pairwise suprema are calculated argumentwise: c¢1 V ¢z (F) = max{c1(F), c2(F)}, and
MX is an upper semilattice with the least element 0. It was proved in [5] that (MX, <) is
a topological (i.e. the pairwise supremum c; V ¢; depends on c; and ¢ continuously w.r.t.
the topology 7) upper Lawson semilattice (because subbase elements O_(F,a) and O (U, a)
are subsemilattices), and 7 is the Lawson topology.

The function ¢1 V ac; : exp X U {@} — I defined by the formula

c1Vacy(F) =c1V (@ Acy)(F) = max{cy(F), min{a, co(F)}}

is a subnormalized capacity on X, and the mapping MX x I x MX — MX that assigns c; \VV acp
to (c1, &, ¢2) is continuous. Hence MX is a compact Hausdorff space with a Lawson continuous
pairwise I-convex combination which makes it a compact Hausdorff Lawson upper semilat-
tice, i.e. (MX, V, A\) is an [-convex compactum. O

If a compact topology on X is determined with an admissible metric d, then (MX, d) is
a metric compactum and the defined above metric d on MX is admissible, i.e. (MX,V,A) is
a metric I-convex compactum. The following property of d is crucial.

Lemma 4. Let (X,d) be a metric compactum, cy,c; € MX fori € T are capacities such
that Lf(co,ci) < ¢ for some ¢ > 0 and all i. Then for arbitrary coeficients a; € I such that
sup;.7 &; = 1 the inequality d(co, V wjc;) < e is valid.

i€T

For a finite number of c¢; the inequality is straightforward, and by continuity we extend it
to infinite combinations.

Remark. Since MX C MX is a closed subsemimodule, everything said above on M X applies
also to M X.

Therefore the above statements can be used to approximate a capacity c € MX (or c € MX)
with capacities from a closed I-convex subspace S C MX (resp. S C MX). The convexity
means that S contains all I-convex combinations of the form .VI(‘Xi Ac¢;), wherec; € S, a; € 1,

1

max{«;|i € Z} = 1. For simplicity consider a more general case of MX.
For a capacity c € MX and a number ¢ > 0 construct the set

N s
G, = {(c’,a)|c’ cS,acl a gmax{O,l— d(c,c) d(c,S)}},

)

which is closed in S x I due to Proposition 2.
Define a capacity ¢, with the formula & = _\/I{rxz- Acil(ci, u;) € &.}. Equivalently ¢ can be
1€
defined as
fon g
¢e(F) = sup {(1 _dlec) - alc.$)

YA (F)|c € S,d(c,c') <dlc,S) +e} (1)

for all F C1 X. Although ¢ is not the closest to c € MX in the subspace S, it is “almost

C
the closest” in the sense of the following theorem.
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Theorem 1. For a capacity c € MX, a number ¢ > 0 and a closed I-convex subspace S C MX
the capacity ¢ belongs to S and satisfies the inequality d(c,&) < d(c,S) +¢e. The mapping
®: MX x (0,diam MX| — S defined as ®(c, ) = ¢, is continuous.

Proof. Continuity of ® and & € S follow from Proposition 3. By the equality (1) the capacity
G is an I-convex combination of capacities ¢/ € S such that d(c,c’) < d(c,S) + ¢, hence by
Lemma 4 the inequality d(c, &) < d(c,S) + ¢ is valid as well. O

Remark. Obviously an analogous theorem is valid for MX.

It is easy to verify that the subspaces M-X and MXj are closed and I-convex subsets of
the semimodule (MX, V, A\) (M, X is I-convex if the I-convex combination on (MX, V, A) is de-
fined in a dual manner, cf. [5]). Methods of calculating of the distances d (¢, M X), d (¢, MuX),
d(c, MXy) were presented in [4]. Thus we can use the latter theorem to construct approxima-
tions of an arbitrary subnormalized capacity c on X with U-capacities, N-capacities or capaci-
ties on Xy C X that are e-closed to optimal and depend on ¢, & continuously.
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ITpeacTaBA€HO MeTOA “MaliXe ONTMMAABHOTrO” HeNepepBHOTO HaOAVDKEHHS €éMHOCTEN Ha Me-
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PROPERTIES OF DISTANCE SPACES WITH POWER TRIANGLE INEQUALITIES

Metric spaces provide a framework for analysis and have several very useful properties. Many of
these properties follow in part from the triangle inequality. However, there are several applications
in which the triangle inequality does not hold but in which we may still like to perform analysis.
This paper investigates what happens if the triangle inequality is removed all together, leaving what
is called a distance space, and also what happens if the triangle inequality is replaced with a much
more general two parameter relation, which is herein called the “power triangle inequality”. The
power triangle inequality represents an uncountably large class of inequalities, and includes the tri-
angle inequality, relaxed triangle inequality, and inframetric inequality as special cases. The power
triangle inequality is defined in terms of a function that is herein called the power triangle func-
tion. The power triangle function is itself a power mean, and as such is continuous and monotone
with respect to its exponential parameter, and also includes the operations of maximum, minimum,
mean square, arithmetic mean, geometric mean, and harmonic mean as special cases.

Key words and phrases: metric space, distance space, semimetric space, quasi-metric space, tri-
angle inequality, relaxed triangle inequality, inframetric, arithmetic mean, means square, geometric
mean, harmonic mean, maximum, minimum, power mean.

Communications Engineering Department, National Chiao-Tung University, 1001 University Road, Hsinchu, 30010, Taiwan
E-mail: dgreenhoe@gmail.com

1 INTRODUCTION AND SUMMARY

Metric spaces provide a framework for analysis and have several very useful properties.
Many of these properties follow in part from the triangle inequality. However, there are several
applications! in which the triangle inequality does not hold but in which we would still like to
perform analysis. So the questions that natually follow are:

Q1.
Q2.

What happens if we remove the triangle inequality all together?
What happens if we replace the triangle inequality with a generalized relation?

A distance space is a metric space without the triangle inequality constraint. Section 3
introduces distance spaces and demonstrates that some properties commonly associated with
metric spaces also hold in any distance space:

D1.
D2.
Da3.
D4.
D5.
De.

@ and X are open, (Theorem 1),
the intersection of a finite number of open sets is open, (Theorem 1),
the union of an arbitrary number of open sets is open, (Theorem 1),

every Cauchy sequence is bounded, (Proposition 1),
any subsequence of a Cauchy sequence is also Cauchy, (Proposition 2),
the Cantor Intersection Theorem holds, (Theorem 4).

YAK 517.98
2010 Mathematics Subject Classification: primary 54E25; secondary 54A05,54A20.
1 References for applications in which the triangle inequality may not hold: [21,32-34, 65, 76, 80,108, 114-116].
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The following five properties (M1-M5) do hold in any metric space. However, the examples
from Section 3 listed below demonstrate that the five properties do not hold in all distance
spaces:

ML the metric function is continuous fails to hold in Examples 1-3,

M2, open balls are open fails to hold in Examples 1 and 2,
Mm3. the open balls form a base for a topology fails to hold in Examples 1 and 2,
M4 the limits of convergent sequences are unique fails to hold in Example 1,

Ms. convergent sequences are Cauchy fails to hold in Example 2.

Hence, Section 3 answers question Q1.
Section 4 begins to answer question Q2 by first introducing a new function, called the power
triangle function (see Definition 21) in a distance space (X, d), as

1
T(p,0;x,y,z;d) :=20 de(x,z) + %dp(z,y)] ’

for some (p, o) € R* x RR. Section 4 then goes on to use this function to define a new relation,
called the power triangle inequality in (X, d), and defined as

A (p,0;d) := {(x,y,z) e x3 |d(x,y) < t(p,o;x,y,2d) }

The power triangle inequality is a generalized form of the triangle inequality in the sense
that the two inequalities coincide at (p, o) = (1,1). Other special values include (1, ¢) yielding
the relaxed triangle inequality (and its associated near metric space) and (oo, o) yielding the
o-inframetric inequality (and its associated c-inframetric space). Collectively, a distance space
with a power triangle inequality (see Definition 23) is herein called a power distance space (see
Definition 24) and denoted (X, d, p,).?

The power triangle function, at ¢ = 1, is a special case of the power mean (see Definition
32) with N = 2and A; = A; = 1. Power means have the elegant properties of being continuous
and monontone with respect to a free parameter p. From this it is easy to show that the power
triangle function is also continuous and monontone with respect to both p and ¢. Special
values of p yield operators coinciding with maximum, minimum, mean square, arithmetic
mean, geometric mean, and harmonic mean. Power means are briefly described in Appendix
B.2 (see also Corollaries 2, 3, 8 and Theorem 18).

Section 4.2 investigates the properties of power distance spaces. In particular, it shows for
what values of (p, o) the properties M1-M5 hold. Here is a summary of the results in a power
distance space (X, d, p,0), forall x,y,z € X:

1) holds for any (p,c) € (R*\{0}) x R such that 20 = 2%, (Theorem 9),

o2 holds forany (p,c) € (R*\{0}) x R such that 20 < 2%, (Corollary 7),
3) holds forany (p, o) € (R*\{0}) x R such that 20 < 2%, (Corollary 6),

o4 holds forany (p, o) € R* x RT, (Theorem 10),

os) holds forany (p, o) € R* x RT, (Theorem 7).

Appendix A briefly introduces topological spaces. The open balls of any metric space form
a base for a topology. This is largely due to the fact that in a metric space, open balls are
open. Because of this, in metric spaces it is convenient to use topological structure to define

2 For examples of power distance spaces see Definition 24.
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and exploit analytic concepts such as continuity, convergence, closed sets, closure, interior,
and accumulation point. For example, in a metric space, the traditional definition of defining
continuity using open balls and the topological definition using open sets, coincide with each
other. Again, this is largely because the open balls of a metric space are open.

However, this is not the case for all distance spaces. In general, the open balls of a distance
space are not open, and they are not a base for a topology. In fact, the open balls of a distance
space are a base for a topology if and only if the open balls are open. While the open sets in a
distance space do induce a topology, it’s open balls may not (see Theorem 2, Corollary 1).

2 STANDARD DEFINITIONS

2.1 Standard sets

Definition 1. Let R be the set of real numbers. Let R™ (resp. R") be the set of non-negative
(resp. postive) real numbers. Let R* := R U {—o0, 00} be the set of extended real numbers [95].
Let Z be the set of integers. Let N := {n € Z|n > 1} be the set of natural numbers. Let
Z" :=Z U {—oo,0} be the extended set of integers.

Definition 2. Let X be a set. The quantity 2% (the set of all subsets of X) is the power set of X,
ie 2% :={ACX}.

2.2 Relations

Definition 3 ([12,13,29,57,67,78,106]). Let X and Y be sets. The Cartesian product X x Y of X
andY istheset X x Y := {(x,y) |x € Xandy € Y}. An ordered pair (x,y) on X and Y is any
elementin X x Y. A relation ® on X and Y is any subset of X x Y such that ® C X x Y. The
set 2XY is the set of all relations in X x Y. A relation f € 2XY is a function if (x,y;) € f and
(x,2) € f impliesy; = yo. The set YX is the set of all functions in 2X¥

Note, that the notation YX and 2XY is motivated by the fact that for finite X and Y,
|Y|‘X‘ and | 2%V | = 2l XI1Y1,

YX| =

2.3 Set functions

Definition 4 ([55,87,92]). Let 2% be the power set of a set X. A set S(X) is a set structure on X
if S(X) C 2%. A set structure Q(X) is a paving on X if @ € Q(X).

Definition 5 ([25,55,56,92]). Let Q(X) be a paving on a set X. LetY be a set containing the
element 0. A function m € Y2(X) js a set function if m(@) = 0.

Definition 6. The set function | A| € 7+*" is the cardinality of A € 2% such that
A= the number of elements in A, for finite A,
T oo, otherwise.

Definition 7. Let | X | be the cardinality of a set X. The structure & is the empty set, and is a
set such that | @ | = 0.
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2.4 Order

Definition 8 ([4,38,70,77]). Let X be a set. A relation < is an order relation in 2XX if
1 x<x Vx e X  (reflexive) and
2 x<y and y<z = x<z Vx,y€ X (transitive) and

3. x<y and y<x = x=y Vx,y € X (anti-symmetric).
An ordered set is the pair (X, <).3 A relation < is a preorder relation in 2XX if only the first
two conditions hold.

We write x < yif x < y and x # y for any x, y from an ordered set ( X, <).

Definition 9 ([2,91]). In an ordered set ( X, <) theset [x : y] := {z € X|x <z <y} isa closed
interval, the sets (x:y] := {ze€ X|x<z<y}and [x:y) := {z€ X|x <z <y} are half-
open intervals, the set (x : y) := {z € X|x < z < y} is an open interval.

Definition 10. Let (R, <) be the ordered set of real numbers. The absolute value |-| € RR is

' sy [ —x, forx <0,
defined as” | x| '_{ x, otherwise

3 BACKGROUND: DISTANCE SPACES

A distance space can be defined as a metric space without the triangle inequality constraint.
Much of the material in this section about distance spaces is standard in metric spaces. How-
ever, this paper works through this material again to demonstrate “how far we can go”, and
can’t go, without the triangle inequality.

3.1 Fundamental structure of distance spaces

3.1.1 Definitions
Definition 11 ([6,9, 10,41, 50, 68,74,82,118]). A function d in the set RX*X is a distance if

. d(x,y) > 0 Vx,y € X (non-negative) and
2 d(x,y) = 0 < x=y Vx,y€ X (nondegenerate) and
3 d(x,y) = d(y,x) Vx,y € X (symmetric).

The pair (X, d) is a distance space if d is a distance on a set X.

Definition 12. ® Let (X, d) be a distance space and 2% be the power set of X. The diameter in
(X,d) ofaset A € 2X is

diam A :— 0, for A =@,
" | sup{d(x,y)|x,y € A}, otherwise.

Definition 13 ([16,110]). A set A € 2% is bounded in a distance space (X, d) if diam A < oo.

3 An order relation is also called a partial order relation. An ordered set is also called a partially ordered set
or poset.

4 A more general definition for absolute value is available for any commutative ring [26]. Let R be a commu-
tative ring. A function |-| in RR is an absolute value, or modulus, on R if

1 x| > 0 x € R  (non-negative) and
2, x| = 0<= x=0 x€R (nondegenerate) and
3. lxy| = |x|-|y| x,y € R (homogeneous/submultiplicative) and
4 x4yl < x|+l X,y € R (subadditive/triangle inequality).

5 For definition in metric space see [30, 60, 83,87].
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3.1.2 Properties

Remark 1. Let {x,},., be a sequence in a distance space (X,d). The distance space (X,d)
does not necessarily have all the nice properties that a metric space has. In particular, note the
following:

1. disa distance in (X, d) =~ dis continuous in (X,d), (Example 3),

2. Bisan open ball in (X,d) =~ Bisopenin(X,d), (Example 2),

3. B is the set of all =~ Bisabase fora (Example 2),°
open balls in (X, d) topology on X,

4 {x,} is convergentin (X,d) =/~ limitis unique, (Example 1),

5. {xn} is convergentin (X,d) =~ {x,}isCauchyin(X,d), (Example 2).

3.2 Open sets in distance spaces

3.2.1 Definitions

Definition 14 ([1]). Let (X, d) be a distance space. An open (resp. closed) ball centered at x
with radiusr is the set B(x,r) := {y € X |d(x,y) <r} (resp. B (x,7) := {y € X|d(x,y) <r}).

Definition 15. Let (X, d) be a distance space. Let X\ A be the set difference of X and a set A. A
set U is open in (X, d) if U € 2% and for every x in U there existsr € RT such that B(x,r) C U.
A setU is an open setin (X,d) if U is open in (X,d). A set D is closed in (X, d) if X\D is open.
A set D is a closed set in (X, d) if D is closed in (X, d).

3.2.2 Properties

Theorem 1 ([43,97]). Let (X,d) be a distance space. Let N be any (finite) positive integer. Let
I' be a set possibly with an uncountable number of elements. Then the following statements

hold.
1. X is open.

2. Jisopen.
5. Eachelementin {U, € 2X|yeT}isopen = | J U, isopen.
yerl

N
4. Each elementin {Uy|n =1,2,...,N} isopen = (] U, isopen.
n=1
Proof. 1. By definition of open set, X is open iff Vx € X 3 such that B(x,7) C X. By definition
of open ball, it is always true that B(x,7) C X in (X, d). Therefore, X is open in (X, d).
2. By definition of open set, @ is open iff Vx € @ 3 such that B(x,r) C @. By definition of
empty set &, this is always true because no x is in @. Therefore, @ is open in (X, d).
3. By definition of open set, |J U, is open iff Vx € (JU, 3r such that B(x,r) € UU,.
If x € UU,, then there is at least one U € |JU, that contains x. By the left hypothesis in
statement 3, that set U is open and so for that x Jr such that B(x,) C U C U,. Therefore,
U U, isopenin (X,d).
4. Let us prove that if U; and U, are open, then U; N U, is open. By definition of open
set, U; N Uy is open iff Vx € U; N U 37 such that B(x,7) C U; N Up. By the left hypothesis
above, U; and U, are open, and by the definition of open sets, there exists r; and r; such that

6 See [50, 61].
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B(x,71) C Uj and B(x,72) C Up. Let7 := min {ry, 72 }. Then B(x,r) C Uy and B(x,r) C U,. By
definition of set intersection, B(x,r) C U; N U,. Hence, U; N U, is open.
Let us prove that (\\_; U, is open by induction. For N = 1 case: (\_; U, = N._; U, = U
is open by hypothesis. By property of intersection ﬂgill u, = (mﬁ’zl Lln> N Un+1, therefore
Z:jll U, is open via “N case” hypothesis and above proof for two sets. O
Corollary 1. Let (X, d) be a distance space. The set T := {U € 2% |U isopenin (X,d)} is a
topology on X, and (X, T) is a topological space.

Proof. This follows directly from the definition of an open set, Theorem 1, and the definition
of topology. O

Of course it is possible to define a very large number of topologies even on a finite set with
just a handful of elements;” and it is possible to define an infinite number of topologies even
on a linearly ordered infinite set like the real line (IR, <).® Be that as it may, Definition 16
defines a single but convenient topological space in terms of a distance space. Note that every
metric space conveniently and naturally induces a topological space because the open balls of
the metric space form a base for the topology. This is not the case for all distance spaces. But
if the open balls of a distance space are all open, then those open balls induce a topology (next
theorem).”

Definition 16. Let (X, d) be a distance space. The set T := {U € 2% |U is openin (X,d) } is
the topology induced by (X,d) on X. The pair (X, T) is called the topological space induced
by (X,d).

For any distance space (X, d), no matter how strange, there is guaranteed to be at least one
topological space induced by (X, d) — and that is the indiscrete topological space (Example 9)
because for any distance space (X, d), @ and X are open sets in (X, d) (Theorem 1).

Theorem 2. Let B be the set of all open balls in a distance space (X,d). Then every open ball
in B is open if and only if B is a base for a topology.

Proof. Let every open ball in B be open. Then for every x in B, € B there exists r € R™ such
that B(x,7) C By, by Definition 15. It implies for every x € X and for every B, € B containing
x, there exists By € B such that x € By C By, because V (x,7) € X X R*, B(x,7) C X. Hence, B
is a base for T by Theorem 11.

Vice versa. Let B is a base for a topology. Then for every x € X and for every U C T
containing x, there exists By € B such that x € By C U by Theorem 11. From Definition 26
it follows that for every x € X and for every B, € B C T containing x, there exists By € B
such that x € By C By. Therefore for every x € B, € B C T, there exists By € B such that
x € By C By. Hence, every open ball in B is open (see Definition 15). O

7 For a finite set X with 1 elements, there are 29 topologies on X if n = 3; 6942 topologies on X if n = 5; and
and 8.977.053.873.043 (almost 9 trillion) topologies on X if n = 10. See [15,24,28,29,45,71,104].

8 For examples of topologies on the real line see [27,66,90, 99].

9 Metric space: Definition 24; open ball: Definition 14; base: Definition 26; topology: Definition 25; not all open
balls are open in a distance space: Example 1 and Example 2.
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3.3 Sequences in distance spaces

3.3.1 Definitions

Definition 17. ' Let {x,},., C X be a sequence in a distance space (X,d). The sequence
{xn} converges to a limit x if for any ¢ € R", there exists N € Z such that d(x,, x) < ¢ for all
n > N. This condition can be expressed in any of the following forms:

1. the limit of the sequence {x,} is x; 3. 1Lm {xn} =x;
n—oo

2. the sequence {x,} is convergent with limitx; 4 {x,} — x.
A sequence that converges is convergent.

Definition 18. ! Let {x,}, ., C X be a sequence in a distance space (X, d). The sequence {x, }
is a Cauchy sequence in (X, d) if for every ¢ € R, there exists N € Z such that d(x,, xp) < €
foralln,m > N.

Definition 19. ' Let {x,}, ., C X be a sequence in a distance space (X, d). The sequence {x, }
is complete in (X, d) if the following implication holds: {x,} is Cauchy in (X,d) = {x,} is
convergent in (X, d).

3.3.2 Properties

Proposition 1. Let {x,},., C X be a sequence in a distance space (X,d). If {x, } is Cauchy in
(X,d), then it is bounded in (X, d).

Proof. Let {x,} be a Cauchy sequence. It means that for every ¢ € R there exists N € Z
such that Vn,m > N, d(x,, x,) < e. Lete = 1. Then AN € Z such that d(x,, x,,) < 1 for all
n,m > N. It implies d(x,, X;11) < max {{1} U {d(xp,x;) | p,q # N} }. Hence, the sequence
{xn} is bounded by Definition 13. O

Proposition 2. Let {x,},., C X be a sequence in a distance space (X,d). Letf € ZZ be a
strictly monotone function such that f(n) < f(n +1). Then if {x,},., is a Cauchy sequence,

then subsequence {xf(n) }nez is also Cauchy.

Proof. Let {x,}, ., be a Cauchy sequence. It means that for any given ¢ > 0, IN such that
Vn,m > N, d(xn, x) < e Therefore there exists N’ such that d<xf(n),xf(m)) < ¢ for all

f(n),f(m) > N'. So, {xf(n)}nez is Cauchy sequence. O

Theorem 3. 3 Let (X, d) be a distance space. Let A~ be the closure of a A in a topological
space induced by (X, d). If limits are unique in (X, d) and (A, d) is complete in (X, d), then A
isclosed in (X,d),ie. A= A".
Proof. By Lemma 3 we have A C A™. Let us prove that A~ C A.

Let x be a point in A™. Define a sequence of open balls {B (x, %) , B (x, %) , B <x, %) , .. }

Define a sequence of points {x1, X2, x3, ...} such that x, € B <xn, %) N A. Then {x,} is conver-
gent in X with limit x by Definition 17 and {x, } is Cauchy in A by Definition 18. Since (A, d) is

10 For definition in metric space see [53,68,75,97].
11 For definition in metric space see [2,97].

12 For definition in metric space see [97].

13 For theorem in metric space see [18,54,72,107].
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complete in (X, d), {x,} is therefore also convergent in A. Let this limit be y. Note that y € A.
From uniqueness of limits it follows y = x, and therefore x € A. Hence A~ C A. O

Proposition 3. Let {x,},., be a sequence in a distance space (X, d). Letf : Z — Z be a strictly
increasing function such that f(n) < f(n +1). If the sequence {x,}, ., converges to limit x,

then a subsequence {xf(n)} , converges to the same limit x.
ne

Proof. By Theorem 6 we have Ve > 0, IN such that Vn > N, d(x,,x) < e. Therefore Ve > 0,
3f(N) such that Vf(n) > f(N), d (xf(n),x) < & So, {xf(n)} — x via Theorem 6. O

nez

Theorem 4 (Cantor intersection theorem). Let (X, d) be a distance space, { Ay}, a sequence
with each A, € 2%, and | A | the number of elements in A. If (X, d) is complete, A, is closed for

alln € N,diam A, > diam A,y foralln € N, and diam {A, },., — 0, then ﬂ Ay
nelN

=1

Proof. Let us prove that | A,| < 2. Let A := NA,. Forany x # y and {x,y} € A we
have d(x,y) > 0 and {x,y} C A, for all n. Since diam {A,},., — 0, there exists n such
that diam A, < d(x,y). It implies 3n such that sup {d(x,y) |x,y € Ay} < d(x,y). This is a
contradiction, so {x,y} ¢ Aand |NA,| < 2.

Let us prove that | A, | > 1. Letx, € A, and x;, € Ay,. Since diam {A;}, ., — 0, for
all € there exists N € IN such that diam Ay < ¢e. Therefore Vim,n > N, x, € A, C Ay and
Xm € Am C An. But d(x,, xy) < diam Ay < g, it means that {x,} is a Cauchy sequence.
Because {x, } is complete, x, — x. It implies x € (A,)” = Ay, and, hence, | A, | > 1. a

Definition 20 ([10]). Let (X, d) be a distance space. Let C be the set of all convergent sequences
in (X,d). The distance functiond is continuous in (X, d) if

o} Am} €C = lim {d(xnya)} = d(lim {2}, lim {y}).
A distance function is discontinuous if it is not continuous.

Remark 2. Rather than defining continuity of a distance function in terms of the sequential
characterization of continuity as in Definition 20, we could define continuity using an inverse
image characterization of continuity (see Definition 16). Assuming an equivalent topological
space is used for both characterizations, the two characterizations are equivalent (Theorem 15).
In fact, one could construct an equivalence such as the following:

d is continuous in RX* {x”} Ayn} eC :>' '
(Definition 28) nlglo\o {d(xn,yn)} = d(;}g}o {x"}'nl%}o {%})
(inverse image characterization (De finition 29 )

of continuity) (sequential characterization of continuity)

Note that just as {x,} is a sequence in X, so the ordered pair ({x,},{ys}) is a sequence in X.
The remainder follows from Theorem 15. However, use of the inverse image characterization
is somewhat troublesome because we would need a topology on X?, and we don’t immediately
have one defined and ready to use. In fact, we don’t even immediately have a distance space
on X? defined or even open balls in such a distance space. The result is, for the scope of this
paper, it is arguably not worthwhile constructing the extra structure, but rather instead this
paper uses the sequential characterization as a definition (as in Definition 20).



PROPERTIES OF DISTANCE SPACES WITH POWER TRIANGLE INEQUALITIES 59

3.4 Examples

Similar distance functions and several of the observations for the examples in this section
can be found in [10].

In a metric space, all open balls are open, the open balls form a base for a topology, the lim-
its of convergent sequences are unique, and the metric function is continuous. In the distance
space of the next example, none of these properties hold.

Example 1. ' Let (x,y) be an ordered pair in R?. Let (a : b) be an open interval and (a : b] a
half-open interval in R. Let |x| be the absolute value of x € R. The function d(x,y) € RR*R

such that
Y, V(x,y) € {4} x (0:2],
d(x,y) == ¢ x, V(x,y) € (0:2] x {4},
|x —y|, otherwise,
is a distance on R.
Note some characteristics of the distance space (R, d).

1. (R, d) is not a metric space because d does not satisfy the triangle inequality:
d(0,4):=10—4|=4%2=|0—-1]+1:=4d(0,1) +d(1,4).

2. Not every open ball in (R,d) is open. For example, the open ball B(3,2) is not open
because 4 € B(3,2) but forall0 < e < 1
B(4,¢e) =(4—e:44+¢e)U(0:¢) € (1:5) =B(3,2).

3. The open balls of (R,d) do not form a base for a topology on R. This follows directly
from previous item and Theorem 2.

4. In the distance space (R,d), limits are not unique. For example, the sequence {1/n}{
converges both to the limit 0 and the limit4 in (R, d):

lim d(x,,0) := lim d(1/4,0) := lim [1/n—0] =0 =  {l/n} =0,
n—o0 n—oo n—oo
lim d(x,,4) := lim d(1/s,4) := lim {1/u} =0 = {1/n} >4
n—00 n—oo n—00

5. The topological space (X, T) induced by (RR,d) also yields limits of 0 and 4 for the se-
quence {1/n}7’, just as it does in previous item. This is largely due to the fact that, for
small ¢, the open balls B(0, ¢) and B(4, ¢) are open.

B(0,¢) isopen = foreach U € T that contains 0, 3N € N such that 1/n € U Vn > N
<~ {1/n} =0 by definition of convergence.

B(4,¢) isopen = foreach U € T that contains 4, AN € N such that 1/n € U VYn > N
— {l/n} — 4 by definition of convergence.

6. The distance function d is discontinuous:
lim {d(1—1/n,4—1/n)} = nlgn {|{1=1/n) = (4=1/n)|} =|1—4| =3#4=4d(0,4)

N = d(fim {11/, Jim, {4 1/n})

14 A similar distance function d and item 4 can in essence be found in [10].
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In a metric space, all convergent sequences are also Cauchy. However, this is not the case
for all distance spaces, as demonstrated next.

Example 2. ° The function d(x,y) € RR*R such that
|x—y|, forx=0o0ry=0o0rx=y,
d =
(xy) { 1, otherwise,
is a distance on R
Note some characteristics of the distance space (R, d).

1. (R, d) is not a metric space because the triangle inequality does not hold:
o) “T 37 i +Jo- 1|~ o) o)

2. The open ball B (%, %) is not open because for any ¢ € R", no matter how small,
B(0,¢) = (—¢: +e) ¢ {o, 31} = {x € X‘d(%,x) < %} = B(}I,%) .

3. Even though not all the open balls are open, it is still possible to have an open set in
(R,d). For example, the set U := {1, 2} is open:
B(1,1) = {xeX|d(l,x)<1} = {1} C {1,2} = U,
B(2,1) = {xeX|d(2,x) <1} = {2} C {1,2} = U.

4. By item 2 and Theorem 2, the open balls of the distance space (R, d) do not form a base
for a topology on RR.

5. Even though the open balls in (R, d) do not induce a topology on R, it is still possible to
find a set of open sets in (IR, d) that is a topology. For example, the set {@, {1,2}, R} is
a topology on R.

6. In (R, d) limits of convergent sequences are unique. Namely, {x,} - x =
lim|x, —0] = 0, forx=0,
Jg%od(xn,x) = |x —x| = 0, forconstant{x,} forn > N,
1 # 0, otherwise,
which says that there are only two ways for a sequence to converge: either x = 0 or the
sequence eventually becomes constant (or both). Any other sequence will diverge.

7 In (R,d) a convergent sequence is not necessarily Cauchy. For example, the sequence
{1/n},cn is convergent with limit 0

lim d(l/n,0> = lim 1/n =0.
n—oo n—oo

However, even though {1/} is convergent, it is not Cauchy
n}%l’gloo d(l/n, 1/111) =1 75 0.
8. The distance function d is discontinuous in (X, d):

Tim {d(1/n,2=1/n)} =1 #2=d(0,2) =d( lim {1/u}, lim {2— 1/n}) .

15 The distance function d and item 7 can in essence be found in [10].
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Example 3. 1 The functiond(x,y) € R®*R such that
2lx —y|, V(x,y)€{(0,1),(1,0)},
)= { 28 Ve € 02, (0

|x —y|, otherwise,
is a distance on R.
Note some characteristics of the distance space (R, d).

1. (R, d) is not a metric space because d does not satisty the triangle inequality:
d(0,1):=2/0—-1]=2%1=|0—1/2|+|1/2— 1] :=d(0,1/2) +d(1/2,1).

2. The function d is discontinuous:
1 1 1 — i —1/p—1 =
nll_I)Ic}o{d(]. /n, /n)} nlgl;loﬂl /n /n|} 1752

=20 —1| :=d(0,1) = d(}}g%o{1 - 1/n},}11§r<}0{1/n}) .

3. In (R, d) open balls are open:

(@) p(x,y) := |x —y| is a metric and thus all open balls in that do not contain both 0
and 1 are open;

(b) by Example 14, q (x,y) := 2|x — y| is also a metric and thus all open balls containing
0 and 1 only are open;

(c) the only question remaining is with regards to open balls that contain 0, 1 and some
other element(s) in R. But even in this case, open balls are still open. For example,
B(—1,2) = (-1:2) = (=1:1)U (1:2). Note that both (—1:1) and (1:2) are
open, and thus by Theorem 1, B(—1,2) is open as well.

4. By previous item and Theorem 2, the open balls of (R, d) do form a base for a topology
onR.

5. In (R, d) the limits of convergent sequences are unique. This is demonstrated in Example
7 using additional structure developed in Section 4.

6. In (R, d) convergent sequences are Cauchy. This is also demonstrated in Example 7.

The distance functions in Examples 1-3 were all discontinuous. In the absence of the trian-
gle inequality and in light of these examples, one might try replacing the triangle inequality
with the weaker requirement of continuity. However, as demonstrated by the next example,
this also leads to an arguably disastrous result.

Example 4 ([10,74]). The functiond € RR*R such that d(x,y) := (x — y)? is a distance on R.
Note some characteristics of the distance space (R, d).

1. (R, d) is not a metric space because the triangle inequality does not hold:
d(0,2):=(0-2)>=4£2=(0-1)"+ (1-2)*:=d(0,1) +d(1,2).

2. The distance function d is continuous in (X, d). This is demonstrated in the more general
setting of Section 4 in Example 8.

16 The distance function d and item 2 can in essence be found in [10].
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3. Calculating the length of curves in (RR,d) leads to a paradox.'” Partition [0 : 1] into 2N
consecutive line segments connected at the points {O, ZLN’ 2%,, 2%,, cer, 22;;1’ 1} . Then

the distance, as measured by d, between any two consecutive points is equal to

2
d(pn, Pus1) == (pn — pus1)? = (%N) = ZZLN But this leads to the paradox that the
total length of [0 : 1] is O:
2N—1 N
lim )’ e~ lim 2o = lim & =0

N—oo =0 22N N—oo 22N N—o0 2N

4 DISTANCE SPACES WITH POWER TRIANGLE INEQUALITIES

4.1 Definitions

This paper introduces a new relation called the power triangle inequality. It is a generaliza-
tion of other common relations, including the triangle inequality. The power triangle inequal-
ity is defined in terms of a function herein called the power triangle function (next definition).
This function is a special case of the power mean with N = 2 and A; = A, = 3. Power means
have the attractive properties of being continuous and strictly monotone with respect to a free
parameter p € IR*. This fact is inherited and exploited by the power triangle inequality.

Definition 21. Let (X, d) be a distance space. Let R™ be the set of all positive real numbers and
R* be the set of extended real numbers. The power triangle function T on (X, d) is defined as
1
T(p,o;x,y,2;,d) :=20 %d”(x,z) + %d”(z,y) p, V(p,o) e R* xR", xy,z¢€X.

Remark 3. In the field of probabilistic metric spaces, a function called the triangle function
was introduced by Sherstnev [102]. However, the power triangle function as defined in the
present paper is not a special case of (is not compatible with) the triangle function of Sherstnev.
Another definition of triangle function has been offered by Bessenyei [6] with special cases of
®(u,v) := c(u+0v) and ®(u,v) = (uf + vp)%, which are similar to the definition of power
triangle function offered in the present paper.

Definition 22. Let (X, d) be a distance space. Let 2XXX be the set of all trinomial relations on
X (see Definition 3). A relation @ (p,o;d) in 2XXX is a power triangle inequality on (X, d) if

A(p,0;d) := {(x,y,z) e X®|d(x,y) < t(p,0; x,y,z;d)} for some (p,c) € R* x RT.

The tuple (X, d, p, o) is a power distance space and d a power distance or power distance func-
tion if (X, d) is a distance space in which the triangle relation ®(p, c;d) holds.

The power triangle function can be used to define some standard inequalities (next defini-
tion). See Corollary 3 for some justification of the definitions.

17 This is the method of “inscribed polygons” for calculating the length of a curve and goes back to Archimedes
[17,117].
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Definition 23 ([6,36,41,44,46,47,52,62,63,69,119]). Let ®(p, o; d) be a power triangle inequality
on a distance space (X, d).
1. @(00,9/2;d) is the o-inframetric inequality.

2. D)oo, % ;d)  is the inframetric inequality:.

3. @®(2,v2/2;d) is the quadratic inequality.

4+ @®(,0;d) is the relaxed triangle inequality.
5. ®(1,1;d) is the triangle inequality.

6. @®(1/2,2;d) is the square mean root inequality.
7 @®(0,3;d) is the geometric inequality.

s. ®(—1,1;d) is the harmonic inequality.

9. @®(—o0, 3;d) is the minimal inequality.

Definition 24. ¥ Let (X, d) be a distance space.
1. (X,d) is a metric space if the triangle inequality holds in X.
2. (X, d) is a near metric space if the relaxed triangle inequality holds in X.
3. (X, d) is an inframetric space if the inframetric inequality holds in X.
4 (X, d) is a o-inframetric space if the o-inframetric inequality holds in X.

4.2 Properties
4.2.1 Relationships of the power triangle function

Corollary 2. Let T(p,0;x,Yy,z;d) be the power triangle function in the distance space (X, d).
Let (R, |-|, <) be the ordered metric space with the usual ordering relation < and usual metric
|| onR. The function t(p,0; x,V,z;d) is continuous and strictly monotone in (R, ||, <) with
respect to both the variables p and o

Proof. The function 7(p, c; x,y,z;d) is continuous and strictly monotone with respect to p via
Theorem 18. By definition 21 of T we have

1
T(p,0;x,y,2;d) := 20 %dp(x,z) + %dp(z,y) h = 20f(p, x,y,2),

f(p.x,,2)
where f is defined as above. Therefore 7 is affine with respect to ¢, and, hence, T(p, 7; x,y,z;d)
is continuous and strictly monotone with respect to o. O

Corollary 3. Let 7( PO Y, Z; d) be the power triangle function in the distance space (X, d).

2cmax{d(x,z), d(z,y)} for p=oco, (maximum),®
1
20(1/2d*(x,z) + 1/2d*(z,y)]* for p=2,  (quadratic mean),
. . old(x,z) +d(z, )] for p=1, (arithmetic mean),*

t(p.o;x,y,2;d) = 20+/d(x, z) \/ (z,y for p=0, (geometric mean),

4(7[ ] for p=—1, (harmonic mean),

\ 2(7m1n{d(x z) d(z,y)} for —oo, (minimum).

Proof. These follow directly from Theorem 18. O

18 For definitions in metric space see [30,43,48,49,60]; in near metric space see [36,41,46,47,62,69,119].
19 The maximum T(00,0;x,Y,2;d) corresponds to the inframetric space.
20 The arithmetic mean 7(1,0;x,y,2z;d) corresponds to the near metric space.
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square mean root (SMR) inequality at (%,2)

27 order inflection point at (—% In2, %e‘z) triangle inequality at (p,o) = (1,1)

harmonic inequality at (p, o) = (—1, quadratic mean inequality at (2, @)

to minimal inequality at<zeecee e\ PRI R to inframetric inequality at

(p,o)z(oo,%) == o ! p (P,0)=(°°,%)

1 1
Figure 1: 0 = %(2?) —2r lor p= lr}’(“zi) (see Lemma 1, Lemma 2, Corollary 6, Corollary 7,

and Theorem 9).

Corollary 4. Let (X, d) be a distance space. Then

-1
2cmin{d(x,z), d(z,y)} < 40{@ + d(%y)} < 20+/d(x,z) \/d(z,y)
< old(x,z) +d(z,y)] < 2omax{d(x,z), d(z,y)}.
Proof. These follow directly from Corollary 8. O

4.2.2 Properties of power distance spaces

The power triangle inequality property of a power distance space axiomatically endows a met-
ric with an upper bound. Lemma 1 demonstrates that there is a complementary lower bound
somewhat similar in form to the power triangle inequality upper bound. In the special case

1
where 20 = 27, the lower bound helps provide a simple proof of the continuity of a large class
of power distance functions (Theorem 9). The inequality 20 < 27 is a special relation in this

paper and appears repeatedly in this paper; it appears as an inequality in Lemma 2, Corollaries
6 and 7, and as an equality in Lemma 1 and Theorem 9. It is plotted in Figure 1.

Lemma 1. 2 Let (X,d, p, o) be a power triangle triangle space. Let |-| be the absolute value
function. Let max{x,y} be the maximum and min {x,y} the minimum of any x,y € R*.
Then, for all (p,0) € R* x RT,

1 dP(x,y) > max {0, —(Zg)pdp(x,z) —d?(z,y), Zz)pdﬁ(y,z) — dp(z,x)} Vx,y,z € X,
1
p

(20

2 d(x,y) >|d(x,z) —d(z,y)| if p#0 and 20 =2 Vx,y,z € X.

Proof. From power triangle inequality and symmetric property of d we obtain

(2¢27)Pdp(xrz) —dP(z,y) < (237)17 {20[1/2d?7(x,y) + 1/zdp(y,z)]ﬂ @ (zy)
— 2((22;7));7 [1/2dP (x, ) + 1/2d7 (y,2)] — dP(z,y)

= [dP(x,y) +d"(y,2)] = d¥(y, 2) = d(x,y).

21 For assertion in metric space, ie. (p,0) = (1,1) see [5,43,83].
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Using commutative and non-negative properties of d, for (p,c) € R* x R one can derive

2

d?(x,y) > o)

d?(x,z) —dP(z,y), dP(y,x) > d?(y,z) —df(z,x), d?(x,y) > 0.

20

1
The rest follows because g(x) := x7 is strictly monotone in RR.

1
In case 20 = 27 we have

d(x,y) > max {O, (%%dp(x,z) —dP(z,y), ﬁdp(y,z) — dp(z,x)}F
=max {0, d(x,z) —d(z,y), d(y,z) —d(z,x)}
= max {0, (d(x,z) —d(z,y)), —(d(x,z) —d(z,¥))} = [(d(x,2) —d(z,y))|.
O

Theorem 5. Let (X,d, p,0) be a power distance space. Let B be an open ball on (X,d). Then
forall (p,o) € (R*\{0}) x R™ the following implications hold:

1 if20 <27 and q € B(6,r) then there exists r; € R such that B(q,r;) C B(6,7);
2. if there existsr; € R™ such that B(q,r;) C B(6,7) thenq € B(6,r).
Proof. Using the Archimedean Property?? we obviously obtain
geB(O,r) < d(6,q) <r < 0<r—d(0,q) < Iy e R, 0<r;<r—d(6,q).
Therefore
B(q,7q) :={x € X|d(g,x) <r,} ={xeX|d’(q,x) <rf e RT}
C{xeX|df(q,x) <rP—dP(0,q9)} = {x € X|dP(0,q9) +dP(q,x) <rP}
= {x € X‘ [dP(6,q) +dp(q,x)]% < r} C {x €X ) 21=rg[dP (6, q) +dp(q,x)]% < r}
= {x €eX ‘ 20[1/2d(6,q)x~|—1/2dp(q,x)]% < r} ={xeX|t(p,o,0,x,q) <r}
C{xeX|d(0,x)<r}:=B(b,1).

1
Here we used the fact that the functions f(x) := x? and f(x) := x# are monotone. So, the first
implication is proved.

The second implication follows from

ge{xeX|d(gx)=0}C{xeX|d(gx) <ry}:=B(q7r,) CBO,7).

The next assertion follows from Theorem 2 and Theorem 5.

Corollary 5. Let (X, d, p, o) be a power distance space. If the inequality 20 < 27 holds for all
(p,0) € (R*\{0}) x R™ then every open ball in (X, d) is open.

Corollary 6. Let (X,d, p,0) be a power distance space. Let B be the set of all open balls in

(X,d). If the inequality 20 < 27 holds for all (p,0) € (R*\{0}) x R* then B is a base for
(X, T).
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Figure 2: open set (see Lemma 2) .

Proof. The set of all open balls in (X, d) is a base for (X, T) by Corollary 5 and Theorem 11. T
is a topology on X by Definition 26. O

The next assertion demonstrates that every point in an open set is contained in an open ball
that is contained in the original open set (see also Figure 2).

Lemma 2. Let (X,d, p, o) be a power distance space. Let B be an open ball on (X, d). Then for
all (p,0) € (R*\{0}) x R™ the following implications hold:

1
1. if20 < 27 and U is open in (X,d) then for all x € U there exists r € R such that
B(x,r) CU;
2. iffor all x € U there existsr € R™ such that B(x,r) C U then U is open in (X, d).

Proof. From Corollary 6 we have

U= J{B(xy,1y)|B(xy,79) CU} 2 B(x,7),

because x must be in one of those balls in U. So, the first implication is proved.
The second implication follows from

U=J{reX|xeU}=J{B(x,r)|x € Uand B(x,r) CU} = U isopen
by Corollary 6 and Corollary 1. O

Corollary 7. 2 Let (X,d, p,0) be a power distance space. Let B be an open ball on (X,d). If
1
20 <27 forall (p,o) € (R*\{0}) x R* then every open ball B(x,r) in (X, d) is open.

Proof. The union of any set of open balls is open by Corollary 6, therefore the union of a set of
just one open ball is open. Hence, every open ball is open. O

Theorem 6. * Let (X,d,p,0) be a power distance space. Let (X,T) be a topological space
induced by (X,d). Let {x,},., C X be a sequence in (X,d). The sequence {x,} converges to
a limit x iff for any ¢ € R™ there exists N € Z such that for alln > N, d(x,, x) < e.

22 Gee [1,121].
23 For assertion in metric space see [1,97].
2 For theorem in metric space see [53,97].
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Proof. The sequence {x,} converges to x if and only if x, € U VU € Ny, n > N. By Lemma 2
JB(x, €) such that x, € B(x,&) Vi > N. So, d(x,, x) < €. O

In distance spaces not all convergent sequences are Cauchy (see Example 2). However in a
distance space with any power triangle inequality all convergent sequences are Cauchy.

Theorem 7. 2 Let (X,d, p, o) be a power distance space with any (p,0) € R* x RT. Let
{xn},ez C X be a sequence in (X, d). Every convergent sequence {x,} is a Cauchy sequence
and therefore it is bounded in (X, d).

Proof. Let {x,},., be a convergent sequence in (X, d). Then we have

1
1 1 1 1 17
d(xi’l/ xi’l’l) S T(p/ 07 Xn, Xm, x) = 20' |:§dp(xi’l/ X) + Edp(xl’lfn x):| ' < 20.|:§8p + Eep:| ’ - 20—8-

By Corollary 3 and definitions of power triangle inequality at p = co, p = —coand p = 0 we
have

d(xp, xm) < T(00,0; Xp, Xy, x) = 20 max {d(xy, x), d(xmm, x)} = 20 max{e, ¢} = 20%¢;

d(xp, xm) < T(—00,0; Xy, Xy, x) = 20 min{d(x,, x), d(xy, x)} = 20min {e, e} = 20%¢;

d(xn, xm) < T(0,0; X, X, X) = 2(7\/d(xn,x) \/d(xm,x) = 20/e+\/e = 20%¢.

Therefore the sequence {x,} is Cauchy. By Proposition 1 every Cauchy sequence is bound-
ed. O

Theorem 8. %° Let (X, d, p, o) be a power distance space with any (p,o) € R* x RT. Letf € Z%
be a strictly monotone function such that f(n) < f(n +1). If {x,},., is a Cauchy sequence

and {xf(n) }nGZ is convergent then {x, }, ., is convergent.

Proof. 1t is easy to see that

1
[z

1 1
d(xp, x) =d(x,x,) < 7(p, 0%, xn,xf(n)) = Za{id” (x, xf(n)> + Edp <xf(n),xn)}

1 1
1 1 [ 1 1 [z
=20 [Ee + Edp <xf(n), xn>] =20 [Eep + ESP} = 20%¢,

so, the sequence {x,}, . is convergent. O

Theorem 9. % Let (X, d, p,c) be a power distance space. Let (R,q) be a metric space of real

numbers with the usual metric q(x,y) := |x — y|. If 20 = 27 then d is continuous in (R, q).
Proof. Using triangle inequality of (R, |x — y|) and Lemma 1 we obtain

|d(x,y) = d(xn,yn)| < [d(x,y) — d(xn,y)| + |d(xn,y) — d(xn, yn)|
= |d(x,y) — d(y, xn)| + |d(y, xn) — d(xn, yu)]
<d(x,x,) +d(y,yn) =0  asn — oco.

25 For theorem in metric space see [2,53,97].
26 For theorem in metric space see [97].
27 For theorem in metric space see [5].
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In distance spaces and topological spaces, limits of convergent sequences are in general not
unique (see Example 1, Example 12). However the next theorem demonstrates that in a power
distance space limits are unique.

Theorem 10 (Uniqueness of limit). ?® Let (X,d,p,0) be a power distance space with any
(p,0) € R* x RT. Letx,y € X and let {x,} C X be an X-valued sequence.

If ({xn},{yn}) = (x,y) then x = y.
Proof. Let us prove that for all (p,c) € R* x RT and for any ¢ € R, there exists N such that
d(x,y) < 20e. For p € R*\{—00,0, 0} we have
1 1 [ 1 I
d(x,v) < t(p,0;x,y,x,) :=20 Ed”(x, Xn) + Edp(xn,y) <20 Ee” + Ee” = 20%.

By Corollary 3 and definition of power triangle inequality at p = oo, p = —o0, p = 0 we have
d(x,y) < t(00,0;x,y, x,) = 20 max {d(x, x,), d(xn,y)} < 20¢,
d(x,y) < 1(—00,0;x,y,x,) = 20 min {d(x, x,), d(x,,y)} < 20¢,

d(x,y) < 7(0,0;x,y,x,) = 2(7\/d(x, Xn) \/d(xn,y) = 20/e\/e < 20¢

respectively.
Suppose that x # y. Then d(x,y) # 0, and therefore d(x,y) > 0. It implies that there exists
e such that d(x, y) > 20¢, which contradicts the proved above inequality d(x,y) < 2ce. O

4.3 Examples

It is not always possible to find a triangle relation @®(p, 0;d) that holds in every distance
space, as demonstrated by Example 5 and Example 6 (next two examples).

Example 5. Letd(x,y) € RR*R pe defined as follows

Y, V(x,y) € {4} x (0:2],
d(x,y) =1 x, V(x,y) € (0:2] x {4},
|x —y|, otherwise.

Note the following about the pair (R, d).

1. By Example 1, (R,d) is a distance space, but not a metric space, that is, the triangle
relation @®(1,1;d) does not hold in (R, d).

2. Observe further that (R, d) is not a power distance space. In particular, the triangle re-
lation @®(p, o;d) does not hold in (IR, d) for any finite value of ¢ (does not hold for any
c€R")

1
d(0,4) =4 £ 0 = lim20e = lim 20 [1/2|0 — ¢|" + 1/2¢"] ¥
e—0 e—0

==

= lim20[1/2d”(0,¢) 4+ 1/2d¥(¢,4)]7 := lim @ (p, 0;0,4,¢;d).
e—0 e—0

28 For theorem in metric space see [97,109].
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Example 6. Letd(x,y) € RR*R pe defined as follows

[ |x—y|, forx=00ry=00rx=y,
d(xy) = { 1, otherwise.

Note the following about the pair (R, d).

1. By Example 2, (R,d) is a distance space, but not a metric space, that is, the triangle
relation ®(1,1;d) does not hold in (R, d).

2. Observe further that (R, d) is not a power distance space, that is, the triangle relation
@ (p,0;d) does not hold in (R, d) for any value of (p,o) € R* x R™.

Let us prove that ©(p, 0;d) does not hold for any (p,0) € {0} x R". Indeed, Corollary 3

and Corollary 2 imply
n%g}ood(l/n,l/m) =1+ 0=20max{0,0} = ZUn,%r_r}oomax {d(1/x,0), d(0,1/m)}

> lim 20(1/2d?(1/n,0) +1/20(0,1/m)]? = Tim_7(p,,1/n,1/m,0).

n,m—o0

The triangle relation ®(p, o; d) does not hold for any (p,o) € R* x R also. The triangle
function ©(p,0; x,y,z;d) is continuous and strictly monotone in (R, |-|, <) with respect
to the variable p via Corollary 2. From proved above it follows that ®(p,c;d) fails to
hold at the best case of p = oo, and so by Corollary 2, it doesn’t hold for any other value
of p € R* either.

Example 7. Letd be a function in RR*R such that

_ 2=yl V(xy) €{(01),(10)},
d(xy) = { |x —y|, otherwise.

Note the following about the pair (R, d).

1. By Example 3, (R,d) is a distance space, but not a metric space, that is, the triangle
relation @®(1,1;d) does not hold in (R, d).

2. But observe further that (R, d, 1,2) is a power distance space. Let us prove that ®(1,2;d)
holds for all (x,y) € {(0,1), (1,0)}. Indeed, for any z € R we have
d(1,0) =d(0,1):=2/0-1|=2<2<2(|0—z|+ |z —1])
1
=20(1/210 — z|P +1/2]z = 1|F) ? := 20(1/2d? (0, z) + d(z, 1))% :=1(1,2;0,1,2).

Let us show that ®(1,2;d) holds for all other (x,y) € R* x R*. Using Corollary 2 we
obtain

1
d(x,y) == 2[x —y| < (|x —z| + [z —y]) = 20(1/2|0 — z|" + 1/2]z = 1|F) »
=11, Lxyz2) <t(1,2xy,z2).

3. In (X, d), the limits of convergent sequences are unique. This follows directly from the
fact that (R, d, 1,2) is a power distance space and by Theorem 10.

4. In (X,d), convergent sequences are Cauchy. This follows directly from the fact that
(R,d,1,2) is a power distance space and by Theorem 7.
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Example 8. Letd be a function in RR*R such thatd(x,y) := (x —y)2. Note the following about
the pair (R, d).

1. It was demonstrated in Example 4 that (IR, d) is a distance space, but that it is not a metric
space because the triangle inequality does not hold.

2. However, the tuple (R, d, p, o) is a power distance space for any (p,c) € R* x [2: ). In
particular, for all x,y,z € R, the power triangle inequality must hold. The “worst case”
for this is when a third point z is exactly “halfway between” x and y in d(x,y); that is,

when z = ﬂ.

==

(x — y)2 =d(x,y) < 1(p,0;x,y,2d) :=20[1/2dP(x,2) + 1/2dP(z, y)]

1 1
_za[l/z<x_z>”+1/zz— #|" =20 [1/2]x =2 4172z — y)’
1
2plr
— 20|12 ery +1/2|% y —y ]
1
o 12p _ 2P F 2P|
=20 1/2y +1/2x2y ] :2(7[x2y ] :%{’x_y‘z-

It follows (p,0) € R* x [2: c0).
3. The power distance function d is continuous in (IR, d, p, 0) for any (p, o) such thatoc > 2

and 20 = p%. This follows directly from Theorem 9.

APPENDIX A TOPOLOGICAL SPACES

Definition 25 ([59, 60, 89,96, 111]). Let I be a set with an arbitrary (possibly uncountable)
number of elements. Let 2% be the power set of a set X. A family of sets T C 2% is a topology
on X if

1. €T and
2 XeT and
. U VeT — UNVeT and
o {Uy|yel}CT = (JU,€eT.

yerl

The ordered pair (X, T') is a topological space if T is a topology on X. A set U is openin (X, T)
if U is any element of T. A set D is closed in (X, T) if D isopenin (X, T).

Just as the power set 2% and the set { &, X} are algebras of sets on a set X, so also are these
sets topologies on X.

Example 9 ([42,73,89,105]). Let T (X) be the set of topologies on a set X and 2% the power
set on X. Then {&, X} is a topology in T (X), which is called indiscrete topology or trivial
topology; 2% is a topology in T (X), which is called discrete topology.

Definition 26 ([37,66]). Let (X, T) be a topological space. A set B C 2% is a base for Tif B C T
and for all U € T there exist {B, € B} such that U = | J B,.
7
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Theorem 11 ([37,66]). Let (X, T) be a topological space. Let B be a subset of 2X. If B is a base
for (X, T) then for every x € X and for every open set U containing x, there exists By € B such
that x € B, C U.

Theorem 12 ([11]). Let (X, T) be a topological space and B C 2X. If B is a base for (X, T) then
1. xeX —> dB, € Bsuch thatx € B, and
> B;,B,cB =—> ByNB,cB.

Example 10 ([37]). Let (X, d) be a metric space. The set B := {B(x,r) |x € X, r € N} (the set
of all open balls in (X, d)) is a base for a topology on (X, d).

Example 11 (the standard topology on the real line). ?° The set B := {(a : b) |a,b € R, a < b}
is a base for the metric space (R, |b — a|) (the usual metric space on R).

Definition 27 ([51,67,72,81,89,110]). Let (X, T) be a topological space. Let 2X be the power
set of X. The set A~ is the closure of A € 2X if A~ := ﬂ {D c 2% | A C DandD is Closed}.

The set A° is the interior of A € 2% if A° := | | {LI c2X|UC Aand U is open}. A point x

is a closure point of A if x € A~. A point x is an interior point of A if x € A°. A point x is an
accumulation point of A if x € (A\{x}) . A point x in A~ is a point of adherence in A or is
adherentto Aifx € A™.

Lemma 3 ([1,81]). Let A~ be the closure, and A° the interior of a set A € 2% in a topological
space (X, T). Then A° C AC A~; A= A°iff Aisopen; A = A~ iff A is closed.

Definition 28 ([37]). Let (X, T) and (Y, T,) be topological spaces. Let f be a function in YX. A

function f € YX is continuous if for any open set U € T, in (Y, T,) the setf~1(U) € Ty is open
X,Ty)

in (X, Ty). A function is discontinuous in (X, Ty) (XTx) if it is not continuous in (X, Ty) ( .
Definition 28 defines continuity using open sets. Continuity can alternatively be defined
using closed sets or closure.

Theorem 13 ([81,101]). Let (X, T) and (Y, S) be topological spaces. Let f be a function in YX.
The following are equivalent:
1. f is continuous;
if B is closed in (Y, S) then f~1(B) is closed in (X, T);
f(A7) Cf(A)~;
f~1(B) C f~1(B7).

W

Remark 4. A word of warning about defining continuity in terms of topological spaces —
continuity is defined in terms of a pair of topological spaces, and whether function is contin-
uous or discontinuous in general depends very heavily on the selection of these spaces. This
is illustrated in Proposition 4. The ramification of this is that when declaring a function to be
continuous or discontinuous, one must make clear the assumed topological spaces.

Proposition 4 ([35,94]). Let (X, T) and (Y,S) be topological spaces. Let f be a function in
(Y,S )(X’T). If T is the discrete topology then f is continuous. If S is the indiscrete topology
then f is continuous.

29 Gee [37,89].
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Definition 29 ([66,75]). Let (X, T) be a topological space. A sequence {x,},., converges in
(X, T) to a point x if for each open set U € T that contains x there exists N € IN such that
xn € U for alln > N. This condition can be expressed in any of the following forms:

1. The limit of the sequence {x, } is x. 3. lgn {xn} = x.
n—oo
2. The sequence {x,} is convergent with limitx. 4. {x,} — x.

A sequence that converges is convergent. A sequence that does not converge is said to
diverge, or is divergent. An element x € A is a limit point of A if it is the limit of some
A-valued sequence {x,} C A.

Example 12 ([89]). Let X := {x,y,z} and T3 := {9, {x}, {x,y}, {x,z}, {x,y,z}}. Then
(X, T31) is a topological space. In this space, the sequence {x,x,x,...} converges to x. But
this sequence also converges to both y and z because x is in every open set that contains y and
x is in every open set that contains z. So, the limit of the sequence is not unique.

Example 13. In contrast to the low resolution topological space of Example 12, the limit of the
sequence {x, x, x, ...} is unique in a topological space with sufficiently high resolution with re-
spect to y and z such as the following. Define a topological space (X, Ts¢) where X := {x,y,z}
and Tse := {9, {y}, {z}, {x, v}, {v,z}, {x,y,z}}. In this space, the sequence {x, x, x, ...} con-
verges to x only. The sequence does not converge to y or z because there are open sets contain-
ing y or z that do not contain x (the open sets {y}, {z}, and {y, z}).

Theorem 14 (The Closed Set Theorem). 3° Let (X, T) be a topological space. Let A be a subset
of X. Then A is closed in (X, T) if and only if every A-valued sequence {x,},., C A that
converges in (X, T) has its limit in A.

Theorem 15 ([94]). Let (X, T) and (Y, S) be topological spaces. Letf be a functionin (Y, S) XD,
Then inverse image characterization of continuity (see Definition 28) is equivalent to sequential
characterization of continuity (see Definition 29).

APPENDIX B FINITE SUMS

B.1 Convexity

Definition 30 ([3,11,64,103]). A functionf € RR is said to be
convex if f(Ax +[1 — Aly) < Af(x) +(1—A)f(y), Vx,y e R,VA € (0:1);
strictly convex if f(Ax 4+ [1 — Aly) = Af(x) + (1= A)f(y), Vx,y e R, x #y,VA € (0:1);
concave if —f is convex;
affine if f is convex and concave.

N
Theorem 16 (Jensen’s Inequality). 3! Let f € RR be a function. If f is convex and Z A =1

n=1

N N
thenf(Z An xn> < Z Ay f(xy) forall x, € R and N € N.

n=1 n=1

30 See [54,72,97].
31 See [11, 64, 86].
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B.2 Power means

Definition 31 ([11]). The (A,)Y weighted ¢-mean of a tuple (x,)Y is defined as

N
Mo ((xn)) := @~ (Zl?tnqv(xn)>

where ¢ is a continuous and strictly monotonic function in R® and (A,)I_, is a sequence of

N
weights for which ) " A, = 1.

n=1

Lemma 4 ([11,58,93]). Let My((x4))) be the (A4)Y weighted ¢-mean and My((x,))) the (A,)Y
weighted 1-mean of a tuple (x,)Y.
If pyp~! is convex and ¢ is increasing then My ((xn)) > My ((xn)).
If pyp~1 is convex and ¢ is decreasing then My ((x4)) < My((x4)).
If g~ is concave and ¢ is increasing then M ((xx)) < My((xn)).

If py~1 is concave and ¢ is decreasing then My ((x)) > My((xn)).

One of the most well known inequalities in mathematics is Minkowski’s Inequality. In
1946, H.P. Mulholland submitted a result that generalizes Minkowski’s Inequality to an equal
weighted @-mean. In 1979, G.V. Milovanovi¢ and I. Milovanovi¢ generalized this even further
to a weighted ¢-mean.?

Theorem 17 ([20,84]). Let ¢ be a convex strictly monotone function in RR, such that ¢(0) = 0
and log o o exp is convex. Then

N
(;Anq) (x4 + yn) > (Z A (xn) ) +(p1<;}\nq)(yn)>.

Definition 32 ([11,20]). Let My, ((xu)) be the (A4 )Y weighted ¢-mean of a non-negative
tuple (x,)Y. A mean Mg (x:p) ((x4)) is @ power mean with parameter p if ¢(x) := xP. That is,

1
r
Mgo(xp (Z)\ Xn > .

Theorem 18 ([7,8,11,14,19,20]). Let Mq,(x,.p) ((xn)) be the power mean with parameter p of an

1

N P
N-tuple (x,)Y in which the elements are not all equal. Then Mg (xp) ((xn)) = (Z )\n(xn)p>
is continuous and strictly monotone in R* and

max N(]xn[), for p = o0,

n=1,2
Myt () = A TT ke, forp=0,
nzrlr}zliN(]xn[), forp = —o0

32 See also [20,22,58,79,85,88,112].
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Proof. Let p and s be such that —00 < p <s <o Letgy:=xPand ¢s := x°. Then (pp(ps = Xs.
The composite function ¢, ¢, 1is convex or concave depending on the values of p and s:

H p <0 (¢, decreasing) ‘ p > 0 (¢p increasing)

s <0 convex (not possible)
s >0 convex concave

Therefore by Lemma 4, we obtain M,y ((xn)) < Mg(x6)((xn)). S0, My(x;p) is strictly mono-
tone in p.

The sum of continuous functions is continuous. Therefore, M
p € R\0. The cases of p € {—00, 0, oo} we consider below.

¢(x;p) 18 continuous in p for

Note that using the definition of My, we obtain

1y 1 L
()} =3 (En)) b = (St ™) i

Denote x,; := me%(]xnl) Note that lim M, < maZXan[) Indeed, using the definition of M,
ne p—0
we obtain

1
N
; p
i, Mo (b —,Jgrgo(anﬂ) <, (ﬂZ:anm>

==

==

N 1
= plgrolo anr; P plgrolo (xh - 1)P = xp = rnnEaZXQan).
1
But also note that lim M, > max(x,)) because
p—0 nez
1
: PNyt b
plgroloM ((xn)) = plgrolo (Z Anxn> > ;7151010 (wmxm)r’ — plgrolowmxm = Xp = %azx(]xnl).
Here we used the fact, that ¢(x) := x” and ¢! are both increasing or both decreasing. So,
lim M = .
Jim Mo ((xuh) = max(xa)
Let us prove that Lim Mo ((xn)) = mi£qan. From the equation (1) it follows
p——co ne
lim M ((xn)) = lim M ((xn)) = lim {M ((]xll))}1 = lim !
p=—co PP psoo PPN p—eo L 2Lip) (171 PN <(]x_1D>
p(xp) \ W
lim, ;001 1 1

= - — = — = — = znin(]xn[).
limp—co 'V'wxp)(d 1D) max(x ) (min(]xnl)> -
nez

It remains to prove that lim M, H X} U Using the definition of My, and I'Hopital’s
p—>
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rule® we obtain

.
iny M (1) = limexp (i {My((5)}} = lim exp {1{ (£ on) }}

n=1
2 (i An(x,*;)) 5 An (D)
= exp U= = exp { =L i
— = — N
ap" D An(x)
p -
p=0 n=1 p=0

N N
Z n=—exp (In (xZ)) Z Ap=—exp (rln (xy,))
— exp { = N — exp { = ]
>,
n=1 p=0 p=0
N N
= exp { ) )\na— exp (pIn (xn))} = exp { Y Anexp {pInx,}In (xn)}
n=1 p=0 n=1 p=0
N N N N
= exp { ) Anln(xn)} = exp { ) In <xﬁn)} = exp {lnnxﬁn} =[x
n=1 n=1 n=1 n=1

O

Corollary 8 ([11,20,23,63,64]). Let (x.)Y be a tuple. Let (A4)Y be a tuple of weighting values
N
such that Z An = 1. Then

n=1

N 1 -1 N N
min(x,) < Z Anx—n < H x," < Z AnXy < max(xy).
n=1 n=1 n=1
~- N

harmonic mean geometric mean arithmetic mean

Proof. These five means are all special cases of the power mean M,,..,,), namely

p = oo max (x,)),

p=1 arithmetic mean,

p =0: geometric mean, So, the inequalities follow directly from Theorem 18.
p = —1: harmonic mean,

p = —oo: min(xy).

If one is only concerned with the arithmetic mean and geometric mean, their relationship
can be established directly using Jensen’s Inequality (Theorem 16):

N N N N N N
Z Ay = blogb():nzl /\nxn) > b():n:1 Aulog, xn) _ H b()xn logy xn) — H b(logb Xn)An — H xﬁ”.
n=1

n=1 n=1 n=1

33 See [98].
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B.3 Inequalities

Lemma 5 (Young's Inequality). 3

p q
xy < %—l—% thh%—}—%:l Vi<p<oo, x,y >0, buty # xP~1,

p q
xy = x_+% wi

; th%—i—%:l Vi<p<oo, x,y>0, andy = xP~1.

Theorem 19 (Minkowski’s Inequality for sequences). * Let (x,)) C C and (yu)) C C be
complex N-tuples. Then

N y N 3 N 3
Xa+yal? | < Y 1ml? | + (X lval? V1<p<oo.
n=1 n=1

n=1

APPENDIX C METRIC PRESERVING FUNCTIONS

Definition 33 ([31,40,113]). Let M be the set of all metric spaces on a set X. A function

},
P € R is a metric preserving function if d(x,y) := ¢ op(x,y) is a metric on X for all
(X,p) € M.

Theorem 20 (necessary conditions). % Let R¢ be the range of a function ¢. If ¢ is a metric
preserving function then ¢~1(0) = {0}, R¢ C R", and the function ¢ is subadditive, i.e.

p(x+y) < o(x) + oy).

)_ 37

Theorem 21 (sufficient conditions Let ¢ be a function in RR. If the conditions

Lx>y = ¢(x) > ¢y), YxyeR,
2 ¢(0) =0,
sogx+y) <o) +oy), VxyeR,

hold, then ¢ is a metric preserving function.
The proofs for Example 14-Example 19 follow from Theorem 21.

Example 14 (ax-scaled metric/dilated metric). 3 Let (X,d) be a metric space. The function
@(x) := ax, « € R, is a metric preserving function (see Figure 3 (A)).

Example 15 (power transform metric/snowflake transform metric). > Let (X,d) be a metric
space. The function ¢(x) := x*, a € (0 : 1], is a metric preserving function (see Figure 3 (B)).

Example 16 (a-truncated metric/radar screen metric). *° Let (X,d) be a metric space. The
function ¢(x) := min{«, x}, « € RY, is a metric preserving function (see Figure 3 (C)).

34 See [22,58,79,112,120].
35 See [20,22,58,79,85,112].
36 See [31,40].

37 See [31,40, 67].

38 See [39].

3 See [39,40].

40 Gee [39, 53].
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0 ¥—F+—F+—F+—+x 0 +——F—F+—F—+x O.%lllx

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
(A) a-scaled/dilated  (B) power transform/snowflake (C) a-truncated/radar screen
(Example 14) (Example 15) (Example 16)
2
1
x 0 o— 1 1 = x
0 1 2 3 4 0 1 2 3 4
(D) bounded (E) discrete (F)
(Example 17) (Example 18) (Example 19)

Figure 3: metric preserving functions.

isa

Example 17 (bounded metric). 4! Let (X,d) be a metric space. The function ¢(x) := 1 i .
metric preserving function (see Figure 3 (D)).

0, for x <0,
Example 18 (discrete metric preserving function). 4 The function ¢(x) := { -

1, otherwise,
from RR is a metric preserving function (see Figure 3 (E)).

Example 19. The function

X, for 0 <x <1,

1, for 1 <x<2,
p(x) ==

x—1, for2<x<3,

2, for x > 3,

from RR is a metric preserving function (see Figure 3 (F)).
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I'piaxoe A.AX. Baacmusocmi npocmopis 3 8i0cmaniio, ujo 3a00801bHII0Mb ClIeneHesi HepiBHOCHIT MPUKY-
muuka // Kapnarceki Matem. my6a. — 2016. — T.8, Nel. — C. 51-82.

MeTpuuHi IpocTOpU 3ab6e3MeuyioTh OCHOBY AASI MATEMATUIHOTO aHAAI3Y i MAIOTh PSIA Ay>Ke KO-
PVICHMX BAACTMBOCTeM. baraTo 3 1mx BAaCTMBOCTel BUIIAMBAIOTh 30KpeMa 3 HePiBHOCTI TPUKYTHMKA.
OaHaxk € 6araTo 3aCTOCyBaHb, B IKMX HEPiBHICTD TPMKYTHMKA He CIIPaBAXKY€ETHCS, aAe B SKIX MU BCe
IIle MOXKeMO 3AIVICHIOBATHM aHaAi3. Y IIill CTaTTi AOCAIAXKYEMO, IO TPAIUThCS, SIKIIIO HePiBHICTD Tpu-
KYTHMKa BUAYYEHO 3 TIepeAiKy aKcioM MeTPUKM, IPY LIbOMY MeTPMYHMI MMPOCTIip CTae TakK 3BaHUM
IIPOCTOPOM 3 BiacTaHHIO. TakoX Hac LIiKaBUTh, IO 6yAe KOAM HEPiBHICTh TPUKYTHMKA 3aMiHeHa Ha
6iABII 3arasbHe ABOXIIapaMeTpMYHe CIIiBBiAHOIIEHHs, sIKe MJ Ha3/Ba€MO CTeIIeHeBOXO HepiBHICTIO
TpUKyTHMKa. Take y3araabHeHHsI HEPiBHOCTI TPUKYTHMKA Aa€ He3AIUeHHO BeAMKII KAac HepiBHO-
CTelf, i BKAIOYa€ Py IOMY 3BMYaliHy HepiBHICTb TPMKYTHMKA, CAAOKYy HepiBHICTD TPMKYTHMKA Ta
iHppaMeTpUUHy HepiBHICTD K YacTVHHI Bunaaky. CTelleHeBa HEPiBHICTb TPUKYTHMKA BI3HaUeHa
B TepMiHaX (PYHKIIiI, IKy MM Ha3MBaeMO CTeIleHeBOIO TPMKYTHOW (pyHKIieo. Ll dyHKIis € Heme-
PEPBHOIO i MOHOTOHHOIO BiAHOCHO CBOTO €KCIIOHEHIIIaAbHOIO MapaMeTpy, € CTeleHeBMM CePeAHIM,
i TaKOX BKAIOYAE SIK YaCTMHHI BUMMAAKM MaKCUMYyM, MiHIMyM, CepeAHe KBaApaTUJIHe, CepeAHE apy-
dMeTHUHe, cepeAHe TeOMETPIUHE i cepeAHe TapMOHiliHe.

Kontouosi cnosa i ¢ppasu: MeTPpWUIHVIT TIPOCTip, MPOCTip 3 BiACTaHHIO, HAIliBMETPUYHMIL IIPOCTIp,
KBa3i-MeTpUYHMIT IIPOCTip, HepiBHICTh TPMKYTHMKA, cAabka HEPiBHICTD TPMKYTHMKa, iHppameTpn-
Ka, cepeAHe apudMeTIdHe, cCepeAHe KBaApaTIIHe, CepeAHe TeOMeTpIUHe, cepeAHe rapMOHiliHe, Ma-
KCMMyM, MiHIMYM, CepeAHE CTeIleHeBe.
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OPERATORS OF STOCHASTIC DIFFERENTIATION ON SPACES OF NONREGULAR
GENERALIZED FUNCTIONS OF LEVY WHITE NOISE ANALYSIS

The operators of stochastic differentiation, which are closely related with the extended Skorohod
stochastic integral and with the Hida stochastic derivative, play an important role in the classical
(Gaussian) white noise analysis. In particular, these operators can be used in order to study some
properties of the extended stochastic integral and of solutions of stochastic equations with Wick-
type nonlinearities.

During recent years the operators of stochastic differentiation were introduced and studied, in
particular, in the framework of the Meixner white noise analysis, in the same way as on spaces of
regular test and generalized functions and on spaces of nonregular test functions of the Lévy white
noise analysis. In the present paper we make the next natural step: introduce and study operators
of stochastic differentiation on spaces of nonregular generalized functions of the Lévy white noise
analysis (i.e., on spaces of generalized functions that belong to the so-called nonregular rigging of
the space of square integrable with respect to the measure of a Lévy white noise functions). In so
doing, we use Lytvynov’s generalization of the chaotic representation property. The researches of
the present paper can be considered as a contribution in a further development of the Lévy white
noise analysis.

Key words and phrases: operator of stochastic differentiation, stochastic derivative, extended
stochastic integral, Lévy process.

Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereschenkivska str., 01601, Kyiv, Ukraine
E-mail: nkachano@gmail.com

INTRODUCTION

Let L = (Lt)sc[0,+0) be a Lévy process (i.e., a random process on [0, +-o00) with stationary
independent increments and such that Ly = 0, see, e.g., [5, 30, 31] for details) without Gaus-
sian part and drift. In [23] the extended Skorohod stochastic integral with respect to L and
the corresponding Hida stochastic derivative on the space of square integrable random vari-
ables (L?) were constructed in terms of Lytvynov’s generalization of the chaotic representation
property (CRP) (see [27] and Subsection 1.2), some properties of these operators were estab-
lished; and it was shown that the above-mentioned integral coincides with the well-known
(constructed in terms of Itd’s generalization of the CRP [14]) extended stochastic integral with
respect to a Lévy process (e.g., [6, 7]). In [10, 21] the notion of stochastic integral and derivative
was widened to spaces of regular and nonregular test and generalized functions that belong
to so-called regular parametrized and nonregular riggings of (L?) respectively, this gives a
possibility to extend an area of possible applications of the above-mentioned operators (in
particular, now it is possible to define the stochastic integral and derivative as linear continu-
ous operators). Together with the stochastic integral and derivative, it is natural to introduce

YAK 517.98
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and to study so-called operators of stochastic differentiation in the Lévy white noise analysis, by
analogy with the Gaussian analysis [1, 37], the Gamma-analysis [17, 18], and the Meixner anal-
ysis [19, 20]. These operators are closely related with the extended Skorohod stochastic integral
with respect to a Lévy process and with the corresponding Hida stochastic derivative and, by
analogy with the classical Gaussian case, can be used, in particular, in order to study some
properties of the extended stochastic integral and of solutions of normally ordered stochas-
tic equations (stochastic equations with Wick-type nonlinearities in another terminology). In
[9, 8] the operators of stochastic differentiation on spaces that belong to a regular parametrized
rigging of (L?) ([21]) were introduced and studied. This rigging plays a very important role in
the Lévy analysis; but, in order to solve some problems that arise in this analysis (in particular,
in the theory of normally ordered stochastic equations), it is necessary to introduce into con-
sideration another, nonregular rigging of (L?) (see [21] and Subsection 1.3), and operators (e.g.,
the extended stochastic integral, the Hida stochastic derivative) on spaces (of nonregular test
and generalized functions) that belong to this rigging. Therefore it is natural to introduce and
to study operators of stochastic differentiation on the just now mentioned spaces.

In the paper [24] the operators of stochastic differentiation were introduced and studied
on the spaces of nonregular test functions of the Lévy white noise analysis. In particular, it
was shown that, roughly speaking, these operators are the restrictions to the above-mentioned
spaces of the corresponding operators on (L?). The next natural step is, of course, to consider
operators of stochastic differentiation on the spaces of nonregular generalized functions. But
here there is a problem: in contrast to the classical Gaussian case and to the "regular case",
the operators of stochastic differentiation on (L?) cannot be naturally continued to the just
now mentioned spaces (to the point, actually for the same reason the Hida stochastic deriva-
tive also cannot be naturally continued from (L?) to the spaces of nonregular generalized
functions). Nevertheless, it is possible to introduce on these spaces natural analogs of the
above-mentioned operators. These analogs have properties quite analogous to the properties
of operators of stochastic differentiation, and can be accepted as operators of stochastic differ-
entiation on the spaces of nonregular generalized functions. In the present paper we introduce
and study in detail the just now mentioned operators. In forthcoming papers we’ll consider
elements of the so-called Wick calculus in the Lévy white noise analysis, this will give us the
possibility to continue the study of properties and to consider some applications of the opera-
tors of stochastic differentiation.

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a convenient for our considerations probability triplet connected with
L; then, following [21, 23, 27], we describe in detail Lytvynov’s generalization of the CRP, the
nonregular rigging of (L?), and stochastic derivatives and integrals on the spaces that belong
to this rigging. In the second section we deal with the operators of stochastic differentiation on
the spaces of nonregular generalized functions, considering separately the cases of bounded
and unbounded operators. Note that some results of this paper were announced without
proofs in [25].

1 PRELIMINARIES

In this paper we denote by || - || or | - | i the norm in a space H; by (-, -) iy the scalar product
in a space H; and by (-,-)i or ((,-))g the dual pairing generated by the scalar product in a
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space H. Another notation for norms, scalar products and dual pairings will be introduced
when it will be necessary.

1.1 Lévy processes

Denote R := [0, +00). In this paper we deal with a real-valued locally square integrable
Lévy process L = (L;)ter, (a random process on R, with stationary independent increments
and such that Ly = 0) without Gaussian part and drift (it is comparatively simple to consider
such processes from technical point of view). As is well known (e.g., [7]), the characteristic
function of L is

E[e®H] = exp [t /IR (6% — 1 - i0x)v(dx)], (1)

where v is the Lévy measure of L, which is a measure on (R, B(IR)), here and below B denotes
the Borel o-algebra; E denotes the expectation. We assume that v is a Radon measure whose
support contains an infinite number of points, v({0}) = 0, there exists € > 0 such that

/ 2y (dx) < oo,
R

and

/ x*v(dx) = 1. (2)
R

Let us define a measure of the white noise of L. Let D denote the set of all real-valued
infinite-differentiable functions on IR with compact supports. As is well known, D can be
endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [4]).
Let D’ be the set of linear continuous functionals on D. For w € D’ and ¢ € D denote w(¢) by
(w, ¢); note that one can understand (-, -) as the dual pairing generated by the scalar product
in the space L?(IR ) of (classes of) square integrable with respect to the Lebesgue measure real-
valued functions on R, see Subsection 1.3 for details. The notation (-, -) will be preserved for
dual pairings in tensor powers of spaces.

Definition. A probability measure j on (D’,C(D')), where C denotes the cylindrical r-algebra,
with the Fourier transform

/D/ Py (dw) = exp [/]1<+x]1<(ew(u)x —-1- iq)(u)x)duv(dx)] , ¢9€D, 3)

is called the measure of a Lévy white noise.

The existence of y follows from the Bochner-Minlos theorem (e.g., [13]), see [27]. Below we
assume that the o-algebra C(D’) is complete with respect to u, i.e., C(D’) contains all subsets of all
measurable sets O such that #(O) = 0.

Denote (L?) := L?(D’,C(D’), 1) the space of (classes of) real-valued square integrable with
respect to y functions on D’; let also H := L?(IR ). Substituting in (3) ¢ = tip,t € R, p € D,
and using the Taylor decomposition by t and (2), one can show that

2
[ o 9 udeo) = [ (ptw))a @

(this statement follows also from results of [27] and [7]). Let f € Hand D > ¢ — f in
H as k — oo (it is well known (e.g., [4]) that D is a dense set in H). It follows from (4) that
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{{o, 9i) }x>1 is a Cauchy sequence in (L?), therefore one can define (o, f) := (L?) — klim (o, pr).
- —00

It is easy to show (by the method of "mixed sequences") that (o, f) does not depend on the
choice of an approximating sequence for f and therefore is well defined in (L?).

Let us consider (o,1j)) € (L?), t € Ry (here and below 14 denotes the indicator of a set
A). Tt follows from (1) and (3) that ({0, 1jg)), cr, canbe identified with a Lévy process on the

probability space (D',C(D’), i), i-e., one can write Ly = (0,11 y) € (L?).

Remark. Note that one can understand the Lévy white noise as a generalized random process
(in the sense of [11]) with trajectories from D': formally L!(w) = (w,1p.))" = (w,d.) = w(-),
where é. is the Dirac delta-function concentrated at -. Therefore u is the measure of L in the
classical sense of this notion [12].

Remark. A Lévy process L without Gaussian part and drift is a Poisson process if its Lévy
measure V(A) = 5(A), A € B(R), ie, if v is a point mass at 1. This measure does not
satisfy the conditions accepted above (the support of §; does not contain an infinite number of
points); nevertheless, all results of the present paper have natural (and often strong) analogs
in the Poissonian analysis. The reader can find more information about peculiarities of the
Poissonian case in [23], Subsection 1.2.

1.2 Lytvynov’s generalization of the CRP

As is known, some random processes L have a so-called chaotic representation property (CRP)
that consists, roughly speaking, in the following: any square integrable random variable can
be decomposed in a series of repeated stochastic integrals from nonrandom functions with
respect to L (see, e.g., [28] for a detailed presentation). The CRP plays a very important role in
the stochastic analysis (in particular, for processes with the CRP this property can be used in
order to construct extended stochastic integrals [16, 34, 15], stochastic derivatives and operators
of stochastic differentiation, e.g., [37, 1]), but, unfortunately, the only Lévy processes with this
property are Wiener and Poisson processes (e.g., [36]).

There are different approaches to a generalization of the CRP for Lévy processes: 1td’s ap-
proach [14], Nualart-Schoutens” approach [29, 32], Lytvynov’s approach [27], Oksendal’s ap-
proach [7, 6] etc. The interconnections between these generalizations of the CRP are described
in, e.g., [27,2,7, 35, 6, 23]. In the present paper we deal with Lytvynov’s generalization of the
CRP that will be described now in detail.

Denote by ® a symmetric tensor product and set Z, := N U {0}. Let P = P(D’) be the
set of polynomials on D/, i.e., P consists of zero and elements of the form

Nf R
flw) = Z<w®n,f(n)>, w €D, Nf € Zy, f(”) e pén f(Nf) £0,
n=0

here Ny is called the power of a polynomial f; (w0, FO)) .= £(0) ¢ D0 .= R. Since the measure
u of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and
properties of the measure v, see also [27]), P is a dense set in (LZ) [33]. Denote by P, the set
of polynomials of power not greater than 1, by P, the closure of P, in (L?). Let forn € N
P, := P, © P,_1 (the orthogonal difference in (L?)), Py := P,. It is clear now that

(L) = @ P,.
n=0
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Let /(W € D®", 5 € Z. Denote by : (0", f(")): the orthogonal projection in (L?) of a mono-
mial (o®", f (”)) onto P,. Let us define scalar products (-, -)ext on D®", n € Z, by setting for
f(”),g(") c pén

1
(f("),g(n))ext — i . <w®",f(”)> . <w®”,g(”)> u(dw),
and let | - |oxt be the corresponding norms, i.e., |f(”) lext = 1/ (f("), f(1),;. Denote by HEQ,

n € Z,, the completions of D1 with respect to the norms | - |oxt. For F (n) ¢ ngg define

a Wick monomial : (0®", F(1)) def (L2) — limy_yop : <o®”,fk(n)> ;, where D" 3 fk(n) — F as
k — ooin ngt) (well-posedness of this definition can be proved by the method of "mixed
sequences”). Since, as is easy to see, for each n € Z the set {: (o®1, f()):|f(") € D1} is a
dense one in P;;, we have the next statement (which describes Lytvynov’s generalization of the
CRP).

Theorem. ([27]) A random variable F € (L?) if and only if there exists a unique sequence of
kernels F(") ¢ H(n) n € Z, such that

ext’

o0

F=) (0% Fm) 5)

n=0

(the series converges in (L?)) and
IFI22 = [ 1F(@)Puldew) = EIFP = Y ntlF) 2, < e
n=0
So, for F, G € (L?) the scalar product has the form

(F,G)12) = /D F(w)G(w)p(dw) = E[FG] = Y al(F™, GO,
n=0

where F("),G(") ¢ ngt) are the kernels from decompositions (5) for F and G respectively. In

particular, for £ g ’H(n) and G™) ¢ H(m)

ext ext » /M € Zy,

(:<o®",F(”)>:,:<o®m,G(’”)>:)(L2) = /D/:<w®”,F(")>::<w®m,G(m)>:y(dw)
—F [: <o®”,F(")> .. <O®m, G(m)> :] — 5n,mTl!(F("), G(n))ext-

Note that in the space (L2) we have : (0®0, F(0)): = (0®0, F(0)) = F(0) and : (o, F1)): = (o, F))
[27].

(n)

Remark. In order to make calculations connected with the spaces H,,;, it is necessary to know
explicit formulas for the scalar products (-, -)ext. Such formulas were obtained by E.W. Lytvy-
nov in [27]. Here, following [23], we write out it for convenience of a reader. Denote by || - ||v
the norm in the space L?(IR,v) of (classes of) square integrable with respect to v real-valued
functions on R. Let

pu(x) = X" 4@y x4 a1k, a,j €ER, je{l,...,n—1}, ne€N, (6)
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be orthogonal in L*(R,v) polynomials, i.e., for natural numbers n,m such that n # m,
Jg Pn(x)pm(x)v(dx) = 0. Then for FM, G € H") 1 € N, we have

ext’

n! L vy 2 [[p1, llv \ 25
(F Gy, — Y o <lelle) - (Il
KlpsiEN: =10k, Iy >l> 1y, §1: " Sk 1: k!
X /]RS1+"'+Sk F(n) (uy, ..., uq,... pUsyyne Usyy e Usigodss o Usy 4 ts;) 7)

+
ll ll lk

xG(”)(ul e Uy e Uy, e Uy, e Uy ebgyy e ey Uy oetg, ) AU - - U 4oogg, .
s 7 ’ s sy s sy ! Kk’ s Hsq k 1 k

ll ll lk

In particular, forn = 1 (F(l),G(l))ext = |pll? f]R+ FD(u)GW (u)du; if n = 2 then we have
(F®, G®)exs = 11 fra O (1,0)G) (1, 0)duddo + 32 [ @) (1, 0)G2) (), et
It follows from (7) that?-[( )y = L2(R+): by (6) p1(x) = x and therefore by (2) ||p1|, =

ext —

1; and forn € N\{1} one can identify H®" with the proper subspace of %§x2 that consists of
"vanishing on diagonals" elements (i.e., F") (uy,...,u,) = 0 if there existk,j € {1,...,n} such

thatk # j but uy = u;). In this sense the space 7-[( t) is an extension of HOn (this explains why we
(n)

use the subscript ext in the notations Hext, (4, )ext and | - |ext).

1.3 A nonregular rigging of (L?)

Denote by T the set of indexes T = (71, 2), where 77 € IN, 1 is an infinite differentiable
function on Ry such that for all u € Ry (1) > 1. Let H, be the Sobolev space on R of
order 71 weighted by the function 1, i.e., H is a completion of the set of infinite differentiable
functions on R with compact supports with respect to the norm generated by the scalar
product

(00 = [, (otwrpe) + 1 o apt 1) mlu)an,

here ¢l¥ and ¥l are derivatives of order k of functions ¢ and ¢ respectively. It is well known
(e.g., [4]) that D = prlim__; H: (moreover, Do — prlim__ HE", see, e.g., [3] for details)
and for each T € T H is densely and continuously embedded into % = L?(R ), therefore
one can consider the chain

D>O>H_+rDOHDHDD,

where H_+, T € T, are the spaces dual of H. with respect to . Note that by the Schwartz
theorem [4] D’ = ind lim;c7 H_+ (it is convenient for us to consider D’ as a topological space
with the inductive limit topology). By analogy with [22] one can easily show that the measure
u of a Lévy white noise is concentrated on 1 _; with some T € T, i.e., u(H_3) = 1. Excepting
from T the indexes T such that y is not Concentrated on H_ ., we will assume, in what follows,
that foreacht € T uy(H—) = 1.

Denote the norms in H. and its tensor powers by | - |, i.e., for f(”) € ’H?”, n € N,

|f(n)|T = (f(n)/f(n))f}_t§§ﬂ'
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Lemma. ([21]) There exists T € T such that for each n € IN the space H%n is densely and

continuously embedded into the space ngt) Moreover, for all f") ¢ Hg”

|f |ext < n!c" |f T"

where ¢ > 0 is some constant.

It follows from this lemma that if for some 7 € T the space H is continuously embedded
into the space H, then for each n € IN the space HY" is densely and continuously embedded

into the space ngt) , and there exists ¢(T) > 0 such that for all (") € #&"
| e < mle(0)" | F 5. ®)

In what follows, it will be convenient to assume that the indexes T such that H is not contin-
uously embedded into H 1, are removed from T.

Denote Py = {f = ZnNiO (o®n, )y, f(n) ¢ DOn, Ny € Z1} C (L?). Accept on default
geZy, TeT;set H?O := IR; and define scalar products (-, )z, g on Py by setting for

Ny
= Z;<o®",f( Z ): € Py
n=0
min(Ng,Ng)
(f’g)T/q = Z (n!)zzqn(f(n)/g(n))rﬂ?n- (9)
n=0

Let || - [|¢,4 be the corresponding norms, i.e., |||y = 1/(f, f)r4. In order to verify the well-

posedness of this definition, i.e., that formula (9) defines scalar, and not just quasiscalar prod-
ucts, we note that if for f € Py | f|«q = 0 then by (9) for each coefficient f") of f [f(")|; =0
and therefore by (8) | f(")|,x+ = 0. So, in this case f = 0 in (L2).

Definition. We define Kondratiev spaces of nonregular test functions (H )4 as completions of
Pw with respect to the norms || - || 4, and set

(He) :==prlim(H:)y, (D) := prlim (H),.
qeZ qe€Z,teT

As is easy to see, f € (H<), if and only if f can be presented in the form

f= Z (07", f):, f € M (10)
(the series converges in (H¢),), with
1124 = If s, (n!)?20" f0 2 < eo; (11)
n:O
and for f,g € (H<)4
(f18)(me), = Z(ﬂ!)zﬂn(f(”),g(”))%gn,
n=0
where f("), ¢(") ¢ 7-[®” are the kernels from decomposmons (10) for f and g respectively (since
foreach n € Z H®” C ’Hext, for f(1) H{‘?” :(0®", (1)) is a well defined Wick monomial,

see Subsection 1.2). Further, f € (H.) (f € (D)) if and only if f can be presented in form (10)
and norm (11) is finite for each g € Z (foreachq € Z; and each T € T).
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Proposition. ([21]) For each T € T there exists qo = qo(T) € Z such that for each q € Ny, :=
{q0,90+1,- - } the space (H+), is densely and continuously embedded into (L?).

In view of this proposition for T € T and g > o(T) one can consider a chain
(D) D (H-x) D (H-2)—g D (L*) D (H1)g D (K<) D (D), (12)

where (H_7) 4, (H-7) = indlim; ,o(H )4 and (D’) = ind limy 0 reT(H )4 are the
spaces dual of (H+)g, (H) and (D) with respect to (L?).

Definition. Chain (12) is called a nonregular rigging of the space (L?). The negative spaces of
this chain (H )4, (H-+) and (D') are called Kondratiev spaces of nonregular generalized
functions.
Finally, we describe natural orthogonal bases in the spaces () ;. Let us consider chains
D' 5 M 5 M) 5 qyEm o pom, (13)
mée Z4 (form =0 DE0 = H®O = Hég% = 7-[( ) — pO — R), where ’H(_mT) and D/ —
m)

ind lim,eT H(_T are the spaces dual of 7-[®m and D®m with respect to H Ext) The next statement

follows from the definition of the spaces (H )4 and the general duality theory (cf. [22]).

Proposition. ([21]) There exists a system of generalized functions

{0 EW)i € (Hoo)—q | E e H™, mez,}

7 ~ext
such that
1) for e(xt) € ngt) C 7-[( ). :(o ®m,Fe(xt)>: is a Wick monomial that was defined in Subsec-
tion 1.2;
2) any generalized function F € (H )4 can be presented as a series
F= Z < ®m'Fe(xt)>'/ e(xt) < H(—T)/ (14)
m=0
that converges in (H_) g, ie.,
IFI12 g = IFlity ) Z 27|y (15)

and, vice versa, any series (14) with finite norm (15) is a generahzed function from (H_¢) 4
(i.e., such a series converges in (H_+)_);
3) for F,G € (H )4 the scalar product has a form

(F’ G>(H7T)fq - Z Ziqm(Fe(J]:z)’ Ge(z)>7_[(m)r
m=0 T
where Fe(xt), Ge(xt) € ”H(_T) are the kernels from decompositions (14) for F and G respectively;

4) the dual pairing between F € (H_¢)—4 and f € (H¢), that is generated by the scalar
product in (L?), has the form

2y = Y mUESY, F0) e, (16)
m=0

where F") ¢ 7-[( and f € H?m are the kernels from decompositions (14) and (10) for F

ext
and f respect1ve1y, (-, -)ext denotes the dual pairings between elements of negative and positive

(m)

spaces from chains (13), these pairings are generated by the scalar products in H,. .

Itis clear that F € (H_+) (F € (D)) if and only if F can be presented in form (14) and norm
(15) is finite for some g € Nyo (1) (forsome T € T and some g € Nyo()-
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1.4 Stochastic derivatives and integrals

First, following [24], we recall the notion of the Hida stochastic derivative on the spaces
of nonregular test functions, and of the extended stochastic integral on the spaces of non-
regular generalized functions. Decomposition (5) for elements of (L?) defines an isometric

isomorphism (a generalized Wiener-It6-Sigal isomorphism) I : (L?) — EB anﬁ,j , where

EB n'?—[( " s a weighted extended Fock space (cf. [26]): for F € (L?) of form (5) IF =

=0 ext

n
(FO,FM, . Fm, ) € EB nH" . Let1: H — H be the identity operator. Then the

ext”
n=0

operator I® 1 : (L) @ H — ( @ n!?—[(”)) RQH = gon!(’ﬂ(”) ® H) is an isometric isomor-
n=

ext ext

phism between the spaces (L?) ® H and @ n! (7—[(”) ® H). It is clear that for arbitrary n € Z .

ext
n=0

and F™ ¢ 5" )®7-Lavector (O,...,O,F.( ),O,...)belongsto ég n!(?—[( )®7-[) Set
N——" n=0

ext ext
n

croon pn)  def ~1 (n) 2
(o Fy. Y 1 1)7Y0,...,0,E",0,...) € (12) @ H. (17)

n

By the construction elements : (0®", F,(”)> :;, n € Z, form an orthogonal basis in the space
(L?) ® H in the sense that any F € (L?) ® H can be presented as

F() = Eo o My, pW e gt @9y
n—=

n)2
|,H(nt)

is easily seen, the restriction of the generalized Wiener-Ito-Sigal isomorphism I to the space

(the series converges in (L?) ® H), with ||F|]2L2 ol = Ln=0 n!|F.( < oo. Since, as

(H<)q is an isometric isomorphism between (H ), and a weighted Fock space @ (n')22‘7”7-[®"

(cf. [26]), and, of course, the restriction of the 1dent1ty operator on H to the space Hr is the
identity operator on #., for arbitrary n € Z and f 6 7-[®” ® He € 1 ® H we have

ext
:<o®”,f.(n)>: € (H+)g ® Hr. Moreover, elements : (0®" f > f € HI" @ He,n € Zy, form
orthogonal bases (in the above-described sense) in the spaces (H:); ® Hr.

Definition. For g € (H+); we define a Hida stochastic derivative 0. € (H:); ® H. by the

formula
[ee]

2.g:= ¥ (n+1): (o™, g ()., )
n=0
where g("+1) € HE e Z., are the kernels from decomposition (10) for g considered as
elements of HE" @ H.

Since (see (11))

(e 9]

”a‘gﬂ%ﬂf)q@m = ;((n F1)1)220 g (1) () i?”@%r
A (19)
=277 Y ((n+1))2270 D gl 12 < o712,
n=0
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this definition is well posed and, moreover, the Hida stochastic derivative

is a linear continuous operator. It is shown in [24] that this derivative is (generated by) the
restriction to (H), of the Hida stochastic derivative on (L?). We note also that the restric-
tions of derivative (20) to (#) and to (D) generate linear continuous operators 0. : (Hr) —
(He) @ He:=prlim 5 (He)g@Heand . : (D) — (D) @D :=prlim 5 - r(He)g @ He
respectively.

Definition. We define an extended stochastic integral
/ o()dLy : (H ) g ®@H 1+ — (H_1)_q 21)

as a linear continuous operator adjoint to Hida stochastic derivative (20): for F € (H_¢) 4 ®
Hr
/P(u)cTLu = F e (H 1) g (22)

i.e., for arbitrary g € (Hr)q ([ F(4)dLy, g) D2y = (F(),0-8) 12)en

It is shown in [24] that integral (21) is an extension of the extended Skorohod stochastic
integral on (L?) ® H.

By analogy one can define linear continuous operators [ o( w)dLy : (H o) @H v — (H_<)
and [ o : (D)®D' — (D), where (H_¢) @ H ¢ := indlimy seo(H 1) g @ H v,
(D) ® D’ 1nd limy 0 ceT(H-1)—qg @ H-7.

In contrast to formula (18) for the Hida stochastic derivative, formula (22) for integral (21)
is inconvenient for calculations. Therefore let us write out a representation for this integral in
terms of orthogonal bases in the spaces of nonregular generalized functions.

First we note that, as in the case of the spaces (H_T)_q, it follows from the general dual-
ity theory that there exists a system of orthogonal in (H_1)_; ® H_ generalized functions

{<®m,Pe(xt)> € Hr)-q®H_1 | E ext Ve H" @ H_ T,mEZJr} such that for F") ¢

ext

1" @ C 7-[( )@ H . :(o®M F (m )> is given by (17); and any generalized function F €

ext 7 *ext,

(H-7)-g®H _rcanbe presented as a convergent in (% _1) 4 ® H_ series

Z ’ ext Y e(xt) GHST)®H T (23)
m=0
now o~
2
IFIfGp ) gore = L 27 T Ei oy < (24)

Consider a family of chains
DI o YO 5 B o O S pEm e 7 (25)

(as is well known (e.g., [4]), H@:@T and D'®" = ind lim et H@:@T are the spaces dual of %™ and
D®™ respectively; in the case m = 0 all spaces from chain (25) are equal to R). Since the spaces
of test functions in chains (25) and (13) coincide, there exists a family of natural isomorphisms

U, : '™ 5" ez,
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such that for all F™) € D/™) and f(m) ¢ p&m

ext

(E), ) = (U ER), £00)), (26)

ext / ext 7

(m )

It is easy to see that the restrictions of U, to H
spaces 7-[( ") and HE

are isometric isomorphisms between the

Remark. As we saw above, Héx% = H, and therefore in the case m = 1 chains (25) and (13)

coincide. Thus U; = 1 is the identity operator on D’ W' — D' In the case m = 0 Uy is,
obviously, the identity operator on R.

Proposition. ([24]) Let F € (H 1), ® H . The extended stochastic integral can be presented
in the form

/F(u)z;l\ i ®m+1, Ae;::)> . (27)

where
B = U (Pr((Un @ DED]} € HEHY, (28)

Pr is the symmetrization operator (more exactly, the orthoprojector acting for each m € Z

from H@T Q@ H_r to H@’T”H), 6 7-[( ™) ® H_r, m € Z, are the kernels from decomposi-
tion (23) for F.

Remark. Sometimes it can be convenient to introduce the Hida stochastic derivative and the
extended stochastic integral as linear continuous operators acting from (H:)g to (H); @ H
and from (H_¢) 4y ® H to (H_+)_4 respectively, this case is described in detail in [21].

Unfortunately, in contrast to the Hida stochastic derivative, the extended stochastic integral
with respect to a Lévy process cannot be naturally restricted to the spaces of nonregular test
functions. More precisely, for f € (H:); @ He [ f (u)cTLu not necessary a nonregular test
function (one can show that for T € T and g € Z such that g > log, c(7), where ¢(1) >
0 from estimate (8), if f € (H¢)q ® H. then [ f (u)dL, € (L?); and for g sufficiently large
this integral is a reqular test function [21]). Nevertheless, one can introduce on each space of
nonregular test functions a linear operator that has properties quite analogous to the properties
of the extended stochastic integral. Now we’ll introduce such operators (which will be called
generalized stochastic integrals) and consider them in detail.

Let f € (H:); ® Hr. Using the above-described orthogonal basis in this space, we can

write
o

FO) =Y (0@, £y, £ e HE @ H, (29)

n=0

(the series converges in (HT)q ® Hz), in this case

o, = L 205 By < o (30)

Definition. We define a generalized stochastic integral

I: (Hr>q+1 ® HT — (qu)q (31)
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as a linear continuous operator given for f € (H< )41 ® Hr by the formula

(e 9]

I(f) = ) : (o=, f)): (32)

n=0

(cf. (27)), where f(") .= Pr f,(”) € H?”H are the orthoprojections onto H?”H (the symmetriza-
tions by all variables) of the kernels f.(") € HE" ® Hr from decomposition (29) for f.

Since (see (11), (32) and (30))

(9]

I(AIE, = Y ((n+1)1)2290 D 7 < 29 Z (n)20+ D 4 1)227) | £ H@nw
n=0 n=0

<9272 Il ), omer

this definition is well posed. It is clear that the restriction of the operator I to the space (H.) ®
H+ (respectively to the space (D) ® D) is a linear continuous operator acting from (H.) ® Hr
to (H<) (respectively from (D) ® D to (D)).

The Hida stochastic derivative, in turn, has no a natural extension to the spaces of non-
regular generalized functions (the kernels from decompositions (14) for elements of (H_ )
belong to the spaces H(,n;), m € Z, and for elements of these spaces it is impossible "to sepa-
rate a variable"). Nevertheless, one can define a natural analog of this derivative (a generalized

Hida derivative) on each of the above-mentioned spaces as an operator adjoint to I.

Definition. We define a generalized Hida derivative

3.t (Hor)g—= (M) g1 @H - (33)

as a linear continuous operator adjoint to generalized stochastic integral (31) (5 :=1%), i.e., for
allF € (H-7)—gand f € (Hr)g41 @ He

(@-F, (I 2yem = (E () 12)- (34)

By analogy one can define linear continuous operators 9. : (#_.) = (H_<) @ H_rand 9. :
(D') = (D') ® D'. We note also that since operators (33) and (31) are continuous, oF =TI =1
and 0** =T* =9..

In order to make calculations with derivative (33), let us obtain a representation for this
operator in terms of orthogonal bases in the spaces of nonregular generalized functions.

Proposition. Let F € (H_1)_4. Then

z mA41): (02" UV ()): € (Hor) g 1@ H+ (35)

(ct. (18)), where

ENV() = (U @ 1)U EST) () e HW @ H o, (36)

ext ext

here FE(ZH) € ”H(_mTH) are the kernels from decomposition (14) for F.
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Proof. Using (34), (14), (32), (16), (26), (36) and (29), for F € (H_z)—gand f € (Hr)g41 @ Hr we
obtain

(BE D azen = (EAD) = (5 ) (05 1))z
= n;i;o(m + 1)'<Fe(;lz+1)’f(m)>7_[£z+l) = n;i;o(m + 1)!<Um+1FeJ:’Z+1 Pr f >’H§§m+1

(m 4+ DY (Ut EL YO f™) o,

I
¢

3
<H:

(37)

I
agk

mt(m + 1){(Up' @ 1) (U SO, o

ext

3

I
o

(m 4 1): (0%, Uyt © 1) (Ui ) (), io (=, £V (120

3
<H:

(m+1): (0", E VO 5, 1) 1)

Il
agk

3
Il
S

whence the result follows. O

Sometimes it can be necessary to define a generalized stochastic integral by formula (32) as
a linear unbounded operator

I: (HT)q QR Hr — (HT)q (38)
with the domain
dom(I) := {f € (He)g @ Hr: [L(F)|2, = Y ((n+1))2270H | FW12 <00} (39)
n=0

Since set (39) is dense in (H); ® Hr, one can define now a corresponding generalized Hida
derivative as an unbounded operator adjoint to operator (38):

0.:=T1": (Hog)g = (Hor)—g®H_r. (40)

The domain of operator (40) by definition consists of F € (H )4 such that (H:); ® H: D
dom(I) > f ~— ((F,I(f)))(2) is a linear continuous functional. By properties of Hilbert
equipments the last is possible if and only if there exists H € (H_¢)_4 ® H_¢ such that
(F,X(f)) 2y = (H, f)12)en- But by definition of 0. we have H = 0.F and therefore the
domain of operator (40) can be described by the condition d.F € (H-¢)—4g ® H_¢. Since for
f € dom(Il) and F € dom(g.) calculation (37) is, obviously, valid, 9.F has form (35). So, the
domain of operator (40) can be described as follows:

+1)
dom(d.) = {F € (H—z)—q: |0. FH )—g@H_r Z 27" (m 4 1)? ]Fe:: ( Mo H"eH .
=0 (41)
1)
= Z 279" (m +1)2|F (m+ ’i(jzm < oo}

ext
m=0

(see (36)).

Proposition. Generalized stochastic integral (38) and generalized Hida derivative (40) are mu-
tually adjoint and, in particular, closed operators.
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Proof. Since set (41) is dense in (H_¢)_g4, the operator o = I** . (He)g ® He — (He)q is
well defined as a linear unbounded operator with the domain that consists of f € (H:); ® H¢
such that (H 1) 4 D dom(d.) > F — ((d.F, ) 12)@ is a linear continuous functional. By
properties of Hilbert equipments the last is possible if and only if there exists & € (H:)4 such
that ((0.F, f D2yen = (F, h)(2). But by (40) h = I(f) and therefore the domain of 0* can
be described by the condition II(f) € (H¢);. Compareing this condition with (39) one can
conclude that dom(9*) = dom(I), therefore 0* = I** = I. The equality I* = 9. is a definition
of d.. O

2 OPERATORS OF STOCHASTIC DIFFERENTIATION

2.1 The case of bounded operators

As we said above, just as the Hida stochastic derivative, the operators of stochastic differ-
entiation on (L?) [8, 9] cannot be naturally continued to the spaces of nonregular generalized
functions (because the kernels from decompositions (14) for elements of (), belong to too
wide spaces). Nevertheless, one can introduce on these spaces natural analogs of the above-
mentioned operators. These analogs have properties similar to the properties of operators of
stochastic differentiation, and can be accepted as operators of stochastic differentiation on the
spaces of nonregular generalized functions. In order to give an exact definition of the just now
mentioned operators, we need a preparation.

Let ") ¢ 7-[(_’?, e HE n,m € N, m > n. We define a generalized partial pairing

ext

<F(m) fW)err € ”H(,n;_n) by setting for any g("—") ¢ HEm—n

ext 7

(ED, F), s, gy = (F), f @)y 42)

Since by the generalized Cauchy-Bunyakovsky inequality

B SR e < 1B o B e < 1B o el g~

this definition is well posed and
B £t < (B o £ 3)

Definition. Let n € N, f(*) ¢ 7-[5‘?”. We define (the analog of) the operator of stochastic
differentiation

(D"0)(f") = (H-r)-g = (H-2)—g1

as a linear continuous operator that is given by the formula

(D"F)(f"): =} (m#'n)' (o®m=n (B, F) o) :
_ v (mAn) o on man) ) (44)
= Z ! H, (Foxt 0 f ™ Jext)
m=0 :

where E™) ¢ ’H( ") are the kernels from decomposition (14) for F € (H 1) 4.

ext



OPERATORS OF STOCHASTIC DIFFERENTIATION... 97

Since (see (15), (44) and (43))

~. m+n 12 man ,
I(D"F)(fM)* 1 = Zz —1-1) (T)Z))HFe(xﬁ ), f )>exf! ¢

m+n)!)?
M] < |f" 27 C(n) | FI12 ¢ -y

< |f |22qn Z - g(m+n) |F (m+n) |2 (m')

ext m+n
m=0 Hor

=

where C(n) := max [27" ((m+,n%!)2] < max [27"(m + n)?"] < oo, this definition is well posed.
meZ (m) meZ

It is clear that the operator (D"o)(f(")) can be naturally continued to a linear continuous op-
erator on the space (H_<) (or (D’)).
Let us consider main properties of the operator D".

Theorem. 1) Forky,..., ky € N, f j e{1,...,m},

(Dfn(-- (DR((DO) (M (™) -+ (™) = (DF+ o) (FVE - B ).

2) For each F € (H_+) 4 the kernels EW e

N Y2, n € N, from decomposition (14) can be
presented in the form

g _ 1 “E(D"F),

ext _1’1

ie,, foreach f) € HE" (F, e(xt)/f(n)>€JCf = LE((D"F)(f™)), here Eo := ((0,1))(12) is a general-
ized expectation.
3) The adjoint to D" operator has the form

(B") (FM)" = Y (", f@gty: € (3y),, (45)

m=0

where ¢ € (Hr)g41, JAlN= H?”, and g™ € Hf‘?m are the kernels from decomposition (10) for
g.

Proof. 1) The proof consists in the application of the mathematical induction method.
2) Using (44) and (16) we obtain

E((D"F)(f")) = ((D"E)(f™), 1) (12) = ni{EL, F" et

3) Since (see (11), (10))

o0 oo

I Z :<om+",f(")®g(m)> :”%,q _ Z ((m + n)!)zzq(ern)‘f(n)@g(m)‘%
m=0 m=0
- _((m+n)")?
<12 3 (e g [pom 8L DEE] < oopame gl < o
m=0

(m!)?
element of (#),. Further, using (44), (10), (16) and (42), for F € (H_1)_4 of form (14) we

(here C(n) = m%x 2™ ((mtn)1)? | as above), the right hand side of (45) is well defined as an
med
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obtain
(F(D"Q)(F") N 12y = ((D"F)(F™), 8) 12
= ( i (m+n)! : <o®m, <F(m+n),f(n)>ext> .

m! ext

m=
= Z (m + n)!<<Fg(;’:+n)/f(n)>ext/g(m)>ext -

m=0 m=0 (46)
= (Y (% EYys, Y s (0B, f@elm) ) o)
k=0 m=0
= (F, X (0P, g ) 1z,
m=0
whence the result follows. O
Now we consider in more detail the case 7 = 1. Denote D := D!.
Theorem. 1) Forallg € (H<)g+1 and fV) € 1,
(D) (FV) =T(g® fV) € (He)y. (47)
2)ForallF € (H_¢)_4 and f(l) € H:
(DF)(fV) = 0.F, fV(-)) € (H-1)—g-1, (48)

where (3.F, f1)(.)) is a partial pairing, i.e., the unique element of (H-1)_gq-1 such that for
arbitrary g € (Hr)g1 ((9-F, fV (), &) (12 = (0-F,. 8 © FI () (12)e0n-

Remark. Similarly to the proof of the fact that the generalized partial pairing (-, -)ext is well
posed and satisfies estimate (43), one can easily show that a partial pairing is well posed and
satisfies a generalized Cauchy-Bunyakovsky inequality (in our case this inequality has the form

1-F, fD (D)l r,—g-1 < 10-Fllae_y)_, om [ f Vo)

Proof. 1) The result follows from representation (45) with n = 1 and the definition of an oper-
ator I (see (32)).
2) Taking into account (47) and (34), for all g € (Hr )41 We obtain

{(DE) (M), &) 12y = (E, (D (FM) D12y = (ELg @ FV)) 12
= (0.F,g® fV (D uzyon = (O-FFVO) &)z

whence the result follows. O

Remark. Formally substituting in (48) f() = &, t € R, (here d; is the Dirac delta-function
concentrated at t; the substitution is formal because 6y ¢ H+), we obtain a formal equa]jtygto =
(Do)(8;) (whence d.0 = (Do)(é.)). In this connection we note that for the Hida stochastic
derivative d. and the operator of stochastic differentiation D on the spaces of nonregular test
functions, for eacht € R dy0 = (Do)(¢;) [24]; the formal analog of the last equality is valid
on spaces that belong to the regular rigging of (L?) [8].
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In some applications of the Gaussian analysis (in particular, in the Malliavin calculus) an
important role belongs to the commutator between the extended stochastic integral and the
operator of stochastic differentiation (see, e.g., [1]). Analogs of this commutator are calculated
in the Meixner analysis [19, 20] and on the spaces of regular test and generalized functions
of the Lévy analysis [8, 9]. Unfortunately, it is impossible to calculate a direct analog of the
above-mentioned commutator on the spaces of nonregular test functions of the Lévy analysis:
as we saw above, the extended stochastic integral cannot be naturally restricted to these spaces.
Nevertheless, there exists an analog of this integral on the just now mentioned spaces — the
generalized stochastic integral I. So, now it is natural to calculate the commutator between
I and the operator of stochastic differentiation, this commutator is calculated in [24]. On the
spaces of nonregular generalized functions of the Lévy analysis the extended stochastic inte-
gral with respect to a Lévy process is well defined, and the role of the operator of stochastic
differentiation belongs to the operator D. So, itis natural to calculate the commutator between
the above-mentioned integral and D. In order to do this, let us introduce operators of stochas-
tic differentiation on the spaces (H 1) 4 ® H _+ (this notion is intuitively clear and can be used
without an additional explanation, but we prefer to give an exact definition).

As above, we begin with a preparation. Let f(") € HE", g.(m) € HE™ @ Hy. We define
f(n)@g(m) = (Pre 1)(f(”) ® gFM)) c H§n+m ® Ha, (49)

where Pr ® 1 is the operator of symmetrization "by n + m variables, except the variable -" or,
which is the same, the orthoprojector acting from 7-[®” ® 7-[®m ®H, to 7-[®”+m ® H (of course,
this operator depends on n and m, but we simplify the nonation). It is clear that

‘f(n)@g(M) ‘Hé{erm@fHT S ‘f(}’l) ’/H?n ‘g(m) ’7‘[?"1@%7, (50)
and for f) € HEM, g(m) € Em p() € 74,
f(")@(g(M) @ h) = (f(")@)g(M)) @ hM. (51)

Let f() e H&n, S A )®H o, n,m € N, m > n. We define a generalized partial

ext,

pairing (F F Y exr € H(,T " @ H . by setting for arbitrary g.( " ¢ HEM1 @ M,

ext,-’

(m—n)

(ES, F)Exr, 8 Dy = <P§J’ZZ?‘,f("@g.(m’”))%)@?{. (52)

Since by the generalized Cauchy-Bunyakovsky inequality and (50)

e S8 | < |F£J!?-lﬂs@@%if(”)@g‘m‘”)mgm@%
’ ext, ‘ Q’;)®H7T’f(n)’7_[§n‘g - ’H§'717H®H7’

this definition is well posed and

(B f ") Extlpyonngg, < s, lrmaag " lgon (53)
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Remark. Let F( ) € H(,m)

ext T/

(51) and (42) we obtain

(B @ HO (), £ exr, g @ D)), n
= <P£x2®H< (), BRI @R (),

HY e H_; glm=m ¢ g&m=—n () c 34, For f e HE" by (52),

Hr) o
) @ HO(), (f@gm—) @ ( ) WO sy = <Fe(f;)rf(n)®g(m_n)>?_[(m)<H(1)/h(1)>?—t

)
= () )
CES F D Yext, 1)y (H, B,
= ( (.

ext

(B f D )ext @ HO (), 80 @ KO () -

ext

Since the set {g(m_”) @ hW g(m_”) € H?m_”, AONS H+} is total in the space H?m_” ® He,
we can conclude that

(B © HO, £ exr = (B, f)ewe @ HO) 4
in the space 7-[(1”;”) Q@H 1.
Definition. Letn € N, f(") € HE™, We define a linear continuous operator
(D"0)(f™) : (Hor) g ®H - — (Hor) g1 @ Hz
by setting for F € (H_¢) 4 ®H ¢

(BYFO(F™) s = 3 oo, (), F) )
- 55
= io( m! "R (o " S, F™)exr) ~
o !
where Fe(xt) € 7-[( ")  H_r are the kernels from decomposition (23) for F.
Since (see (24), (55) and (53))
I FON )y, o, = L2070 L B, £}

+
< |f |22qn Z 2- q m+n |Fe;rtl n ?_[(m+71)®,H

[2_m((m +n)")? ]

(m1)?

m=0
<1 ECIIER ) on s
where, as above, C(n) = max [Z_m%] this definition is well posed.
med '

Remark. LetF € (H_ ) 4 H W eHn_,. Using (55), (54) and (44) one can easily show that for
eachn € N and f(") € HE"

(D"Fo HY)(f™) = (D"F)(f™) @ HY € (H-x) g1 ©® H-r.

Denote D := D!.
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Theorem. ForallF € (H_7)_q®H_r and f1) € H
(f)/F(u)cTLu)(fﬂ)) :/(ﬁp(u))(f< dLqu/F D (u)du € (H_)_g_1,  (56)
here f 15F (W)L, := [ J(u)dLy, where J(-) := (DF(:))(fV) € (H-x) g1 ®H
J F(u u)du is a generahzed Pettis integral, i.e.,
JFafD @ydu = (FC),FI0) € (o) © (Hoo)—ga

(F(-), fV (")) is a partial pairing).
Proof. Using (27) and (44) we obtain

(B [ FadL) () = 3 m+1): (0", (B0, e,

m=0

where Fe(xt) € H(MH)

for [ F(u dL u), ie., ext) are given by formula (28) ( ext € 7-[( ) ® H_+ in (28) are the kernels
from decomposmon (23) for F). On the other hand, by (55), (27) and (28)

JOF@) (N, = 3 m (o, U (Pri(Un 1 © DG, FV)exr]))
m=0

Letg = Y2 : (o®k, ¢y : € (H, )g+1s gk e HEK (see (10)). By (16) we have

are the kernels from decomposition (27) (which is decomposition (14)

(D [ EWTLG )z = 3 miln + DUES, ) g
<</ (15F(u))(f(1))dAng>>(L2):iom!m<uml{Pr[( @ OER, FDexall, ) -

Further, since for each m ¢(™) belongs to the symmetric tensor power of H-, by (26), (52) and
(49)

(U (Pl (U1 @ D(E) S V) exr]} 7)o
= m((Up— 1®1)<Fe(xt),f( Vext, 8™ ) gem
= m{(Un1 ® 1)(Elg), F)exr, 8 O o = m((Ee FO)exr, 8™ O) o g
= m(EL), FOBE (yyim e = Fah o) fO (1) @87 ()
+ V() ®g m)('3/---/'m/'1/')+"'+f()('m)®g(m)('1/---r'm—ll')>7_[£zlt)®%;

~

and by (42), (28), (26), the symmetry of f ® ") and g(m), and the last calculation
(m + 1) E, f D ext, )y = (m + 1)ty FOBM) i

ext ext

= (m + ){(Un @ ES, FOBM) pemir = (m+ 1) (U @ DEL, (FDE™) ()3 2many
= (m+ D(ES, (FIBE) () g = Faitreeerm), 8 (o) @ )

ext
+f(1)(~1)®g( )(.2,...,%.)+f(1)(.2)®g(M)(. T 1,.)
o D) @8 (1 m 1))y, = (Fois 8 @ FD )

ext ext

+ (U, (P (U1 @ 1) (et f ) exr] 1,8

ext
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Later, by (23), the construction of a pairing in a tensor product of chains (e.g., [4]), (29) and the
definition of a partial pairing

Z m! ext ,g )@ f1 ()>He;”f on ’mZO. oM, (m) ®f(1)('>>5>>(L2)®H (57)

= (F(Lg @ fUONw2yen = CEO Y D)8 w2,
where (F(-), fV () = (F(-), fV () € (Hor)—g C (H-1)—4-11s a partial pairing.
H

So, for arbitrary ¢ € (H+)y41
<<(15/F(u)ﬂu)(f(l))zg»(p) = <</(]~)F(u))(f(1))&\ng»(Lz) +((FCO) AV O) ) ey
from where (56) follows. 0

Remark. As follows from (57), the definition of a partial pairing, and (16), for

8= k§O:<o®k,g(k)>; € (Hr)q

WEC), FD () fm' £ ()30, 8™),

m ext

=0
(Y (0, (B, PO (g

m=0

from where (F(), f1 ()3 = T+ (o™, (Euttl, fD ()3 i (M) .

Remark. One can easily show that the restriction of an operator (D"o)(f™), n € N, f(")
HE™, to the space (H_r)—q ® H can be interpreted as a linear continuous operator acting from
(7-[_ )—q ® H to (’H T)— g1 ® M. Let us consider the extended stochastic integral
J5 of dLu = [ o (u)dLy, : (H2)g®H = (H_7)—4 A € B(Ry) — the Borel r-algebra
(this integral sat1sf1es (27) with kernels (28), see [21] for a detailed presentation). By analogy
with the proof of the last theorem one can show that forall F € (H_¢) 4 ® H and f M e H,

(f)/AF(u)cTLu)(f(l)) :/( F(u) dLu+/ w)du € (H_v)_g1,
where [, (DF(u))(fM)dLy := [, J(u)dLy, J(-) := (DF(-))(fV) € (Hr) g1 ®H;

J E@f G = [ ) O @)1am)dn = (FC), FO () € (Hoo)og © (Hor)gn

is a partial pairing.

I

As is easily seen, the results of this subsection hold true (up to obvious modifications) if we
consider the operators of stochastic differentiation on the space (H_+) or (D).

Remark. Asis known [1], in the classical Gaussian white noise analysis the operator of stochas-
tic differentiation is a differentiation with respect to a so-called Wick product. This result holds
true in the so-called Gamma-analysis [17] and in a more general Meixner analysis. In forth-
coming papers we’ll obtain similar results on spaces of test and generalized functions of the
Lévy white noise analysis.
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2.2 The case of unbounded operators

Similarly to the analysis on spaces of regular test and generalized functions [9, 8], some-
times it can be necessary to consider (D"o)(f(")), f() € HE", as a linear operator acting in
(H—1)—g. Let us accept a corresponding definition.

Definition. Letn ¢ N, f(") ¢ 7-[5‘?”. We define the operator of stochastic differentiation
(Do) (f™) : (H-t)—g = (H-1)— (58)
with the domain

dom((D"o)(f™)) := {F € (H_r)—q:

~ o N2 (mtn) o 59
IO E)F Iy = 3 2L, oy <oy

(here F (mtn) o H("H”) are the kernels from decomposition (14) for F) by formula (44).

ext

Proposition. Operator of stochastic differentiation (58) with domain (59) is closed.

Proof. Let us show that there exists a second adjoint to (D"o)(f(")) operator (D"o)(f("))** =
(D"o)(f™)) (it is well known that an adjoint operator is closed). Since, obviously, the do-
main of operator (58) is a dense set in (#_<)_,, the adjoint operator (D"o)(f(")* : (H.); —
(H+)q is well defined. By definition, ¢ € dom((D"0)(f")*) if and only if (H_7)—q D
dom((D"0)(f")) > F <<(5”F)(f(”)),g>>(Lz) is a linear continuous functional. By prop-
erties of Hilbert equipments the last is possible if and only if there exists h € ()4 such that
((D"F)(fM), g) (12) = ((F, 1)) (12)- But by calculation (46) h has form (45), therefore

dom((D"o)(f™)*) := {g € (Hx)g :

(9]

ID"E)(fF) 2q = X ((m +m)n?20m | f @M < oo}
m=0
(see (11)), this set is dense in (), hence the operator (D"o)(f"))** : (H_¢)_q — (H-1)—q
is well defined. Now it remains to show that

dom((D"0)(f")**) = dom((D"o)(f")). (60)

By definition, F € dom((D"o)(f"))**) if and only if (H); D dom((D"o)(f(")*) 5 g
(F,(D"g)(fm )*))(12) is a linear continuous functional. By properties of Hilbert equipments
the last is possible if and only if there exists H € (H_r)_, such that (F, (D"g)(f" )Nz =
(H,g) (12)- Itis clear that H has form (44), therefore equality (60) follows from (59). O

Remark. Let
fu= (Fe gy £ 2GR <o) nen,
m=0

here Fe(;ZJrn) € ’H<m+n) are the kernels from decomposition (14) for F. For each f (n) e H?" we

define the operator of stochastic differentiation

(D"0)(f") = (H-r)—g = (H-z)—g (61)
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with the domain A, by formula (44) with D" instead of D". It follows from the just proved
proposition that this operator is closable (its closure is operator (58)). Moreover, for each F €

Ay
by

the operator (D"F)(o) : 7-[?" — (H 1) g4 is linear bounded (and, therefore, continuous):
(44), (15) and (43) for each f(") € HE"

~u m m+7’l 2 m+n n
IR )y = 3 2L B, e

Do o o (M A1)
<\f(),%22q %Fext+ ‘2

(m-+n)
77’

m=0

It is clear that the results of Subsection 2.1 hold true (up to obvious modifications) for

operators (58) and (61).
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Kauanoscokmit M.O. Onepamopu cmoxacmuuHo2o OugepeHiilosaHHs Ha Npocopax HepezynapHux y3a-
eanvHerux gyHkyitl ananisy 6inoeo wymy Aesi // Kapmarceki maTem. my6a. — 2016. — T.8, Nel. — C.
83-106.

Oneparopy CTOXaCTUYIHOTO AMdpepeHIIiFoBaHHSI, SIKi TiCHO IOB’sI3aHi 3 PO3IIMPEHMM CTOXaCTH-
9HMM iHTeTparoM CKOpoXoaa Ta 3i CTOXaCTMYHOIO IOXiAHOKO XiAM, TPalOTh BaKAMBY POAb y KAa-
CIHOMY (raycciBcbKOMY) aHaAi3i 6iroro mrymy. 3oKkpeMa, IIi oIlepaTopyt MOXKHA BUKOPMCTOBYBaTH
AAST BUBYEHHSI AeSTKMX BAACTMBOCTel PO3IIMPEHOr0 CTOXaCTUYHOIO iHTerpaaa Ta po3B’si3KiB cToXa-
CTUYHVIX PiBHSIHD 3 HEAIHIIHOCTSIMM BiKiBCBKOTO THILY.

ITpoTsrom ocTaHHIX pOKiB OIlepaTOpyM CTOXaCTUYHOTO AMdpepeHIIiIoBaHHs OyAM YBeAeHi Ta BU-
BYeHi, 30KpeMa, y MeXax MalKCHepiBChKOro aHaAily 6iroro mrymy, Tak camo SIK i Ha ImpocTopax
PeTyAsSIPHMX OCHOBHUX i y3araabHeHMX pyHKIIil Ta Ha MPOCTOpaX HeperyAsSpHUX OCHOBHMX (pyH-
KIiJ1 aHaAi3y 6iroro mymy Aesi. VY mift cTaTTi My pobuMo HaCTYITHMI IPUPOAHMIA KPOK: YBOAMMO
Ta BMBYAEMO OTIEPaTOPy CTOXaCTUYHOTO AMdpepeHIIiFoBaHHS Ha IIPOCTOpaX HePeryAsIpHIX y3araAb-
HeHMX (pYHKIIi aHaAi3y 6iroro mymy Aesi (TO6TO Ha IPOCTOpax y3araAbHEHMX (PYHKIIIN, SIKi Ha-
AeXaTb TakK 3BaHOMY HePeryAspHOMY OCHAIIIeHHIO IIPOCTOPY KBaAPaTUYHO iHTETPOBHMX 3a Miporo
6iroro mymy Aesi dpyrxiif). [Tpy IbOMY BUKOPUCTOBY€ETHCSI AMTBIHIBCHKE y3araAbHEHHSI BAACTH-
BOCTi XaOTMYHOTO PO3KAaAy. AOCAIAKeHHsI 11i€l CTaTTi MOXHA PO3TASAATH SIK BHECOK Y TTOAAABIIINIA
PO3BUTOK aHaAi3y 6iroro mrymy Aesi.

Kontouosi croea i ¢ppasu: omepaTop CTOXaCTUIHOTO AMdpepeHIIiFoBaHHS, CTOXaCTWYHAa MOXiAHa,
PO3LIPeHNI CTOXaCTUYHVIL iHTerpaA, mporec Aesi.
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AN INVERSE PROBLEM FOR A 2D PARABOLIC EQUATION WITH NONLOCAL
OVERDETERMINATION CONDITION

We consider an inverse problem of identifying the time-dependent coefficient a(t) in a two-
dimensional parabolic equation:

up = a(t)Au+ by (x,y, t)uy + ba(x,y, t)uy +c(x,y, t)u + f(x,y,t), (x,y,t) € Qr,
with the initial condition, Neumann boundary data and the nonlocal overdetermination condition
n (t)u(oly()/ t) + VZ(t)u(h/yOI t) = ]/l3(t)l te [01 T]/

where v is a fixed number from [0, [].

The conditions of existence and uniqueness of the classical solution to this problem are estab-
lished. For this purpose the Green function method, Schauder fixed point theorem and the theory
of Volterra intergral equations are utilized.

Key words and phrases: inverse problem, determining coefficients, parabolic equation, nonlocal
overdetermination condition, rectangular domain.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: n_kinash@lnu.edu.ua

INTRODUCTION

This paper discusses the problem of identifying an unknown pair of functions
(a(t), u(x,y,t)) for the equation

ur = a(t)Au+bi(x,y, Hux + ba(x,y, t)uy +c(x,y, u+ f(x,y,t),

(xx,y,) e Qr:={(x,y,1):0<x<hO0<y<l,0<t<T} @
with the initial condition
u(x,y,0) = ¢(x,y), (xy) €[04 x[0,1], 2
boundary conditions
ur(0,y,8) = pua(y, 1), ux(hy,t) = pa(y,t), (v, 1) € [0,1] x [0, T], 3)
uy(x,0,8) = i (x,8), wy(x,1,t) = pa(x,t),  (x,8) € [0,1] x [0, T). @

With the only above data this problem is underdetermined and we are forced to impose an ad-
ditional condition to determine a(t). In particular, we shall take a nonlocal overdetermination
condition, that arises in practical applications [15]:

vi(H)u(0,yo,£) +va(t)ull, yo, t) = pa(t), t€[0,T], ®)

YAK 517.95
2010 Mathematics Subject Classification: 35R30.

@ Kinash N.Ye., 2016
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where y is a fixed number from [0, I].

In the past few decades a great deal of interest has been directed towards the coefficient
inverse problems. In 1993 Ivanchov M. considered nonlocal inverse problems of determining a
leading time-dependent coefficient in a 1D heat equation [8, 9, 10]. For parabolic equations in
one space variable, Bereznytska I. [1] considered the problem of determining conductivity a(t)
in a general parabolic equation subject to the Neumann boundary data and nonlocal overde-
termination condition. Analogous problem with the Dirichlet boundary data was investigated
in [12]. Later Huzyk N. investigated the problem of identifying time-dependent coefficients
in a degenerate parabolic equation also subjected to Neumann boundary data and nonlocal
overdetermination condition [5], [6]. All these papers are united by the approach utilized to
proof the existence of solution: the inverse problem is reformulated as a fixed point problem
for a certain nonlinear map, so that the Schauder theorem can be applied to it.

The other approaches to this problem addressing the question of existence and uniqueness
are the Fourier method utilized by Ismailov M.1., Kanca F. [11], Oussaeif T.-E., Bouziani A. [16]
and the theory of reproducing kernels used by Mohammadi M., Mokhtari R. and Isfahani E.T.
[14].

The numerical results to nonlocal inverse problems have been obtained in works of Les-
nic D. et al [13] with the help of Ritz-Galerkin method. A numerical marching scheme based on
the discrete mollification for the recovery of the diffusivity coefficient in the two-dimensional
inverse heat conduction problem has been presented by Coles C., Murio D.A. [2, 3].

Since the satisfactory results to the nonlocal coefficient inverse problems were successfully
obtained in one-dimensional case, this paper represents an attempt to extend these results to
multidimensional case, which is more interesting for its applications.

1 NOTATIONS AND ASSUMPTIONS

Let Gi(x, t,&, T) be the Green function of a 1D problem for the equation u; = a(t)uy, with
a Dirichlet boundary condition, when k = 1, Neumann bondary condition, when k = 2. These
functions are defined by the equality

X ) 1 I (x — &+ 2nh)?
@<J¢”7—z¢nww—wmwn§?< p< 46 - (”>

1V ex _(x+§+2nh)2 B B ta
(1) p( 4(6“)_9@))), k=12, 9(t)—0/ (7)dr.

(6)

At the same time we define the function G, (y, t, 77, T) analogously to Gi(x, t, &, T).
Now, let us introduce the 2D heat equation

ur =a(t)Au+ f(x,y,t), (x,y,t) € Qr. (7)
Green functions for (7) are determined as follows
Gen (5,9, £,6,1,7) = Gelx,t, &, )Gy, £, 7), Ky =1,2. ®)

The Green function of the problem (7), (2)-(4) is defined by (8), when k = m = 2.
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For a € (0,1) we denote

C*(Qr) :=={f € C(QD)|If (x2,y2,t) = f(x1,y1,t)| < C(|x2 = x1|* + |y2 — 11]%),
(xi/yir t) € @TI i= 172}

Throughout this paper, we assume that:

(A1) f € C*°(Qyp), by, by ceC0(Qr), ¢ C*[0,h] x[0,1]), uz,vi, 1, € CY[0,T)),
pir iz € C2H([0,1] x [0, T]),  par, paa € C>([0, 1] x [0, T]);

(A2) p3(t) —vi(t)b1(0,y0, t)p11 (Yo, t) — v2(t)br (B, yo, t) 12 (Yo, t) — vi(£) £(O, y0, )—Vz(f)
t) >0, vi(t)+vi(t)e(0,y0,t) <O, vyt )+V2(f c(h,yo, t) <
v(t) 20, k=12, b(0,y0,t) <O, bp(h,yo,t) <O, €[0,T], e¢(x, y)
py(x,y) = 0, (x,y) € [0,h] x[0,1], par(x,t) >0, uzz(x,t> 20, (xt)€[0h x[0T];

(A3) v1(t) +12(t) >0, te€[0,T], A¢(x,y) >0, (x,y) €0k x][01];

(AD) ¢+(0,y) = p11(y,0), @x(hy) = p12(y,0), y € [0,1], @y(x,0) = p21(x,0), @y(x,h)
= p22(x,0), x € [0,h], v1(0)¢(0,0) +v2(0)@(h,yo) = u3(0).

2 EXISTENCE OF A SOLUTION

Theorem 1. Provided that (A1)-(A4) hold, the problem (1)—(5) has at least one solution (a, u) €
C([0,t*]) x C*1(Qs), a(t) > 0,t € [0,t*], where t* € (0, T] is determined from the input data.

Proof. To proof the existence of the solution to (1)-(5) we are first going to reduce it to an
equivalent in a certain sense operator equation with respect to a and afterwards to proof the
existence of the operator equation solution by the Schauder fixed point theorem.

In order to obtain an equation with respect to a(t), (1) is applied to the overdetermination
condition (5) previously differentiated:

a(t) = [uz(t) — vi(£)b1(0,y0, t) 11 (Yo, t) — va(t)b1(h, yo, t) 12 (Yo, t) — va(t)
x f(0,y0,t) —va(t) f(h, o, t) — (vi(t) +vi(t)c(0,y0,t))u(0, yo, t) — (v3(t)
+va(t)e(h, yo, t))ulh, yo, t) — vi(t)b2(0, yo, t)uy(0, yo, t) — va(t)ba(h, yo, t)
x 1y (h, yo, )] [va (£)Au(0,y0,t) +v2 () Au(h, yo, t)] !, t € [0, T).

To continue the investigation of the equation (9), it is necessary to get some representation of
the terms (0, yo,t), u(h,yo,t), uy(0,yo,t), uy(h,yo,t), Au(0,yo,t), Au(h,yo,t).

The solution to the problem (7), (2)-(4) is denoted as uo(x,y,t) under the temporary as-
sumption thata € C([0,T]), a(t) > 0, t € [0, T] is a known function. Therefore, taking advan-
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tage of (8) we represent 1 as the solution to (7), (2)-(4)

I

o(x, .1 //hczzxy,tcn, 0 (&, n)dedy //Gzzxy,t50r><>
0

0

% i1 (& T)dEdT + / / Gon(%,, £, &1, T)a(T) pina (&, ) dEd T
00

t 1 t1 (9)
—//Gzz(x,y,t,O,iy,r)a(r)yn(;y,r)dndr+//Gzz(x,y, t,h,y,T)a(T)
00 00
t 1 h
X prz(1, T)dndt + / / / Goa(x,y,t, 8,1, T)f (&, 1, T)dGdndr,  (x,y,t) € Qr.
000
Denote by
v(x,y,t) == (biuy + byuy + cu)(x,y,t),
w1(JC, y, t) = Ux(xr y/ t) = (bluxx + bzuxy + beMy —+ (blx -+ C)ux + Cx”)(x, y, t), (10)

wa(x,y,t) == vy(x,y,t) = (bruxy + bauyy + (bay + c)uy + bryux +cyu)(x,y,t),
(x,y,t) € Q.

Problem (1)-(4) is reduced to the equation

t I h
u(x,y,t) = ug(x,y,t) + / / / G (x,y,t,&,1,7T)0(, 1, T)dédydr, (x,y,t) € Qr.  (11)
000

Thus, from (11) we obtain
t o1

v(x,y,t) = (brugy + bauoy + cug) (x,y, t +// (b1(x,y,t)Gox (%, 9,1, 8,7, T)
00

\w

(12)

\_/

+b2(x, ¥, t) Gy (%, y,t, 8,71, T )+C(x,y, Gu(x,y,t,¢,1,7))0(¢,n,T)d¢dndT,

(x,y,t) € Qr.

By differentiating (12) with respect to x, applying the Green function properties and inte-
gration by parts we obtain the equation

wy(x,y,t) = (blqux + battoxy + baxtioy + (b1x + ) tiox + cxtig) (X, Y, t)
t

+/// blx x y/ G22x(x yrt g ", )+bzx(x/yrt)GZZy(xrylt/CITIIT>
0

(13)

X GlZX(x/yrtrgrﬂr )+b2(x y, )Glzy(x yrt g n, (x Y, )

t 1 h
+ (%, 1, )G (%, , £, &, 17, T))0(E, 17, T)dEdndT + / / / (b1 (2,9, 1)
0
)+
X Guo(x,y,t,&,1,7))wi (&, 7, T)dEdndt, (x,y,t) € Or.
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Analogously to (13), by differentiating (12) with respect to y, we obtain

wy(x,y,t) = (blquy + bauoyy + (bay + ) oy + biytox + cytio) (X, Y, t)
t

+/// bly X, y/ G22x(x yrt g ", )+be(x/]/rt)GZZy(xr%tICIW,T)
00

I h (14)
+ (0, )G (3, £,8,1,7))0 (&, 1, T)dzdnd + / JRACER
00
X Gorx(%,y,t,8,1,T) + ba(x,y,t)Gary (x, 4, £, E, 17, )+C(x,y,t)
X Go1(x,y,t, 6,1, T))wa (8, m, T)dgdndT,  (x,y,t) € Qr.
We find from (11)
t 1 h
uy(x,y,t) = uoy(x,y,t) —|—///G22y(x,y, t,¢,n,7)o(& n,T)dédydr, (15)
000
t 1 h
Au(x,y,t) = Aug(x,y,t —|—///Glzx(x,y,t,(;",iy,r)wl(g,n,r)d(;"dndr
000 (16)

t I h
+ ///G21y(xl Y, tr C, n, T)WZ(CI n, T>d€d77de (JC, Y, t) € @T/
000

where 1, Aug are calculated from (9):

I

h
uoy (X, y,t) //Gmxyrtéﬂr )%(Cﬂdé‘dnJr//szxy,t<§0f> (7)
0

0

x par (¢, )G — / / Gong (%, 1,81, ¥)a(D)pza (8, e
00 | (17)

t 1
_//621(x,y, t,O,n,T)a(T)ylln(17,T)d17d1'+//G21(x,y,t,h,17,r)a(r)
00 00

t I h
X pizy (17, T)dndT + / / / Gazy(x,y,t,¢,1,7)f(E, 1, T)dGdndr,
00 0
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I h t h
tuo(x,y, )= [ [ Gl t,8n,0089(E gy — [ [ Gl y,t,2,0,7)
00 00

X o1 (&, T)dedT + / / Goa(x,y,t,¢,1, Ty (&, T)dédT
00

(18)
t o1
—//Gzz(x,y,t,O,q,r)yllT(iy,T)diydT—l—//Gzz(x,y,t,h,iy,r)
00 00
t I h
X 12 (17, T)dndt + / dt / / AGxn(x,y,t, 8,1, 7)f(&n,T)dédy, (x,y,t) € Qr.
00
By substituting (11), (16), (15) into (9) we obtain:
o Ql(‘ll U)(t)
a(t) B QZ(a/ w1, wZ)(t), (19)
where
Qu(a,v)(t) = p5(t) —vi(£)b1(0,yo, t) 11 (Yo, t) — va(£)br(h, yo, t) p12 (Yo, 1) — va (t)
x f(0,y0,t) —va(t) f(h, o, t) — (vi(t) +vi(t)c(0,y0,t))u0(0, yo, ) — (va(t)
+va(t)c(h, yo, t))uo(h, yo, t) —v1(t)b2(0, yo, t)uoy (0, yo, t) — va()b2(h, yo, t)
bl
20
 ttoy (0,0, +///5cn, @) + (00 y0, )G O yo LG T)
0 0
— (va(t) +va(t)e(h,yo, t))Gaa (B, yo, t, &, 11, T) — vi(£)b2(0, yo, t)
x Gazy(0,%0,t, 8,17, T) — va(t)ba(h, yo, t) Goay (h, yo, t, &, 1, T) )dGdndr,
Qa(a, w1, wy)(t) = v1(£)Aug(0, yo, t) + vo(t)Aug(h, yo, t)
t 1k
+ / £)Gr2x(0,y0,t, &, 1, T) + v2(£)Grax (h, 0,1, &, 1, T)) w1 (&, 1, T)dEdndT o
0

e
[

h
/ GZly O Yo, £, g 1, ) + VZ(t)G21y (hr Yo, £ gr n, T))WZ(C/ n, T>d€d77dTr
0

where v, w1, wy are solutions to the system of integral equations (12)—(14).
Denote

o NV :={a e C([0,t*]) : Ap < a(t) < Ay}, where the constants Ay, A; € Ry, t* € (0, T]
are to be established below;

Q1(a,v)

~ — \3 -~
e P: N x (C — N, such that P(a,0,wq, wp) = ——1—+:
(c(@n)) ( 12) Qo (a, wy, wy)

e P:N — (C (@T))3 an operator that maps each element a € N into the solution of the
system of integral equations (12)—(14).
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Since the functions v, wy, wy in (19) are now defined by 15, the equation (19) can be rewritten
as the following operator equation:

a = Pa, where Pa:= P(a,P(a)), acN. (22)

The problem (1)-(5) is equivalent to the equation (22) in the following sense: if (a,u) is a
solution to problem (1)—(5), then a is a solution of (22) and, on the other hand, if 2 € C([0, T])
is a solution of (22), then (a,u) is a solution to the problem (1)-(5), where u is determined by
the equations (11).

From the way the equation (22) has been obtained it follows, that if (a, 1) is the solution to
(1)—(5), then a satisfies (22).

Reciprocally, for any 4 € N functions u, v are uniquely determined from (11), (12) and such
a system of integral equations is equivalent to the direct problem (1)—(4). Thus, it is left to be
shown that (5) follows from (22). By implementing all the substitutions in the reverse order we
move from (22) to (9). After (9) is multiplied by its denominator and integrated with respect to
time, regarding (A4), the overdetermination condition (5) is obtained.

Consequently, the existence of solution to (1)—(5) is equivalent to the existence of solution
to the operator equation (22).

In order to apply the Schauder fixed point theorem we show that P is compact and that it
maps N into itself.

Since for each a € N uqy, Ugy, Uoxx, Uoxy, Uoyy are continuous functions aCCOEding to (A1),
it follows from the properties of the systems o of Volterra integral equations that P is a bounded
operator. The compactness of the operator P follows from [7] Therefore P is compact as the
composition of bounded operator P and compact operator P .

Thus, the next goal is to establish Ay, A; € R4, such that Ay < (Pa)(t) < A,
te0,t*],aeN.

From the explicit representation of up and its derivative ug, (9), (17), the Green function
properties and (A2) it follows that

limug(x,y,t) = @(x,y),
t—0

tim o, (x,,£) = lim (| G1 (v, 1,00, G )y + [ Gy (98,0, D)z (x, )i
0 0

_ / Gy (v, t, 1, T)a(t)pn(x, T)dT) .

Then for any (x,y) € [0,h] x [0,]]

0< li Y f) < 'Y)
o) < iy ) < e ot

0 <min{ min ¢@,(x,y), min pu(x,t), min pux(x, t)}g}in(}uoy(x,y,t)
—

[0,1] x[0,]] [0,1] x [0,T] [0,1] % [0,T]
< g t t
max{[om ax @ Py(x,Y), /o X Hon 1(x,1), ¥ tiany }yzz(x )}

The last term in (20) vanishes, when t — 0, according to the properties of Newtonian poten-
tials.
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Therefore, thanks to (A2) there are such constants n11, M; that
0<m < }E%Ql(t) < M.
Namely,

my := min(p3(t) — vi(£)b1(0,yo0, t)p11 (yo, t) — va(t)b1 (R, o, t) 12 (yo, t) — vi(t)
[0.T] (23)

x f(0,y0,t) —va(t)f(h,yo, 1)),

My = max(ps(£) — v (£)b1 (0, yo, )11 (o, £) — va (£)b1 (1, yo, )12 (vo, £) — va (£)

[0,7]
x f(0,y0,t) —va(t)f(h, yo,t)) + r[rge%(—(%(f) +v1(t)c(0,yo, 1)) — (va(t) +12(t)
' (24)
h,yg,t , — £)b>(0,vyo,t) — )bo(h,yp, t
x c(h, yo )))mﬁgféﬂfp(x y)+rﬁaﬁ<( v1(£)b2(0,y0,t) — v2(t)b2(h, Yo, t))
t ,E) ¢
8 max{[oﬁf e (. y), o) 21 (% 1), 0> xa[)o(,T}yZZ(x )}

Thus from the definition of limit it derives that for ¢ = %ml there is such a value t; € (0, T},
that

1 1
5™ <Qi(t) <M+ 5 t € [0, t1]. (25)

Similarly, from the explicit representation (18) of Aug

lim Aug(x,y,t) = Ag(x,y).
t—0

Denote
Mo lﬁlﬁl(vla) + Vz(t))[O,i?ir[(l)’”Aqo(x,y), (26)
M> :=m t t m A ). 27
2 [O%)]((Vl( ) +va( ))M ) ¢(x,y) (27)

Then 0 < mp < }inSQz(t) < M. Analogously, there is such a value t, € (0, T], that
%

1 1
Emz < QZ(t> < M2 + EmZI te [Or tZ] (28)
Define
1 1
M M M
Ay = 271, A= %, t* := min{ty, tr }.
M2 + zmz zmz

and make sure that: if a € N, then Ay < (Pa)(t) < Ay, t € [0, ].
From the Schauder fixed point theorem follows the existence of the solution to (22), and,
hence, for the problem (1)—(5). O
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3 UNIQUENESS OF A SOLUTION

Theorem 2. Under the condition (A2) the problem (1)<5) cannot have more than one solution
(a,u) in the space C([0,t1]) x C*!(Qy,), such that Au € C*0(Q, ) and a(t) > 0,t € [0, 1],
where t; € (0, T] is determined from the input data.

Proof. Suppose that there exist two solutions (ay(t),u1(x,y,t)) and (ax(t), uz(x,y,t)) of the
problem (1)—(5). Denote

az(t) :=ay(t) —ax(t), t€]0,T), (29)
uz(x,y,t) == uy(x,y,t) —ux(x,y,t), (x,y,t) € Qr. (30)
Then (a3(t), uz(x,y,t)) is solution of the problem

ugs = ay(t)Auz +by(x,y, t)uzy + ba(x,y, t)uzy +c(x,y,t)us + az(t)Auz, (x,y,t) € Qr, (31)

uz(x,y,0) =0, (x,y)€[0,h] x[0,1], (32)
uze(0,y,£) =0, wuz(hyt) =0, (yt)€[0,1]x[0,T] (33)
usy(x,0,t) =0, usy(x,1,t) =0, (x,t) €0k x[0,T], (34)
v1(t)uz(0,yo, t) + va(t)us(h,yo, t) =0, t€[0,T]. (35)

By calculating the derivative of (35) and applying (31) to it, we obtain for t € [0, T|
(v1 (£)Aua(0, yo, t) + va(t) Aua(h, yo, £))as () = — (v (t) +v1(£)e(0, yo, )
x u3(0,yo, t) — (va(t) +va(t)e(h, yo, t))us(h,yo, t) — vi(t)ba(0, yo, t)usy (0, yo, )  (36)
—va(t)ba(h, yo, H)usy(h, yo, t) — va(t)ar (£) Buz (0, yo, ) — va(t)ar () Aus (h, yo, t).

Denote by Gy (x,y,t,& 1,T) a Green function of the problem (31)~(34). Since a; (t) is a known
function, the solution to the problem (31)—(34) is unique and can be calculated by the formula:

(x,y,t) /// (x,y,t,¢,1,7)az(t)Auy (¢, n, T)dédndr. (37)
By differentiating (37) with respect to y and applying to (37) the Laplacian , we obtain
t
uzy(x,y,t) :///ézzy(x,y, t,&,n,7)az(t)Auy (&, n, 7)dédndr, (38)
0
t I h
Auz(x,y,t) /dT//A (x,y,t,&,1,7)az(T)Auy (&, n, T)dédy. (39)
00

Therefore, by applying (37)—(39) to (36), we obtain an equation with respect to a3 (t)

t I h
-1 )
) = 08800, o, ) + 1) Btz (o, ) O/ | / (“’1“) * 10 yo. 1))

0

A

x G2 (0,y0,t,&,1,7) + (v5(t) +V2(f)0(h,y0/f))G (h,yo, t,E,1,7)
+v1(£)b2(0, yo, £) Gazy (0, y0, 1, &, 17, T) 4+ v2 () b2 (B, yo, t) Gy (h, Yo, £, &, 17, T) (40)

+1 (t)al (t)Aézz(O, Yo, t, g, n, T) + Vz(t)al (i’)Aézz (h, Yo, t, g, n, T))

X a3(T) Auy (8, 17, T)dGdr.
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It is still necessary to ensure that for
v1(#)Auz (0, yo, t) + vo(t)Auz (h, yo, t) > 0. (41)

Since (ap, u7) is a solution of (1)—(5) it follows from (9) that ¢ € [0, T|

v1(£)Auz(0, yo, t) + va(t) Auz (b, yo, t) = azl(t) (u3(t) = v1(t)f(0, o, t) — va(t)

x f(h,yo,t) — (vi(t) +v1(t)e(0,y0,t))u2(0, yo, 1) — (va(t) +va(t)e(h, yo,t))
x uz(h, yo, t) — v1(t)b2(0,yo, t)uay (0, yo, t) — va(t)ba(h, yo, t)uay (h, yo, t))-

Thus, it follows from (42), (20) and (25), ensured by (A2), that

(42)

V1 (H)Au2(0, yo, £) + va(F)Aua (B, yo, ) > 2:%%) >0, teloh] (43)
2

Hence, (40) is a homogeneous Volterra integral equation of the second kind on [0, t1]. Since
Au, € C¥0 (@tl), according to [4] the kernel of (40) is integrable. Therefore, (40) has a unique
solution az(t) = 0, t € [0, f1], and from the equality (37) it follows that u3(x,y,t) =0,

(x,y,t) € Qy, The proof of the theorem is complete. O
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PosrasiaaeMo obepHeHy 3apauy BU3HAUEHHS 3aA€XKHOTO BiA dacy KoedilieHTa a(t) y ABOBUMIp-
HOMY apaboAiYHOMY piBHSHHI:

up = a(t)Au+ by (x,y, t)ux + ba(x,y, t)uy +c(x,y, t)u + f(x,y,t), (x,y,t) € Qr,
i3 MOUAaTKOBOIO YMOBOIO, KparoBumu yMoBamu HeiiMaHa Ta HeAOKaABHOIO yMOBOIO IepeBU3HAUEHHST

v (H)u(0,yo,t) + va(H)u(h,yo, t) = us(t), t€][0,T],

Ae Yo pikcoBaHe 3HaveHHsI 13 [0, 1].

BcraHOBAEHO yMOBM iCHYBaHHSI Ta €AMHOCTI KAQCMUHOTO pO3B’sI3KY 3aadi. 3 Li€l0 MeTOI 3aCTO-
coBaHo MeToA pyHKUIi 'piHa, Teopemy Illayaepa mpo HepyXOMy TOUKY Ta TeOpPilO iHTerpasbHMX
piBHsHDL BoAbTeppa.

Kontouosi cnosa i ¢ppasu: obepHeHa 3arava, BU3HAUeHHs KoedpillieHTiB, mapaboriuHe piBHSHHSI,
HeAOKaAbHA yMOBa IlepeBM3HavYeHHs], IIPSMOKYTHa OOAACTb.
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INVERSE CAUCHY PROBLEM FOR FRACTIONAL TELEGRAPH EQUATION WITH
DISTRIBUTIONS

The inverse Cauchy problem for the fractional telegraph equation
uf™ —r(tulP +a?(~8)7%u = Fy(x)g(t), (x,1) €R" % (0,T],

with given distributions in the right-hand sides of the equation and initial conditions is studied.
Our task is to determinate a pair of functions: a generalized solution u (continuous in time variable
in general sense) and unknown continuous minor coefficient 7(t). The unique solvability of the
problem is established.

Key words and phrases: generalized function, fractional derivative, inverse problem, Green vector-
function.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: lhp@ukr.net (Lopushanska H.), vrapita@gmail.com (Rapita V.)

INTRODUCTION

The existence and uniqueness theorems were proved, and the representation (in terms of
the Green function) of classical solution of a time- and a time-space-fractional Cauchy problem
was obtained, for example, in [1,3-5,14]. The unique solvability of a time-space-fractional
Cauchy problem in spaces of distributions was proved in [8,10].

Inverse problems for such equations arise in many branches of science and engineering.
The inverse boundary value problems for determination of a leading coefficient, or a part
of the right-hand side, or an order of a diffusion-wave equation, or an unknown boundary
condition, were studied, for example, in [2,6,11,12,15].

In the present paper we prove the existence and uniqueness of a solution (u, r) of the inverse
Cauchy problem

ul™ — (P + 2 (=A)2u = Fy(x)g(t), (x,t) € R" x (0,T], )
u(x,0) = Fi(x), ut(x,0) = F(x), x eR", ()
(u(- ), 9o(-)) = F(t), te(0,T) (3)

(@)  (B)

with the Riemann-Liouville fractional derivatives u, ', u,"’, where Fy, F;, F, are given distribu-
tions, F, g, ¢o are given smooth functions, the symbol (f, ¢) stands for the value of the distri-
bution f on the test function @, a2 is a positive constant, (—A)7/?u is defined with the use of
the Fourier transform as follows

F[(=A)"2u] = |A["F[u],
and the following assumption holds:
(L) ae(1,2),8€(0,1),y>a min{n2,y}>(n-1)/2.
YAK 517.95
2010 Mathematics Subject Classification: 35515.
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1 NOTATIONS AND AUXILIARY RESULTS

Denote the set of natural numbers by symbol N. Let Z; := N U {0}, Q := R" x (0, T],
n € N. Let £(R") := C®(R") and D(R") be the space of infinitely differentiable functions com-
pactly supported in R". D(Q) is the space of infinitely differentiable functions having compact
supports with respect to space variables and such that ( at) vli—r = 0, k € Z,, D¥(R") is the

space of functions from C¥(R") having compact supports, ¢l pr(rny = ‘m|a>li max |ID*p(x)|,
<k Xxesuppg

. olx
where k = (x1,...,%n), ki €Zi, ] € {1,...,n}, |x| = k1 4+ -+ +xn, D*@(x) := ﬁ,
) Loy
while D'(R"), £'(R") and D'(Q) are spaces of linear continuous functionals (distributions)
over D(R"), £(R") and D(Q), respectively. Note that £'(R") is the space of generalized func-
tions with compact supports. Let

D' (R):={fe€D'(R): f=0,Vt<0},
De(Q) = {v € D(Q) : (v(-1), () € C(0,T] forall p € D(R")}.
We denote by fx*g the convolution of the generalized functions f and g, and use the function
o(t)A 1 A>0
=4 e 0
fiza(t), A <0,

where I'(z) is the gamma-function, 8(t) is the Heaviside function. Note that f, * f, = fa1,-
Recall that the Riemann-Liouville derivative of order § > 0 is defined as

vt(ﬁ)(x,t) = f,[;(t) xv(x,t),

and the Caputo fractional derivative is defined in [3] by

1 3 | v(x, 7) v(x,0)
va(x't)zl"(l—ﬁ) [§O/(t—r)5dl-_ e ], B e (0,1),

1 0 t vr(x, T) v¢(x,0)
Do(xt) = 175 [ﬁo/(t—r)ﬁld _(t—T)ﬁl]' pe2)

Denote by
Cay(Q) = {v € C(Q) : (=4)"?v,Dfv € C(Q)},
Cay(Q) = {v € Cun(Q) | v, v € C(Q)},
(Lo)(x, ) := 0\ (x, 1) + a2 (= A) 20 (x, 1),
(L™80)(x, t) := D¥v(x, t) 4+ a?(—A)"20(x, t),
(L) (1,6) 1= £ a(Ds0(x, 1) + (A Po(x,8), (x,) € Q,
where f_,(t)%v(x, t) = (f-a(7),v(x,t + 7)), v € D(Q). The Green formula holds [8]:

[ o0 @)y, Ddydr = [(L0)(y, T)p(y, dyde
Q Q

/ v(y,0 dy/fZa T)Pc(y, T dT+/vty, d]//thx y,7)dT,

R
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forallv € Cy,(Q), ¥ € D(Q).
Assumptions:

(Al) Fo, Fi, F, € &'(R"), t°¢(t) is a continuous function on [0, T] for some ¢ € (0,a/2);
(A2) F,F®) € C(0,T], i(nf ] |FB)(1)] = f = const > 0, t°F®)(t) is a continuous function on
te(0,T
[0, T] for some ¢ € (0,a/2), ¢9 € D(R").

Definition 1. A pair of functions (u,r) € D-(Q) x C(0, T| satisfying the identity
T

T
:/g(t)(Fo(- dt+/ dt+z () fiea(t), W(x, ) @)
0 0

for allp € D(Q) and the condition (3) is called a solution of the problem (1)—3).
We use the Green function method to prove the solvability of this problem.

Definition 2. A vector-function (Go(x,t), G1(x,t), Go(x, t)) such that under rather regular g,
g1, &2 the function

u(x,t) /dT/GOx—y,t—rgoy, dy+2/G gi(y)dy, (x,t)eQ (5)

R" J=1Rn
is a classical (from C,,,(Q)) solution of the Cauchy problem
LSu(x,t) = o(x,t), (0 € Q,
u(x,0) = g1(x), ui(x,0) = g2(x), x€R",
is called a Green vector-function of this problem.

Denote by

T
(Gop) (v, 1) = | [ Golex =y, = )l

T Rn

//G (x,t)dxdt, j=1,2.

0 Rn

Lemma 1 ([8]). The following relations hold:
Gi(x,t) = (fi—a(1),Go(x,t = 7)), (x,t)€Q, j=1,2 (6)

GoLy) (v, 1) =y, 1), (11 €Q, o
GLY)W) = (fi-a(0), 9, 7), yeR", j=12, forallp € D(Q).

Lemma 2 ([1,4]). The Green vector-function of the Cauchy problem (1), (2) exists.

We also use the notations

t) :/G]-(x—y,t)q)(x) dx, j=0,1,2.
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Lemma 3. Forallk € Z., multi-index «, || =k, ¢ € D(R") we have
D(Gg) € CQ), j=012,
and for alle € (0,1) the following estimates hold:
D5(Go) (v, 1)| < et @]l pi (g

D5(GrLo) (v, )| < e+ | I t])]| @]l iy,
ID}(G29) (v, )| < ckll@llprry, (1) € Q-

Hereinafter b;, c;, i € Z., are positive constants.

Proof. Lemma can be proved with the use of the estimates of the Green vector-function compo-
nents, which were obtained in [8] by using the properties of the H-functions of Fox [7,13]. [

Theorem 1. Assume that (L), (A1) hold. Then there exists a unique solution u € D(-(Q) of the
problem (1), (2) withr(t) = 0, t € [0, T|. It is defined by

<u(-,t),q)(-)) — hy(t) forall g € DRY), t € (0,T], (8)

where
2 t
ho(®) = Y- (F () (Go)0) + [ () (Bl), (Gop)(t = 7)), t€ (0,T]
j=1 0

Proof. A distribution from £’(R") has a finite order of the singularity. So, there exist ko, ky, k €
Z. and the functions gox, §1x, $2x € L1(R") such that

(o) = ¥ [8x)Dp()dy forallge DRY), j=0,1,2 ©)

[l <kj g

It means that s(F]-) <kj,j=0,1,2

Using (9) and Lemma 3, similarly to [9], we show that the function (8) belongs to D (Q),
and using (7), show that it satisfies the equality (4) with 7(t) = 0, t € [0, T]. The uniqueness of
a solution can be proved as in [9]. O

2 THE EXISTENCE AND UNIQUENESS THEOREMS FOR THE INVERSE PROBLEM

As we know from the Theorem 1, under assumptions (L), (A1) the solution u € D(Q) of
the Cauchy problem (1), (2) satisfies the equation

~

(u(,1),9()) = o(t) + [ (1) (" (), (Cop) (-t =) )dr, g € DR"),t € (0,T),  (10)
0

and h, € C(0, T] for all ¢ € D(R"). Conversely, any solution u € D(Q) of (10) is the solution
of the problem (1), (2).
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From the equation (1) we obtain

(1 (1), 0()) = @ (-, ), (=8)"g0(4)) + (1) (1 (1), 90) + (1) (Fo, 90)-

Using (3) and (A2) find

r(t) = [F®(t) —a®(u(- 1), (—A)2@o(-)) — g(t) (Fo, @o) | [FP ()] !, te(0,T].  (11)

Denote by H(u, t) the right-hand side of (11), substitute it in (10) instead of r(¢). We obtain
the nonlinear operator equation

(u(-1£),9()) = hg(t) + [ H(w,7)(u(-,8), (Gop) (1~ T))dT, ¢ € DRY), tE€(0,T], (12)
0

relatively unknown function u € D’(Q). Conversely, if u € D'c(Q) is a solution of (12), r is
defined by (11) then, by the Theorem 1, the pair (u, r) satisfies the problem (1)—(3). So, under
assumptions (L), (A1), (A2) a pair (u,7) € D;(Q) x C(0, T] is a solution of the problem (1)—(3)
if and only if the function u € D'(Q) is a solution of (12) and r(t) is defined by (11).

Theorem 2. Assume that (L), (A1), (A2) hold. Then there exist T* € (0, T] (Q* = R" x (0, T*],
respectively) and the solution (u,r) € D-(Q*) x C(0, T*] of the problem (1)—(3): the function
u is a solution of (12), r is defined by (11).

Proof. By the Theorem 1 the right-hand side of (12) is continuous on (0, T]. It is enough to
prove the solvability of the equation (12) in D-(Q). Using (9) and Lemma 3, for all € € (0,1),
¢ € DX(R") withK € Z, K > max{ko, ki, kp}, where s(F;) < kj, j = 0,1,2, we obtain

t
¢ [ () (Fol), Gop) (- 1, 0)d| < bt gl pre, (13)
0

Flhg(B)] < [#*bo + b1] @l px(re)- (14)
LetR>0,e€ (0,a/2),

M = Mr(@ = {0 € De(Q) s ol = sup  sup L2 20)

< R}.
te(o,1] pepkrn)  1@lpx(Ry)

Define the operator P : D-(Q) — D(Q) as follows

((Po)( 1), 9()) =ho(t) + [ H(o,) (00, 8), (Gop) -t~ D)dT, @€ DERY. (15
0

We use the Banach principle to prove the solvability of the equation (12), that is
u=Pu, u€ MgreQ)C D-(Q).

At the beginning we show that there exist R > 0, T* € (0,T], Q* = R" x (0,T*] and
My, = MRe(Q*) such that P: My . — Mg,
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For every v € Mg, we have

| (0(-, ), a(~8)"2g0()| < RI(~8)"2gollpr e := baR,

and therefore

B+ bzR, where B = sup T€|F(”‘)(T) — g(t)(Fo, ¢0)|-

T|H (v, 7)| <
f 7e(0,T]

From here, taking into account (13), (14) and Lemma 3, for all v € Mg,, ¢ € D(R") we
obtain

[ ((Po) (1), () |

(G T edT
< iy by 4 BT ER /H Gog) 1t = Ol
||€0||DI<(RH) ||€0||DI< (R")
t

< t*by + by + B + bZR R /CK )4 e-lr—edr

< 72 (qoR* + 1R + q2) + by,
where g; (j € {0,1,2}) are positive constants.

To realize the inequality
t* 7% (qoR* + 1R +q2) + by < R forall t € [0, T*] (16)

with some T* € (0, T], we will at first choose R > 2b; and ty € (0, T] such that
qzta—Ze +b; <R/2forallt e [O, fo].

Then (16) follows from the inequality
(g0 +q)t* *R < = for allt € [0, T%] (17)

for some R > max{1,2b,}, where T* = min{to, 1/[2(g0 + q1)R]"/(#=28)1. We have proved the
existence R, T* such that P : MTz,e — M;‘{,g.

Now we show that P is the contraction operator on My .. For vy, v2 € Mg, ¢ € D(R") and
t € [0, T*] we have

E[((Po1) (1) = ((Po2) (1), @(1)) |

HG”HDK(RH)

+ (H(vy,7) — H(vy, 7)) (v1(+, 1), (Go@) (-, t — 7)) )dr

~

N H(PHlt:K(Rn /‘H(UZIT)(Ul('/f)—’02(-’t), (GOQD)(',t—T))

<(B+b@ﬁ/\m ~os(,1), (Gog) (£ = O)| 1Gog) ot = Dlpmeusy -

- f 1(Go@) (-, t — T) |l pre(ny @l px(rey

+a2t€R||( §00||DI< R") /t} —Uz 1), (=A)290()) | 1Co@) (-t = T)llpx (re)
" WZGDOHDK(RH) ¢l p gy
t
J11(Go@) (-, t = T) |l pre(rey T~5dT

B +2b,R _
< BAZR) oy 2 < (2q0R + g %[0y — 0]l

f

”(P”DK (R")
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If (—A)12¢p(x) = 0, x € R, then (v1(-,t) — va(+,t), (—A)72¢p(-)) = 0 forall t € [0, T*],
and the factor 2 is absent in the obtained expression.
For t € [0, T*] we have

(2qu + q1>th*28 < ZqOR + 0 < 2(]0 + 0

<1.
~ 2(q0+q1)R ~ 2(q0 + 1)

So, P is the contraction operator on Mg (Q*), and by the Banach theorem we obtain the
solvability of the equation (12) in My . C D¢-(Q¥). O

Theorem 3. Under conditions F(f) € C(0, T] nfﬂ |FB)(t)| # 0 a solution (u,7) € D-(Q) x

, i
te(0
C(0, T] of the problem (1)—(3) is unique.

Proof. Take two solutions (u1,71), (u2,72) € D:(Q) x C(0, T] of the problem (1)—~(3) and sub-
stitute them in (1), (2). Putting u = uy — u, v = r1 — r, obtain the Cauchy problem for the
equation

ut(“) = a?(—N)"?u + rzuf’s) + rulgﬁ) (18)

with zero initial conditions. By the definition of solution
T
(w,L9) = [ [P (0,9, 0) + 1) (0 (1), 9 (-, 1)t forall y € D(Q).
0

According to [8], for each o € D(Q) there exists i = Goo € D(Qp) such that Ly = ¢ in Q.
Then for each ¢ € D(Q) we have

T T
[ (w0000 dt = [ (n@uf .6+ rOumP 1), Ga)(,0)dt. (19)
0

0

From the over-determination condition (3), by using (11), we find
@ (u(z, 1), (~8)"2o(z)) = —r(FP(1), te(0,T], (20)

and then, from (19), for all ¢ € D(Q) we obtain the equation

T
| (#P¢ 0,008 () Goo) 1) + (_AWZ(PO(')%(t))dt —0, (1)
0

where

N
N
—
T’\
e
—~~
~—
SN—
*
=
iy
~~
Q
-
S—
N
—~
Q)
[e)
e}
SN—
—~
0
-
S—
SN—
N
—
=
iy
Y
<
-
S—
N
Tn
=
~~
~—
SN—
*>
—~
Q
[e)
)
S—
—~
<
~—
SN—
SN—

is the known function from C(0, T],

o 8) = ra()(Goo) (- 1) + =2 90C)we(®)
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is the continuous function in ¢t € (0, T]. So, for each ¢ € D(R"), u € D(0,T], u(T) = 0 there
exists a unique solution ¢ € D(Q) of the second type Volterra integral equation

—AY"200(x)w )
(—A)72o(x)wq(t) = o(x)u(t), (x,t)e€Q,

o(x, ) = r2(£)(Goe) (x, ) +

FB)(t)
with integrable kernel. Then (21) implies that
T
/ (4?5, 9() ) u(t)dt = 0 forall ¢ € D(R"), p e D(O,T], u(T) =0,
0

By the Dubua-Rejmon lemma we obtain
(WP (1), 9(-)) =0 forall ¢ € DR"), te (0,T].

Therefore, ut(ﬁ) =0,ie f g(t)*u(x,t) =0,ie fa(t)* f_p(t)*u(x,t) =0,ie u=0inD:(Q),
and (20) implies that 7(t) = 0, t € (0, T]. O

3 CONCLUSIONS

The inverse Cauchy problem for a time-space-fractional telegraph equation with given dis-
tributions in the right-hand sides has been studied. We have determinated a generalized solu-
tion u of direct Cauchy problem and unknown, depending on time variable, continuous minor
coefficient r of the equation. The existence of a solution (u,7) € Di(Q*) x C(0, T*] is obtained
for some T* € (0,T]. The uniqueness of a solution (u,7) € D;(Q) x C(0, T] is obtained for
arbitrary T > 0.

Let D-(Q) = {v € D'(Q) : (v(-t),¢(-)) € C[0,T] forall ¢ € D(R")}. The Green vec-
tor-function of the Cauchy problem for the operator Df — A(x, D), where A(x, D) is an elliptic
differential expression of the second order with infinitely differentiable coefficients, has the
exponential descending at infinity. So, unlike the case of the proposed problem (1)—(3), under
assumptions Fy, F, F» € £'(R"), g € C[0,T], F,F®),F® ¢ C[0,T], E®)(t) #0,t € [0,T] and
the compatibility conditions

(F1, ¢0) = F(0), (Fz, ¢o) = F'(0),

there exist T* € (0, T] and the solution (u,7) € D(Q*) x C[0, T*] of the problem (1)—(3) with
the operator —A(x, D) instead of a(—A)7/2.
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Aocaiaxyemo obeprery 3aaauy Ko anst piBHSIHHS
ul™ — r(B)ulP) +a?(—A)"2u = Fy(x)g(t), (x,t) € R" x (0,T],

3 ApOOOBVMMI TIOXiAHVMMM Ta 3aAaHMMM y3aTaAbHEHVMU (PYHKIISIMM B TIpaBMX YacTVHAX PiBHSIH-
Hs i mogaTkoBMX yMoB. Hare 3aBpaHHS TIOAsITae y BU3HaUeHHI Iapy (pyHKUIM: y3araabHEHOTO
PO3B’s13Ky U (HellepepBHOTO 3a YaCcOM B y3araAbHEHOMY CEHCi) Ta HEBIiAOMOTO MOAOAIIOTO Koedi-
wierTa 7 (t). Y CTaTTi BCTAHOBAEHO OAHO3HAUHY PO3B’SI3HICTD 3aAadi.

Kntouosi cnoea i ppasu: ysararbHeHa (pyHKIisI, Ap0b0Ba IOXiAHa, 0ObepHeHa 3apada, BEKTOp PyH-
xuist I'pina.
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HYPERCYCLIC OPERATORS ON ALGEBRA OF SYMMETRIC ANALYTIC
FUNCTIONS ON /,,

In the paper, it is proposed a method of construction of hypercyclic composition operators on
H(C") using polynomial automorphisms of C" and symmetric analytic functions on ¢,. In particu-
lar, we show that a “symmetric translation” operator is hypercyclic on a Fréchet algebra of symmet-
ric entire functions on £, which are bounded on bounded subsets.

Key words and phrases: hypercyclic operators, functional spaces, symmetric functions.
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INTRODUCTION

The theory of hypercyclicity studies the long-term behavior of continuous operators on
topological spaces. Let X be a Fréchet (linear complete metric) space.

Definition 1. A continuous linear operator T : X — X is called hypercyclic if there is a vector
xo € X for which the orbit under T, Orb(T, xy) = {xo, Txo, T?xy, . . .} is dense in X. Every such
vector xy is called a hypercyclic vector of T.

The classical Birkhoff’s theorem [6] asserts that any operator of composition with transla-
tion x — x +a, T,: f(x) — f(x + a) is hypercyclic on a space of entire functions H(C) on a
complex plane C if a # 0. The Birkhoff’s translation T, has also been regarded as a differentia-
tion operator

oo an
Ta(f) = Z _|an
= n!
A generalization of Birkhoff’s theorem was proved by Godefroy and Shapiro in [9]. They
showed that if ¢(z) = ) c,z" is a non-constant entire function of exponential type on C",
|a[>0
then the operator
f— Y D", f e H(C"), (1)
|a|>0

is hypercyclic. Moreover, in [9], it is proved that any continuous linear operator T on H(C"),
which commutes with translations and is not a scalar multiple of the identity, can be expressed
by (1) and so is hypercyclic as well.

Let us recall that an operator Ce on H(C") is said to be a composition operator if Co f(x) =
f(®(x)) for some analytic map ®: C" — C". It is known that only translation operator T, for

YAK 517.98
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some a # 0 is a hypercyclic composition operator on H(C) [5]. However, if n > 1, H(C")
supports more hypercyclic composition operators. Bernal-Gonzélez [4] established some nec-
essary and sufficient conditions for a composition operator by an affine map to be hypercyclic.

In [14], it was proposed a method of construction of hypercyclic composition operators on
H(C"), which can not be described by formula (1), using symmetric analytic functions on ;.
The purpose of this paper is a generalization of the method for the space £, 1 < p < 0. Also
similarly to [14], we show that a symmetric translation operator is hypercyclic on a Fréchet
algebra HJ!. ({,) of symmetric entire functions on £, which are bounded on bounded subsets.
More about hypercyclic composition operators the reader can find in [13].

In Section 1, we discuss some relationship between polynomial automorphisms on C" and
an operation of changing of polynomial bases in an algebra of symmetric analytic functions
on the Banach space of summing sequences, ;. In Section 2, we prove the hypercyclicity of a
special operator on the algebra of symmetric analytic functions on £, which plays the role of
translation in this algebra. We consider, in the third section, an algebra which is the completion
of the space of symmetric polynomials on £, endowed with the uniform topology on bounded
subsets and we prove hypercyclicity of our special operator on this algebra.

Let us recall a well known Kitai-Gethner-Shapiro’s theorem which is also known as the
Hypercyclicity Criterion.

Theorem 1 (Hypercyclicity Criterion). Let X be a separable complete linear metric space and
T: X — X be a linear and continuous operator. Suppose there exist X, Yy dense subsets of X,
a sequence (ny) of positive integers and a sequence of mappings (possibly nonlinear, possibly
not continuous) S, : Yy — X so that

1. T"(x) — 0 forevery x € Xp ask — oo,
2. Sy, (y) = 0 foreveryy € Yy ask — oo,
3. T" oSy, (y) =y foreveryy € Y.

Then T is hypercyclic.

The operator T is called the operator that satisfy the Hypercyclicity Criterion for full sequence
if we can chose n; = k.

For details of the theory of analytic functions on Banach spaces we refer the reader to Di-
neen’s book [8]. Note that an analogue of the Godefroy-Shapiro’s theorem for a special class of
entire functions on Banach space with separable dual was proved by Aron and Bés in [2]. Cur-
rent state of theory of symmetric analytic functions on Banach spaces can be found in [1, 10].
A detailed survey of hypercyclic operators is given by Grosse-Erdmann in [3, 11, 12].

1 ALGEBRA OF SYMMETRIC FUNCTIONS

Let X be a Banach space with a symmetric basis (e;)° ;. A function g on X is called sym-

metric if for every x = Z xie; € X, g(x) = g( i xiei) = g( i xieg(i)> for an arbitrary permu-
i=1 i=1 i=1
tation ¢ on the set {1, ...,m} for any positive integer m. The sequence of homogeneous poly-
nomials (Pj)]?";l, deg Py = k is called a homogeneous algebraic basis in the algebra of symmetric



HYPERCYCLIC OPERATORS 129

polynomials, if for every symmetric polynomial P of degree n on X there exists a polynomial
g on C" such that P(x) = g(P1(x), ..., Pu(x)).

We denote by Ps(¢,) algebra symmetric continuous polynomials. Let [p] be the smallest
integer that is greater than or equal to p. In [10], it is proved that the polynomials

Fk (i aiei> = iai‘ (2)
i=1 i=1

fork = [p], [p] +1,... form an algebraic basis in Ps(¢}).

So, there are no symmetric polynomials of degree less than [p]| in Ps(fy) and if
[p1] = [p2], then Ps(£p,) = Ps(£p,). Thus, without loss of generality we can consider Ps(¢;)
only for integer values of p. Throughout, we will assume that p is an integer, 1 < p < oo.

Corollary 1 ([1]). Given ({1,...,¢n) € C", thereis x € €Z+p_1 such that

Fy(x) =C1, ., Fuyp1(x) = Cn-

This result shows that any P € Ps({;) has a unique representation in terms of {F},
in sense that if ¢ € P(C") for some n is such that P(x) = q(Fy(x),...,Farp(x)), and if
q' € P(C™) for some m is such that P(x) = q'(Fy(x), ..., Fuyp(x)), with, say, n < m, then
q/(gll T /CWI) = q(Cll T /Cn)~

Let us denote by P} (£,), n > p, the subalgebra of Ps({;) generated by {F,,...,F,}.

Denote by Hj.(¢,) an algebra of entire symmetric functions on ¢, which is topologically
generated by polynomials F,, ..., F,. It means that H}(¢,) is the completion of the algebraic
span of Fy, ..., F, in the uniform topology on bounded subsets. We say that polynomials
Qp,--.,Qn (not necessary homogeneous) form an algebraic basis in Hj (¢,) if they topologi-
cally generate Hy (¢;). Evidently, if (Q;)7, is a homogeneous algebraic basis in Ps(£}), then
(Qp, ..., Qn) is an algebraic basis in H(£}).

2  SYMMETRIC TRANSLATION

In this section, we construct a special operator on the algebra of symmetric analytic func-
tions on /,. We start with an evident statement, which actually is a very special case of the
Universal Comparison Principle (see [11, Proposition 4]).

Proposition 1. Let T be a hypercyclic operator on X and A be an isomorphism of X. Then
A~1TA is hypercyclic.

We will say that A~'TA is a similar operator to T. If T = C, is a composition opera-
tor on H(C") and A = Cg is a composition by an analytic automorphism & of C", then
A7ITA = Cgopop-1 is @ composition operator too. If A is a composition with a polynomial
automorphism, we will say that A~'TA is polynomially similar to T. Now we consider operators
which are similar to the translation composition T,: f(x) +— f(x 4+a) on H(C").

Let us denote by F the mapping from /), to C"*1=P, n > p, given by

Fp x> (Fp(x), ..., Fa(x)).
It is known (see [1]) that the map

Cry: flbrsertn) = F(Fp(x),..., Fu(x))
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is a topological isomorphism from the algebra H(C"17) to the algebra H}'.({}).

Easy to see that for symmetric function f(x) on ¢, the function f(x + y) is not symmetric
for some fixed y € £,. The space of symmetric function is not invariant respect to certain
translation operator f(x) — f(x +y). We propose another translation on £,, which keep the
space of symmetric analytic functions.

Letx,y € £y, x = (x1,x2,...) and y = (y1,Y2,...). We put

xeoy = (x1,y1,X2,Y2,...).
We note the basic properties of symmetric translation.

1. If x = q(u) iy = o»(v) for some permutations 07, 0 then x @y = o(u e v) for some
permutation o on IN.

2. JlxeyllP = llx[I” + llylP-

3. For any natural n > p
Fa(x oy) = Fa(x) + Fa(y). (3)

We define
Ty(f)(x) :=f(xey)

and will say that x — x ey is the symmetric translation and the operator 7y is the symmetric
translation operator. It is clear that if f is a symmetric function, then f(x e y) is a symmetric
function for any fixed y. In [7], it is proved that 7, is a topological isomorphism from the
algebra of symmetric analytic functions to itself.

Letg € H'(¢y) and & = (a1, ..., ). Set for f = (F¥)~lg

o F o F\—1 "1 9"
D 8 = FnD (Fn) 8= By "'atzxnf (Fl(')r~~~/Fp+nfl('>>'
1 n

Theorem 2. Lety € {, such that (F;(y),...,Fyyn—1(y)) is a nonzero vector in C". Then the
symmetric translation operator 7T, is hypercyclic on Hj (¢,). Moreover, every operator A on
H{(¢y) which commutes with T, and is not a scalar multiple of the identity is hypercyclic and
can be represented by

A(g) = ), @D (4)
20

where c, are coefficients of a non-constant entire function of exponential type on C".

Proof. Leta = (Fp(y), ..., Fprn-1(y)) € C". If g € H} ({}), then

8(x) = Cra(f)(x) = f(Fp(x),- -, Fpin-1(x))
for some f € H! (/1) and property (3) implies that

Ty(8)(x) =g(xoy) = f(Fp(xoy),..., Fprn-1(xey))
f( (x) ( ) ---er—Hz—l( )+Fp+n—1(]/))
= Cr((Nt+a)) = Cr(Ta(f)(#)).
Since the set (TX(f))$>, is dense in H(C"), then set (Tk( Ny = (Cfg(Tf(f)))Z"zl is
dense in Hj(¢;). So, the symmetric translation of operator 7’y is hypercyclic on Hj\.(¢,). Since

Ty(8)(x) = FET,(FF)~1(g)(x), the proof of (4) follows from Proposition 1 and the Godefroy-
Shapiro Theorem. O
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A given algebraic basis R on H (£,) we set
Try = (Fp) Ty Fx and Dy := (F) 'D"Fy.

Corollary 2. Let R be an algebraic basis on H[({,) and let y € {, such that
(Fp(y), .-, Fyyn-1(y)) # 0. Then the operator T, is hypercyclic on H(C"). Moreover, every
operator A on H(C") which commutes with Tr , and is not a scalar multiple of the identity is
hypercyclic and can be represented by the form

A(f) = ) cuDRf, (5)

|a|>0
where ¢, as in (1).
We need the next proposition.

Proposition 2 ([14]). Let ® = (®y,...,P,) be a polynomial automorphism on C". Then
(®1(R),...,P4(R)) is an algebraic basis in H[({,) for an arbitrary algebraic basis
R=(Ry,...,Ry).

Conversely, if (®1(R),...,P4(R)) is an algebraic basis for some algebraic basis
R = (Ry,...,Ry) in H{(¢y) and a polynomial map ® on C", then ® is a polynomial auto-
morphism.

Note that due to Proposition 2 the transformation (FR) ’17;}"},{ is nothing else than a com-
position with ® o (I + a) o @7, where ®(F,,...,Fpin-1) = (Rp,...,Rpiy—1) and
a= (Fy(y),...,Fyrn-1(y)). Conversely, every polynomially similar operator to the translation
can be represented by the form (FR) _17;/}",5 for some algebraic basis of symmetric polynomi-

als R. This observation can be helpful in order to construct some examples of such operators.

The next algebraic bases of Ps(¢,) is useful for us: (G,Ep ) vy, Where

G(x)=G6"x)= ¥ x--x

i< <

and Glgp )(x) can be obtained from Newton’s formula (see [16, §53]), putting
Fi(x) = B(x) = -+- = F,_1(x) = 0. So, we get ([15])

nG) = ()71 E, ()G, (x) + (~1)PFFy (1) ,S>,, (%)
o (C) PR )G () + (1) (),

where n > p, GV (x) = 1, Fo(x) = 1and GV (x) = G{P(x) = foj (x) =0, F(x) =
F(x) = --- = F,_1(x) = 0. By another words, in (2) the terms F,(x)G ;i (x) =0,ifr < pand
g—r<pwherep<r<n—pp<g—r<n-—p.

Let us compute how looks the operator T, for R = G. We observe first that

Gl(xey)= Y GG (), p<m<p+n-1,
j+k=m
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where for the sake of convenience we take G(()’7 ) = 1. Thus
T FSf(teerta) = TGP (2), ..., G (x) = F(GY (xoy),..., Gl (x o y))
—f(&@+cw),..., ¥ V@6, L 6’@6m).

i+k=m i+k=p+n-1
Therefore,
TGyf(t1, .- tn) :f(tp+bp,..., Yo tibe..., Y, t]-bk>, (6)
jt+k=m j+k=p+n—1

wheret; =0,...,t, 1=0,b=0,...,b, 1 =0,and b]- = G].(p)(y) for1<j<p+n-1.

Godefroy and Shapiro proved that any continuous linear operator T on H(C"), which com-
mutes with translations and is not a scalar multiple of the identity, can be generated by (1).
Composition with an affine map still does not commute with T,. Indeed, by (6),

p+n—1

Tao TG/yf(tl,...,tn) :f<tp+bp+ap,..., Z t]bp+n717]+ap+n_1);
j=0
p+n—1
TG,y @) Tgf(tl, .. .,i'n) = f(fp + bp + llp, ey Z (i’] + ll]')bp+n,1,]'>,
j=0

where ag = 1. Evidently, T o T, # Tg,y © T, for some a # 0 whenever b # (0,...,0,bp,,1).

3 THE CASE OF SPACE Hy,(¢))

Note that T, satisfies the Hypercyclicity Criterion for full sequence [9] and so the sym-
metric shift 7, on HJ'({,) satisfies the Hypercyclicity Criterion for full sequence provided
(Fp(y), -, Fprn—(y)) # 0.

We will establish our result about hypercyclic operators on the space of symmetric entire
functions on £,. But before this, we need the following general auxiliary statement, which
might be of some interest by itself.

Lemma 1 ([14]). Let X be a Fréchet space and X1 C X, C --- C X;; C --- be a sequence of

closed subspaces such that | | X, is dense in X. Let T be an operator on X such that T(X,,) C
m=1
Xy for each m each restriction T|x,, satisfies the Hypercyclicity Criterion for full sequence on

Xy Then T satisties the Hypercyclicity Criterion for full sequence on X.

We denote by Hys(¢p) a Fréchet algebra of symmetric entire functions on ¢, which are
bounded on bounded subsets. This algebra is the completion of the space of symmetric poly-
nomials on £, endowed with the uniform topology on bounded subsets.

Theorem 3. The symmetric translation operator 7Ty is hypercyclic on Hys({,) for every y # 0.

Proof. Since y # 0, Fyy(y) # 0 for some myq [1]. So, T, is hypercyclic (and satisfies the Hy-

percyclicity Criterion for full sequence) on H!"({,) whenever m > mg. The set | J HL'({,)
m=mg

contains the space of all symmetric polynomials on ¢, and so it is dense in Hs(¢p). Also

H'(¢,) C H(¢p), if n > m. Hence, by Lemma 1, 7, is hypercyclic. O
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CTaTTi 3aIIPOIIOHOBAHO METOA MOOYAOBMU TIMEPIIMKAIUHMX OIePaTOPiB KOMIO3MIIII Ha ITPOCTO-

B 6y,

pi H(C") 3 BUKOpMCTaHHSIM IMOAIHOMIaABHMX aBTOMOpPdi3miB Ha C" i cMMeTpUUHMX aHAAITHIHIX

dynxuiit Ha £,. 3o0kpeMa, B pobOTi MoOKa3aHO TiMepPIMKAIYHICTH onlepaTopa “CMMeTPUYIHOTO 3CyBy”

Ha aAre6pi dpertre cMMEeTPUYIHMX ITIATIX HKIIiV Ha £, SIKi € 0OMe>XeHMI Ha 0OMeXeHMX ITiAMHO-
6pi @ V. Ly 6 6

KMHAX.

Kntouosi cnosa i ¢ppasu: rineprmkaivHi orepaTopy, (pyHKIIOHAABHI IIPOCTOPH.
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NAGESWARA RAO K.!, GERMINA K.A.2, SHAINT P.!

ON THE DIMENSION OF VERTEX LABELING OF k-UNIFORM DCSL OF
k-UNIFORM CATERPILLAR

A distance compatible set labeling (dcsl) of a connected graph G is an injective set assignment
f : V(G) — 2%, X being a nonempty ground set, such that the corresponding induced function
f© 1 E(G) — 2%\ {2} given by f®(uv) = f(u) ® f(v) satisfies | f(uv) |= k{u’v)dc(u,z;) for
every pair of distinct vertices u, v € V(G), where d¢(u, v) denotes the path distance between 1 and
v and k{u,v)
of proportionality with respect to f are equal to k, and if G admits such a dcsl then G is called a
k-uniform dcsl graph. The k-uniform dcsl index of a graph G, denoted by 6;(G) is the minimum of
the cardinalities of X, as X varies over all k-uniform dcsl-sets of G. A linear extension L of a partial
order P = (P, <) is a linear order on the elements of P, such that x < y in P implies x < yin L,
for all x,y € P. The dimension of a poset P, denoted by dim(P), is the minimum number of linear
extensions on P whose intersection is ‘=<’. In this paper we prove that dim(F) < §;(P;/¥), where
F is the range of a k-uniform dcsl of the k-uniform caterpillar, denoted by P k (n>1k>1) on
‘n(k +1)" vertices.

Key words and phrases: k-uniform dcsl index, dimension of a poset, lattice.

is a constant, not necessarily an integer. A dcsl f of G is k-uniform if all the constant
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INTRODUCTION

Acharya [1] introduced the notion of vertex set-valuation as a set-analogue of number valu-
ation. For a graph G = (V,E) and a nonempty set X, Acharya defined a set-valuation of G as
an injective set-valued function f : V(G) — 2%, and defined a set-indexer f© : E(G) — 2%\ {o}
as a set-valuation such that the function given by % (uv) = f(u) @ f(v) for every uv € E(G) is
also injective, where 2% is the set of all subsets of X and ‘@’ is the binary operation of taking
the symmetric difference of subsets of X.

Acharya and Germina [2], introduced the particular kind of set-valuation for which a met-
ric, especially the cardinality of the symmetric difference, associated with each pair of ver-
tices is k (where k be a constant) times that of the distance between them in the graph [2]. In
other words, determine those graphs G = (V,E) that admit an injective set-valued function
f: V(G) — 2%, where 2% is the power set of a nonempty set X, such that, for each pair of
distinct vertices u and v in G, the cardinality of the symmetric difference f(u) @ f(v) is k times
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that of the usual path distance dg(u, v) between u and v in G, where k is a non-negative con-
stant. They in [2] called such a set-valuation f of G a k-uniform distance-compatible set-labeling (k-
uniform dcsl) of G, and the graph G which admits k-uniform dcsl, a k-uniform distance-compatible
set-labeled graph (k-uniform dcsl graph) and the non empty set X corresponding to f, a k-uniform
desl-set. The k-uniform dcsl index [4] of a graph G, denoted by 6 (G) is the minimum of the
cardinalities of X, as X varies over all k-uniform dcsl-sets of G.

Consider a partially ordered set or a poset P as a structure (P, <) where P is a nonempty set
and ‘=’ is a partial order relation on P. We denote (x,y) € P by x < y, and identify the ground
set of a poset with the whole poset. Two elements of P standing in the relation of P are called
comparable, otherwise they are incomparable. We denote the incomparable elements x and y of
P by x || y. A poset is a chain if it contains no incomparable pair of elements, and in this case,
the partial order is a linear order. A poset is an antichain if all of its pairs are incomparable. The
length of a chain is one less than the number of elements in the chain. An element p € P of a
finite poset is on level k, if there exists a sequence of elements py, p1, ..., px = p in P such that
po = p1 = ldots = py = p and any other such sequences in P has length less than or equal to
k. The size of a largest chain in a poset P is called the height of the poset, denoted by height (P)
or h(P), and that of a largest antichain is called its width, denoted by width(P) or w(P). A Hasse
diagram of a poset (P, <) is a drawing in which the points of P are placed so that if y covers x
(we say, z covers y if and only if y < z and y < x < z implies either x = y or x = z), then y
is placed at a higher level than x and joined to x by a line segment. A poset P is connected, if
its Hasse diagram is connected as a graph. A Cover graph or Hasse graph of a poset (P, <) is the
graph with vertex set P such that x,y € P are adjacent if and only if one of them covers the
other.

Let P = (P,=<p) and Q = (Q, =) be two partially ordered sets. A mapping f from the
poset P to the poset Q is called order preserving if for every two elements x and y of P, x <p y
implies f(x) =g f(y). A poset Q is a subposet of P if Q C P, and = is the restriction of <p to
QxQ.ie, forabe Q,a =2gbifand onlyifa <p b. Two posets P and Q are called isomorphic
if there is a one to one order preserving mapping ® from the poset P onto the poset Q such
that for every two elements x and y of P, x <p y in P if and only if ®(x) <o ®(y) in Q. The
poset Q is said to be embedded or contained in P, denoted by Q T P, if Q is isomorphic to a
subposet of P. Let R and S are two partial orders (with respect to <) on the same set X, we call
S an extension of Rif R C S,ie, x < yin Rimpliesx < yin S for all x,y € X. In particular
if S is a chain, then we call it as a linear extension of R. For convenience, let L : [x1, X7, ..., Xy]
denote linear order on {x1, X2, ..., x,} in which x; < xp < -+ < x,.

Definition 1 ([8]). A set R = {Ly,L,,..., L} of linear extensions of P is a realizer of P if for
every incomparable pair x,y € P, there are L;,L; € R withx = yinL; and x = y in L; for
1 < i # j < k. The dimension of P (denoted by dim(P)) is the minimum cardinality of a
realizer.

There are equivalent definitions for dim(P). It is defined as the minimum k for which there
are linear extensions Ly, ..., L; such that P = L1 N Ly N - - - N Ly, where the intersection is taken
over the sets of relations of L;, for 1 < i < k. Another characterization of dimension, in terms
of coordinates, is obtained by using an embedding of P into R’ (called t-dimensional poset)
[11]. Let R denotes the poset of all t-tuples of real numbers, partially ordered by inequality in
each coordinate: (ay,a,...,a;) < (by, by, ..., by) if and only if a; < b;, fori = 1,2,...,t. Then
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the dimension of a poset P is the minimum number f such that P is embedded in RtY, denoted
as P C Rt For more results on dimension of poset one may see [7, 9, 12, 13].

A poset (L, %) is a lattice if every pair of elements x,y € L, has a least upper bound (lub),
denoted by x V y (called join), and a greatest lower bound (glb), denoted by x A y (called meet). In
general, a lattice is denoted by (L, <). Throughout this paper lattice (and poset) means lattice
(and poset) under set inclusion C. Unless otherwise mentioned, for all the terminology in
graph theory and lattice theory, the reader is asked to refer, respectively [5, 6].

This paper initiates a study on the dimension of vertex labeling of k-uniform dcsl of k-
uniform caterpillar, and prove that dim(F) < &;(P;*), where F is the range of a k-uniform
dcsl of the k-uniform caterpillar, denoted by P}* (n > 1,k > 1) on ‘n(k + 1)’ vertices that
forms a poset under set inclusion C.

Following are the definitions and results used in this paper.

Definition 2 ([10]). The height-2 poset H, on 2n elements ay,...,au,by,...,b, is the poset of
height two consisting of two antichains A = {ay,...,a,} and B = {by,...,b,} such thatb; < aj
in Hy exactly ifi = j,andj =i — 1.

Proposition 1 ([10]). Forn > 2,dim(H,) = 2.

Proposition 2 ([10]). Let F be the range of a vertex labeling of 1-uniform dcsl path P,(n > 2),
which is embedded in Hy, then dim(F) = 2.

Definition 3 ([10]). A width-2 poset W, is the poset ({a1,...,au,b1,...,bn}, %) of width two
consisting of two chains A = {ay,...,a,} and B = {by,...,b,} such thata; 1 < a; for2 <i <
n,bi <biy1forl <i<n-—1,a <bijforl<i<mn,andfor2<i<mandl<j<mn,a;l] b;.

Proposition 3 ([10]). Forn > 2, dim(W, ) = 2.

Proposition 4 ([10]). Let F be the range of a vertex labeling of 1-uniform dcsl path P,(n > 2),
which is embedded in Wy, then dim(F) = 2.

Lemma 1 ([3]). 64(Py) =n—1, forn > 2.

Lemma 2 ([10]). 6x(P,) = k(n — 1), forn > 2.

1 MAIN RESULTS

Since the existence of vertex labeling of 1-uniform dcsl graph is not unique, the problem
of determining posets which embeds the vertex labeling of 1-uniform dcsl of k-uniform cater-
pillar is same as determining the existence of different vertex labels f of 1-uniform dcsl of
k-uniform caterpillar whose corresponding range, say F = Range(f) forms a poset under
set inclusion C. Thus, there is a one to one correspondence between the vertex labeling f
of 1-uniform dcsl of k-uniform caterpillar and its corresponding poset F. Thus, it is always
possible to find a 1-uniform dcsl f of a graph G so that 7 = Range(f) forms a poset under
set inclusion C. Hence, F contains the vertex labeling f of 1-uniform dcsl graph G as an em-
bedding of itself. Hence, the problem of determining the 1-uniform dcsl vertex labeling f of
a graph G is equivalent in determining the poset / which embeds the 1-uniform dcsl vertex
labeling f of the same graph G.
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Definition 4. Let P = ({a1,...,a,}, <) be a poset. We define k-uniform extended poset or,
simply, k-extended poset of P, denoted by P* as

12 k 1 .2 k 1 2 k
({a1,aq,a1,...,a7,a0,05,05,05,...,0,,0,,05,...,0,}, =),

which is an extension of P, and for 1 < i < n, each k(> 1) elements a}, a?, .., ai-‘ of Pk
covers only a;. We call P as an underline poset of P¥.

Remark 1. It is interesting to note the following in a k-extended posets.

(i) If there exist any two distinct elements which belong to the same level in P¥, then they
are incomparable.

(ii) For each k(> 1) elements a}, 1112, e, ai-‘ of P¥ covers only a;, where1l < i < n. This
implies that there exist no element in P that covers any one of the k elements a}, a?, ..,
af . Hence, the k elements a}, 1112, ey, ai-‘ are maximal elements of PX. Thus, they are the nk

maximal elements, namely, aé inPf,1<i<nandl< j <k

Proposition 5. For any poset P (finite and connected) of size greater than 1, the k-extended
poset Pk (k > 1) of P, does not form a lattice.

Proof. If possible let, P¥ forms a lattice, then P¥ has unique glb and unique lub, say g and I
respectively. Since / is the lub of Pk, x < I, for every x € P*, which in turn implies one of the

element from the maximal elements a}q, a%, s, aﬁ of P¥ should be equal to , say, a}q. Hence for
2 <i < n,wehave a}, <[ which is a contradiction as remarked in Remark 1. O

Proposition 6. Let P be a linear order as of the form: a; 1 = a;, for 2 < i < n, then the
dimension of k-extended poset P¥(k > 1) of P is 2.

Proof. Let R = {Ly,L,} be linear extensions of P¥, where

L;: [al,a%,...,a’l‘,az,a%,...,aé,...,an,a}ﬂ...,aﬁ] and

Lo [a1,...,an,a5, ... ,ak, a5 (. .a ... a4 . . 4l

Then R is a realizer of P¥, and hence dim(P¥) < 2. We prove that there is no proper subset
S of R which realizes P¥. For, if there is a proper subset S of R which realizes P¥, then, the only
one member in S give rise to the poset P*, and hence, all the elements of P are comparable,

which is a contradiction. Hence dim (P*) = 2. O

Since the graph P k'is the extension of P,, the k-extended poset can embed the vertex
labeling of a 1-uniform dcsl k-uniform caterpillar only when its corresponding underline poset
embed the vertex labeling of a 1-uniform dcsl path.

Now, we aim to determine the dimension of k-extended posets which embeds the vertex
labeling of a 1-uniform dcsl of a k-uniform caterpillar.

Proposition 7. Let P be a linear order asa; 1 = a;, for2 < i < n, then the k-extended poset Pk
embeds the vertex labeling of a 1-uniform dcsl of the k-uniform caterpillar.

Proof. Let G = P;/* be the k-uniform caterpillar with n(k + 1) vertices, where n > 2 and k > 1.
Let V(G) = {v;,v} | 1 <i < n,1 < j < k}, where v; are the internal vertices and v} are the
pendant vertices which are adjacent to v;.
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First we claim that there exist a vertex labeling f of a 1-uniform dcsl of the k-uniform cater-
pillar, whose range is suitable for the embedding of k-extended poset P*.  Let
X = {1,2,...,n(k+1) —1}. Define f : V(G) — 2% such that f(v1) = @ and f(v;) =
{1,2,...,j—1},2<j<n For,1<i<nand 1 <j<k,

F@) = f@)U{(n=1)+ (i —Dk+j} = {1,2,..,i =1, (n—1) + (i — Dk +j}.
Case 1: Whenu =v;and v = v, =1 and 2 < m < n. Then,

|f(0)) @ flom)| =l @& {1,2,.... m—1} |=|{1,2,...,m =1} |=m —1 =d(v;, vm).
Case 2: When u = vy and v = vy, [ # m,2 <1, m < n. Then,

If(v)) ® f(om)] =] {1,2,...,1 -1} ®{1,2,...,m—1} |
= {lL,1+1,....m—=1} |=m—1=d(v,vy), 2<Il<m<n.

CaseS:Whenu:vlandv:v],‘n,l:1,2§m§n and 1 <j <k. Then,

|f(vl)@f(v7m)| =lge{l,2...m-1,n-1)+(m-1)k+j} | |
= {1,2,....m—1,(n—1)+ (m — Dk +j} |= m = d(v;, 7).

Case4:Whenu:vlandv:v£n,l;ém,2§l, m <n and 1 <j <k Then,

Iflo) @ fWh)] = {1,2,...,.1 -1} @ {1,2,...,m—1,(n —1) + (m — Dk +j} |
=[{LI+1,....m—1,(n—1)+ (m—1)k+j} |

:m—l—i-l:d(vl,v]m), 2<l<m<mnand 1<j<k

Case5:Whenu:v;andv:v{n,lzl,zgmgn and 1 <i,j <k Then,

£(0) & f(oh)| =] {(n = 1) + (I = 1)k +i}
®{1,....m—1,(n—1)+(m—1)k+j}|

= {1,....m—1,(n—=1)+(m—Dk+j,(n—1)+ (1 -Dk+i} |=m+1=d(,v),).
Case6:Whenu:vfandv:v£n,l7ém,2§l, m<mn and 1<1i,j <k. Then,

F©) @ f@h)| = {1, 1 =1, (0 = 1) + (I = Dk +1}
e{1,....m—1,(n—1)+(m—1)k+j}|
=[{(n-1)+I-Dk+ilI1+1,.,m—=1,(n—1) + (m —1)k+j} |
:m—l+2:d(vf,vin), 2<l<m<mnand 1<i<j<k

Hence, for any distinct u,v € V(G), |f(u) ® f(v)| = d(u,v). Thus, f is a 1-uniform dcsl of
G.

Now, to prove, F C Pk, where F is the range of f which forms a poset under ‘C" and P a
linear order as a;_1 = a;,2 <i < n. Define ® : F — P* as follows.
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Case 1. On the internal vertices v; of V(G), define ®(f(v;)) = a;.

Case 2. On the pendant vertices v} of V(G), define ®(f(v})) = al.

In Case 1, the corresponding vertex labels of a pair of internal vertices are comparable
where as in Case 2, for any pair of pendant vertices the corresponding vertex labels are incom-
parable. Hence, f(v;) C f(v;) in F if and only if a; < a; in PFand f(o7) || f(v%) in F if and
only if a! || a$ in P¥. Also, f(v;) C f(v}) in F if and only if a; < ) in PX and f(v;) || f(v5_ ) in
Fifand onlyifa; || ai_; in P*. Therefore, F C P*. O

Using Proposition 6 and Proposition 7, we have the following result.

Proposition 8. Let F be the range of a 1-uniform dcsl of the k-uniform caterpillar such that
F C PX, where P is a linear order of finite length. Then dim(F) = 2.

Remark 2. From Proposition 2 and Proposition 4, we have seen that the height-2 poset, H;
and width-2 poset, W, on “2n ’ elements embeds the vertex labeling of a 1-uniform dcsl path.
Choosing these posets as underline posets defined on “ n ’ elements, the corresponding k-
extended posets embedding, restricted to height-2 poset and width-2 poset on n elements,
give two subposets, namely min height poset (denoted by Min,) and avg height poset(denoted
by Avgu), respectively. Further, the poset Min, end up with bra1, when n is odd; ay if n is
even. Hence, Min, T H,. For the poset Avg,, Avg, T W,. For, without loss of generality,
consider the poset as ({ay, ..., aru)=ps by,..., by}, =) of width two consisting of two chains
A={m,...,ay} and B = {by,...,b,_,,} such thata; 1 preceqa; for2 < i < h, b; = b;;, for
1<i<n—-h—1,a 2bjforl<i<n-—handfor2 <i<handl <j<n-—h,al bj.
In particular, if the underline poset is of linear order, then it posses maximum height and by
Proposition 6, the k-extended poset of it has dimension 2.

Proposition 9. For a k-extended poset Min,,, dim(Min%) = 2.

Proof. We define the linear extensions L; and L, of Minﬁ, in two cases.
Case 1: When n is even. Consider,

. 1 k 1 k 1 k 1 k 1 k
Ll'[bllbll"'lb ,bz,bz,...,b ,...,b%,b%,...,b%,al,ﬂl,...,al,ﬂz,az,...,ﬂz,...,

an,alﬂ,...,alz]and

27 72 2

. k 1 k 1 k 1 1.k
L,: [b%,a%,b%_l,ag_l,...,bl,al,a%,...,a%,a%_l,...,a%fl,...,al,...,al,b%, ,

1 1k 1 k 1

b%,b%_l,...,b%_l,...,b,...,bl].

Since, these extensions intersect to yield the partial order on Mink, dim(Mink) < 2.
Case 2: When n is odd. Consider,

. 1 k 1 k 1 k 1
Ll . [bl’%",b"ﬂ],. . 'fb"n—"b’—%]*llb[%—‘—l""’b[%—‘—lf""bllb ,...,bl,a"%"il,a[%]_l,. ey

k 1k 1 k 1
Wil,a[%"il,b[%",al,...,al,az,...,az,...,a"%"il,...,a[%]_l,
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Clearly, these extensions produces a realizer of MinX, hence dim(Min¥) < 2. Following as
in the proof of Proposition 6, the dimension cannot be less than 2. Therefore, dim(Mink) =
2. O

Proposition 10. The k-extended poset Mink embeds the vertex labeling of a 1-uniform dcsl of
the k-uniform caterpillar.

Proof. Let V(P,’;) = {vy, v%, cee, v’l‘, U7, vé, ees, v’é e, On, 0,11, cee, v’;,}, where v; are the internal ver-
tices and v} are the pendant vertices which are adjacent to ;.

Let X = {1,2,...,w,...,n,...,m = n(k+1) — 1}, where w = [X{Eul7,

We claim that there exists a poset F which can be obtained from a vertex labeling of 1-
uniform desl caterpillar, that suits for the embedding of Mink.

Define f : V(PX) — 2%, on internal vertices, by

flo1)=A{12,...,w—1}, f(v2) ={1,2,...,w—1,w}, f(vs) ={2,...,w—1,w},
flog)={2,...,w—1Lww+1}, f(vs) =1{3,..., w,w+1},..., f(vn) ={w,w+1,...,n—1},

when 7 is odd; otherwise, f(v,) = {w,w +1,...,n}. In general, for 1 <i <,
£ (ot b1, w2, ifiisodd
;) =
l {§,§+1,...,§+w—1}, otherwise,
and on pendant vertices, vertex labeling is same, as in Proposition 7.
Case 1: When u = v; and v = v;; 1, where i is odd. Then,

1+1 i+1 z+1 i+1
[f(0i) @ f(vira)] =I{ Y —2} @ { w1} |
z+1
=[{ -1} |=1= d(vz-,vm)-
Case 2: When u = v; 1 and v = v;, where i is even. Then,
z+2 z+2 i i
|f(vig1) © f(vi)| =] { o tw=2te{y,... s tw—1} |

- {E} |=1=d(vis1,0;).

Case 3: When u = v;and v = vy, I # m, 1 <1, m < n and both | and m are odd. Then,

l+1 141, m+1 m+1
[f (o) @ f(om)] =I{ L tw=2b o oy tw =2}
_’{H—l m+1+w—2}\:m—l:d(vl,vm), 1<l <m<n.

2

Case 4: When u = vy and v = vy, I # m,1 <[, m < n and both [ and m are even. Then,

V@ﬂ@ﬂwﬂzHl-qé+w—H@{§ w1 |
—|{ m+w—1}|_ I=d(vo,om), 1<l<m<n.

Case5:Whenu:viandv:v§,1 <i<mnand1 <j <k Then,

Fo) @ FOD)] =] {n+ (i — Dk+ (= 1)} |= 1 = d(v;, ).
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Case 6: When u = v; and v = ©/ 1 <j<kandiisodd. Then,

i+17

flo @ (el =1 {5 rw—2)
o Lt Ok (- 1)

=] {izl +w—1n+@(k+(G-1)}1]=2 :d(vi,v{fﬂ).

Case 7: u = vjy1and v = vg, 1 <j<kandiiseven. Then,

z+2z—|—2 i+2
i) @ Fo)l =1 {5 5~ + 1 -+ w =2}
@{§,§+1,...,§+w—1,n+(z—l)k—{—(;—l)}|

= {5n+ (= Dk+ (i~ 1} [=2 = (o1, ).

Case 8: Whenu = vjand v = U’,.ﬂ,l #m,1 <1, m<mn,1<j<kandboth!and m are odd.
Then,

I+11+1 [+1

fe) @ flom) =l {————+1.... 5~ +w-2}
1 1 1 .
{%,%H,... %Hu 2+ (m—1)k+(j—1)} |
l 1 1 . '
—|{ + m; fw—2n+(m=Dk+ (=1} |=m—1+1=d(v, ),

1§l<m§n and 1 <j <k

Case 9: When u = v;and v = v],ﬁ,l #m,1 <1, m<n,1<j<kandboth!and m are even.
Then,

l

F@) @ fh)] =l {35+ 15 + 01}
D5 5 1w =L+ (= 1k+ (= 1)} |
g Bt w =Lt (m = Dk+ (G- 1)} |=m— 141 = d(oy, o)),
1<l<m<nand 1<j<k

Case 10: When u = v} and v = v} ;,1 <1, s < kand iis odd. Then,

i+17
FEh e feh)l =l {5 o =2 (i Dk (- 1))
{# l;1+w_1 nt (k4 (s — 1)} |

i+1

=|{n+(G-1Dk+(r—1), +w—1Ln+ ((k+(s—1)} |=3=d(v], v} ).
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Casell:uzvlf+1 andv =1v;,1 <r, s <kandiiseven. Then,
i+2 i+2 ,
f@h) e fEDl ={—= . 5 Fw=2n+({k+(r-1)}

@{%,...,%+w—1,n+(i_1)k+(]'_1)}|

= (G Dk + (= 1) m = Dk + (s = 1)} = 3 = d(e]y,7).

Case 12: When u = vf and v = vin,l #m,1 <1, m<mn,1<1i j<kandboth!and m are
odd. Then,

F@D @ foh)l = { w2 n (- Dk (- 1))

1 1 .
{’”; m; fw—2n4(m—1k+(—1)} |

4{ﬁ+1 ,m;1+W—Zn+U—Dk+ﬁ—DﬂH{m—Dk+U—DH

:m—l+2:d(vf,v{;1), 1<l<m<nand 1<4,j<k

Case 13: When u = vf and v = v],‘n,l #m,1 <[, m<mn,1<1i j<kandboth!and m are
even. Then,

f(0) @ (o) )I—I{ l w—1n+(I-1k+(i-1)}

EB{— §+w—1,n+(m—1)k+(]'—1)}]

—]{{ +w—1n+(l—1)k+(z—1)n+(m—1)k—|—(j—1)}]

:m—l+2—d(vl,v7), 1<l<m<nand 1<1i,j<k

Thus, for any distinct u,v € V(PX), |f(u) © f(v)| = d(u,v) and hence f admits 1-uniform
dcsl. Also, to prove F C Minﬁ, where F is the range of f, which forms a poset, we define
® : F — Mink as follows in two different cases.

a;, ifiiseven,

Case 1. On the internal vertices v; of V(P¥). ®(f(v;)) = ¢ ?
b.iy, otherwise.
5]
a]l , if i is even,

Case 2. On the pendant vertices UZ of V(PK). ®(f (v{))
b] otherwise.

(31

In Case 1, the internal vertex labeling of V(Pk), exhibits the embedding of F into the un-
derline poset of Mink; and in Case 2, the pendent vertex labeling of V(P), exhibits the em-
bedding of F into the outermost labeling of an underline set of MinX. Thus, all together, we

get F L Min’;,. O

Analogously, from Proposition 9 and Proposition 10, we have.
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Proposition 11. Let F be the range of a 1-uniform dcsl of the k-uniform caterpillar such that
F C Mink. Thendim(F) = 2.

Proposition 12. For the k-extended poset Avgk, dim(Avgk) = 2.

Proof. Let us take the linear extensions of Avgk as

. 1 k 1 k 1 k 1 k 1 k
Ly :[ay,aq,...,a7,az,05,...,05,...,45,a,...,45,b1,by,...,07,b2,b5, ..., b5,..., b, y,
1 k
b, ..., by_,] and
) k 1 k 1 k 1
L2 ~[a1/b1rb2r~'~/bn—h/a2r“vah/bnfhr"vbnfh/bnfhflr'“/bnfhflr"'/b ,...,b ,

k 1 _k 1 k 1
Ay @y @) gy Ay, 07, .., 07).

Then dimension of Avgk is at most 2. Again, as in Proposition 6 the dimension cannot be
less than 2. Hence dim(Avgk) = 2. O

Proposition 13. The k-extended poset Avgk embeds the vertex labeling of a 1-uniform dcsl of
the k-uniform caterpillar.

Proof. Let vy, v%, c, v’l‘, %y v%, e, v’é, ..., Un, 0}, ..., and 0¥ be the vertices of V(PF).

LetX ={1,2,...,h,...,n,...,m = n(k+1) — 1}, where h = [Lf”)'} To prove the ex-

istence of a poset F from a vertex labeling of 1-uniform dcsl of the k-uniform caterpillar, that
suits for the embedding of Avgk, define f : V(PX) — 2%, on internal vertices, by

fj) ={L...n=h=(j-1}, 1<j<n—h f(oyp1) =9,
foppri)={n—h+1,....on—h+(i—-1)},2<i<h

and we consider the vertex labeling on pendant vertices which is same as mentioned in
Proposition 7.
Case 1: Whenu =vjand v = vy, #m,1 <I <n—handm =n —h + 1. Then,

[f(@) @ flom)| =[{1,....n=h=(I-1)} DT |
=|{l,....n—h—(1-1)}|=n—h—(1-1) =d(v,vm).

Case 2: Whenu =vjandv =vy, l #m,n—h+2 <l <nandm =n —h+ 1. Then,

[f) ® flom)| =[{n—h+1,....1-1}® 2|
=l{n—h+1,..,I-1=n—h+(1-—m)}|=1—m=d(v,vm).
Case 3: Whenu =vjandv =vy,,l #m,1 <I<n—handn—-h+2 <m < n. Then,

1f(0o)® flom)| = {1,....n—h—(1-D}d{n—h+1,...,m—1}|
=|{1,....n—h—(1-1),n—h+1,.... m—1} |=m—1=d(v;,vp).

Case4:Whenu:vlandv:vin,l;ém,l§lSn—h,m:n—h+1and1§j§k.Then,

f) @ flow)] = {l,....n—h—= (=1} & {n—1+(m—1)k+j} |
= {1,...n—h—(1=-1),n—14+m—Dk+j} |=m—1+1=d(0,0)).
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Case5:Whenu:vlandv:vin,l#m,n—h+2§lgn,m:n—h—l—landlgjgk.

Then,

F@) & f@h)| = {n—h+1,...,1-1}& {n -1+ (m—1k+j} |
= {n—h+1,.... 1 —L,n—14+(m—-Dk+j}|=1—m+1=d(v),v}).

Case6:Whenu:vlandv:v£n,l#m,l§l§n—h,n—h+2§m§nand1§j§k.

Then,

(o) @ flom)] =] {1,.. —(-D}e{n—-h+1,....m=1Ln—-1+(m—1)k+j} |
=/{1,.. —(I-1),n—h+1,...,m —1,n—1+(m—1)k—|—j}]
:m—l—l—lzd(vl,v]m).

CaseZWhenu:vfandv:vin,l#m,l§l§n—h,m=n—h+1and1gi,jgk.

Then,

f() & f@h)] =] {L,.. —(I-1),n=1+(I-Dk+i}@&{n—-1+(m—-1)k+j}|
=/{1,.. —(I-1),n—1+(I-Dk+in—1+(m—1)k+j} |
:m—HQ:deM.

CaseS:Whenu:vfandv:vin,l;ém,n—h—i-ZSl§n,mzn—h+1and1§i,j§k.
Then,

Fo) @ foh) = {n—h+1,..,1—L,n—1+(1—Dk+i}d{n—1+ (m—1)k+j}|
= {n—h+1,..,0-1n—14+(1-Dk+in—1+(m—1Dk+j} |=1—m+2=d0,0),).

CaseQ:Whenu:vfandv:v],‘n,l7ém,1glgn—h,n—h+2§m§nand1 <j<k
Then,

V@D@f@@]ﬂ{L””n—h—a—iyn—1+a—1ﬁ+ﬂ

@{n—h+1 m—1,n—14+(m—1)k+j} |

=[{1,.. - (I-1)n=14+(I-1k+in—h+1,.... m—=1,n—1+ (m—1)k+j} |
:m—l+2—d(vl,z/)

Thus, for any distinct vertices u,v € V(PF), |f(u) @ f(v)| = d(u,v), and hence f admits
1-uniform decsl.

Finally, to prove F C Avgk, where F is the range of f, which forms a poset, define ¥ : 7 —
Avgk as follows.

b'/ h 1<i< — h,
Case 1. On the internal vertices v; of V(PZ,‘), Y(f(v;)) = { i whenl <i<n

Ai_(n—p), otherwise.

b{:, whenl <i<n-—h,

j

Ti(n—ny
In Case 1, we can identify the internal vertex labeling of V(P¥), as the embedding of F

into the underline poset of Avgk. In Case 2, the pendent vertex labeling of V(Pk), list the

embedding of F into the outermost labeling of an underline set of Avgk. Thus, from Case 1

and Case 2, we get F C Avg’,g. O

Case 2. On the pendant vertices vf of V(PK). ®(f (v{)) = { _
otherwise.
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The following result follows from Proposition 12 and Proposition 13.

Proposition 14. Let F be the range of vertex labeling of a 1-uniform dcsl k-uniform caterpillar
such that F C Avgk. Then dim(F) = 2.

Theorem 1 ([7]). If T is a tree!, then dim(T) < 2 unless T contains one or more of the trees |,
and |, or their duals as subposets.

Theorem 2. Let F be the poset. Then there exists a 1-uniform dcsl f (the vertex labeling of a
k-uniform caterpillar) such that F = Range(f) = {f(v) | v € V(PX)}, wheren > 2 and k > 1,
and dim(F) = 2.

Proof. Let f be a vertex labeling of 1-uniform dcsl k-uniform caterpillar on ‘n(k + 1)’ vertices,
where n > 2 and k > 1, other than the labeling which is mentioned in Proposition 7, Proposi-
tion 10 and Proposition 13, respectively, and let F be the range of f. Hence, F = Range(f) =
{f(v) | v € V(P¥)}, is a poset.

We prove that dim(F) = 2.

Since the Hasse diagram of F is a tree, from Theorem 1, we have dim(F) < 2. But, dim(F)
is never less than 2. For, if it is of dimension 1, then the Hasse diagram of it resembles a path,
which is not possible. Hence, dim(F) = 2. O

Recall that [3] the minimum cardinality of the underlying set X such that G admits a 1-
uniform dcsl is called the 1-uniform dcsl index 6,4(G) of G. Following discussion is an attempt
to establish the relationship between the 1-uniform dscl index of a k-uniform caterpillar and
the dimension of the poset 7 = Range(f) = {f(v) | v € V(PX)}, wheren > 1and k > 1.

Lemma 3. The I-uniform dcsl index of PX (n > 1, k > 1) isn(k+1) — 1.

Proof. Let V(PF) = {vl,v%, .. .,vll‘,vz, v%, .. .,v’é, e, Un,0L,..., 0}, and let f be the dcsl label-
ing of Pk with the underlying set as X. First, we claim that | X |> n(k+ 1) — 1. By Lemma 1,
the 1-uniform dcsl index of P, is n — 1, and hence for the internal vertices of P,’j, the dcsl index
is n — 1. For the remaining ‘nk’ vertices (pendant vertices), we need to have atleast ‘nk” subsets
of X other than the subsets which has already been labeled for the internal vertices. Hence, the
cardinality of X is atleast nk 4+ n — 1. By Proposition 7, the vertex labeling of 1-uniform dcsl of
P with underlying set X is of cardinality n(k 4+ 1) — 1. Hence, 6;,(P%) = n(k +1) — 1. O

In Propositions 7, 10 and 13, the existence of different vertex labeling of 1-uniform dcsl of
k-uniform caterpillar and their embedding in respective posets have been established.
In the following theorem we determine the bounds of the poset F, where

F = Range(f) = {f(v) | v € V(PK)}.

Theorem 3. Let F be the poset which is the range of a 1-uniform dcsl of the k-uniform cater-
pillar, with respect to set inclusion ‘C”. Then, dim(F) < 6;(P¥).

Proof. Let f be a 1-uniform dcsl of PX(n > 1, k > 1), such that F = {f(v) | v € V(P¥)} forms
a poset with respect to set inclusion ‘C’. Depending on the number of vertices of V(PF), we
prove the theorem for the following four cases.

! we call a poset is a tree if its Hasse diagram is a tree in the graph theoretic sense.
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Case 1: When n = 1 and k = 1. In this case, the poset F is isomorphic to a poset which
is a chain of length 1, and hence dim(F) = 1. But by Lemma 3, 5d(P11) = 1. Thus, we have
dim(F) = 54(PK).

Case 2: When n = 2 and k = 1. By Lemma 3, we have 6;(P}) = 3. Also F is isomorphic
to any of the four posets namely, a poset which is a chain of length 3, poset Avgy, poset Avgy
or poset P!, where P is a chain of length 1. If F is isomorphic to chain of length 3, then
dim(F) = 1, and hence dim(F) < 54(P¥). If F = Avgy, then by Proposition 14, dim(F) = 2,
and hence dim(F) < 6;(P¥). Since, for a poset P, dim(P) = dim(P) (see [7]), so if F = Avg,
then dim(F) = dim(F) = dim(Avgy) = 2. Thus, dim(F) < 64(Pk). If F = P!, where P is a
chain of length 1, then by Proposition 8, dim(F) = 2, and hence, dim(F) < 5,(Pk).

Case 3: When n > 3 and k > 1. In this case, we prefer k-extended posets that embeds F, as
it is not easy to predict all the variations of the poset F. Thus, based on the underline posets
of the k-extended posets, since by Lemma 3, 6;(PX) = n(k +1) — 1, it is enough to consider the
following subcases under Case 3.

Case 3.1: 1f the underline poset is a linear order of finite length, say L : 4,1 < a;, for
2 < i < n, then by Proposition 8, dim(F) = 2. Hence 6;(PX) > dim(F).

Case 3.2: If the underline poset is isomorphic to Min,, then by Proposition 11, dim(F) = 2.
Hence dim(F) < 64(Pk).

Case 3.3: If the underline poset is isomorphic to Avg,, then by Proposition 14, dim(F) = 2.
Hence dim(F) < 54(PX).

Case 4: When the poset F is not isomorphic to either P¥, Mink or Avgk. We have from
Theorem 2, dim(F) = 2 and, by Lemma 3, §;(P¥) = n(k +1) — 1, hence dim(F) < &,(P).
Thus in all the cases we get dim(F) < 6;(P¥). O

Theorem 4. The k-uniform caterpillar PX admits a k-uniform dcsl.

Proof. Consider G = PX with n(k 4 1) vertices, say vl,v%, .. .,vll‘, Vo, v%, .. .,vé, O

and oX. Let X = {1,2,...,h,...,n,...,n(k+1) —1,..., k(n(k+1) = 1)}.
Define f : V(G) — 2X by f(v1) = @, f(v;) = {1,2,...,(i — 1)k} for 2 < i < n, and for
1<i<k,

f@) = flo)U{(n=Dk+ (G —-1k+1,...,(n =Dk + (i — 1)k +k},
f(@h) = fw)U{(n—Dk+K 4+ (Gi—-1k+1,...,(n =Dk +k*+ (i — 1)k + k} and
f(@,) = f(oa)U

{(n=Dk+ -+ (G —-Dk+1,...,(n—Dk+ (n —1)K* + (i — 1)k + k}.
In general, forl1<i<mand1l <j<k,
@) =flo)u{n—Dk+ G-+ (G—Dk+1,...,(n—Dk+ (i — DK+ (j — Dk + k}.

1

Case 1: Whenu = v;and v = v, =1 and 2 < m < n. Then,

[f() @ f(om)| =| @&{L,2,...,(m—1)k} |
=4{1,2,...,(m =1k} |= (m — 1)k = kd(v;, o).

Case 2: When u = v;and v = vy, I #m,2 <1, m < n. Then,

|f(v)) @ flom)| =] {1,2,...,(I =Dk} ®{1,2,...,(m —1)k} |
= {(l-1)k+1,...,(m=1Dk} |= (m— Dk =kd(v;,vm), 2<I<m<n.
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CaseS:Whenu:vlandv:v{n,l:1,2§m§n and 1 <j <k. Then,

(@) ® f(@h)]
= o®{1,2,...,(m—1Dk,(n+j—2k+(m—-1Dk*>+1,...,(n+j—2)k+ (m —1)k* +k} |
= {1,2,...,(m =Dk, (n+j—2)k+ (m -1k +1,...,(n+j—2)k+ (m —1)k* +k} |

=m—-1+1)k= kd(vl,v{‘n).
Case 4: When u = v; andv:v{‘n,l #m,2 <1, m<n and 1 <j <k Then,

£ (o) ® f (o)

= {1,2,...,0-Dk}@{1,2,...,(m =Dk, (n+j—2)k+ (m -1k +1,...,
(n+j—2)k+ (m—1)k*+k} |
=[{(I-Dk+1,...,(m=1Dk,(n+j—2)k+(m—-1k*+1,...,
(n+j—2)k+ (m—1)k* +k} |

=(m—1+1)k=kd(v,v),), 2<l<m<nand 1<j<k
Case5:Whenu:vfandv:v{n,l:1,2§m§n and 1 <i,j <k. Then,

F(0)) @ F(o})]
=[{n—Dk+(G—-Dk+1,...,(n—1k+ (i —-1k+k}®{1,...,(m—1)k,
m—Dk+m—-D)+(G-Dk+1,...,(n —Dk+ (m —1)k* + (j — Dk +k} |

=[{1,...,(m =Dk, (n—Dk+(m -1k +(j—-Dk+1,...,
m—Dk+m—-1D)+(G—-Dk+k(n—Dk+(G—-Dk+1,...,(n —k+ (i — 1)k +k} |
= (m—l—{—Z)k:kd(vf,vZn).

Case6:Whenu:vfandv:v£n,l7ém,2§l, m<mn and 1 <1i,j <k Then,

(@) @ f(vh)

= {1,...,0-Dk,n-Dk+(1-DE*+({(-Dk+1,...,
m—Dk+(I-D+(—-Dk+ky{1,...,(m =1k, (n — Dk + (m —1)K>+
(G—Dk+1,...,(n—Dk+ (m—1)k*+ (j — Dk +k} |

=[{(n—Dk+(I =D+ (i -1Dk+1,...,(n—Dk+ (1 —1)k*+ (i — 1k +k,
(I—=Dk+1,...,(m— 1Dk, (n —Dk+(m -1+ (- 1k+1,...,
(n—1Dk+(m—1)k*+ (G —1Dk+k} |

=(m—1+2k=ki(v),v},), 2<l<m<nand 1<i<j<k

Hence, for any distinct u,v € V(G), |f(u) ® f(v)| = kd(u,v). Which shows that f admits
k-uniform dcsl. ]

Lemma 4. Forn > 1,k > 1,6 (P%) = k(n(k+1) — 1).
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Proof. Let V(PX) = {vy,0},..., 05 00,0),...,08, ..., 0,0}, ...,0K}, and let f be the dcsl label-
ing of PX with the underlying set as X. By Lemma 2, the 1-uniform dcsl index of P, is k(n — 1),
which implies that for internal vertices of PX, the required dcsl index is k(1 — 1), where as for
remaining ‘nk’ vertices (pendant vertices), we need at least ‘k*n’ subsets of X other than the
subsets which has already been labeled. Hence the cardinality of X is atleast k1 + k(n — 1).
Since by Theorem 4, P is a k-uniform dcsl with underlying set X of cardinality k(n(k +1) — 1),
thus we have, 6 (PX) = k(n(k +1) —1). O

Theorem 5 ([4]). If G is k-uniform dcsl, and m is a positive integer, then G is mk-uniform dcsl.

It has been already established in [4] that path admits arbitrary k-uniform dcsl labeling and
k-uniform dcsl index, & (Py) is k times that of 1-uniform dcsl index. In this paper, this result
is extended to a k-uniform caterpillar, and we prove that the k-uniform dcsl index, 5 (P¥) is k
times that of the 1-uniform dcsl index of k-uniform caterpillar. It is interesting to note that the
range of any arbitrary k-uniform dcsl of a k-uniform caterpillar, PX need not form a connected
poset. However, there always exists a k-uniform dcsl of P¥, whose range is a connected poset.
Hence, the Hasse diagram (or poset) which embeds the vertex labeling of 1-uniform dcsl P¥,
can also embed the vertex labeling of k-uniform dcsl PX. Hence, for such postes the dimension
corresponding to 1-uniform dcsl PX and the dimension corresponding to k-uniform dcsl P are
same. Thus, we have the following theorem.

Theorem 6. If F is the range of a k-uniform dcsl of the k-uniform caterpillar P,’j (n>1k>1),
that forms a poset with respect to set inclusion ‘C’, then, dim(F) < &;(PF).

Proof. Proof is immediate from Theorem 5, Lemma 4 and Theorem 3. O
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Harecsapa Pao K., I'epmina K.A., Maiui IT. [Tpo posmipricme mapryeanns sepuiut k-o0HopioHoeo desl
k-00nopidnoz0 epagpa // Kapmarceki maTem. my6a. — 2016. — T.8, Nel. — C. 134-149.

CymicHe 3 BiacTaHHIO MHOXIHHe MapKyBaHHsI (dcsl) 3B’s13H0TO rpadpa G € iH'eKTMBHMM Bia06pa-
xenHsM [ : V(G) — 2X re Xe HEIOPO>KHOIO 6a30BOI0 MHOXXMHOIO TaKoIo, III0 BiATIOBiAHA iHAY-
xosana dynkuis f¢ : E(G) — 2%\ {@}, saaana pisnictio f€(uv) = f(u) ® f(v), 3ar0BOAbHSE
| £ (uv) |= k{u/v)dc(u,z;) AAST AOBIABHOI TTapy pisHmx BepumH u,v € V(G), ae dg(u, v) mosHauae

BiACTaHb MIX U 10 Ta k{u,v)
KyBaHHS f Tpadpa G € k-oAHOpiAHMM, SKIIO Bci KoedpillieHTM MPOMOPIIHOCTI BiAHOCHO f piBHi k,
i sxmo G AOMycKae Take MapKyBaHHS, To G HasMBalOTh k-oaAHOpiaHMM desl rpadpoM. k-00HopioHuil
dcsl indexc rpadpa G, 1o mosHavaeTocst O (G), € MiHIMaABHIM cepea TOTy>XHocTel X, Ae X mpobirae
Bci k-oaHOpiaHi dcsl-mHOXMHM rpada G. Ainiiine posusupents L dactkoBoro mopsiaky P = (P, <)
€ AlHIVHMM MOPSIAKOM Ha eaeMeHTax i3 P Takmm, mo 3 x = ¥ B P caiaye, mo x = y B L aAAs Bcix
x,y € P. Posmipricts MHOXMHEM P, siKa mosHayaeThcst dim(P), e MiHIMAABHMM UMCAOM AiHITHIX
posumpens Ha P, mepetus sikmx € ‘=<’. V wiit crarTi My a0BoAMMO, 1o dim (F) < 8 (P, k), ae Fe
o6pasom k-oaropiatoro dcsl k-oaHopiazoro rpadpa, mossaueroro PFF (n > 1,k > 1) ma ‘n(k + 1)
BepIIMHaX.

€ WICAOM, He 060B’s13K0B0 IiauM. CyMicHe 3 BiACTAHHIO MHOXIHHE Map-

Kntouosi cnoea i ppasu: k-oaHopiammit desl iHAeKC, po3MipHICTD MHOXWHM 3 YaCTKOBUM TTOPSIA-
KOM, peIIIiTKa.
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APPROXIMATION RELATIONS ON THE POSETS OF PSEUDOMETRICS AND OF
PSEUDOULTRAMETRICS

We show that non-trivial “way below” and “way above” relations on the posets of all pseudo-
metrics and of all pseudoultrametrics on a fixed set X are possible if and only if the set X is finite.
Key words and phrases: pseudometric, pseudoultrametric, way below, way above.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: svyatoslav.nyk@gmail.com

INTRODUCTION

It turned out (see [1]) that partial orders are closely related to topologies, in particular, a
“decent” ordering of a set determines quite natural and useful topologies, e.g., Scott topology,
upper/lower topology, Lawson topology etc. For these topologies to have nice properties, the
original order has to satisfy certain requirements, mostly related to approximation relations.

Recall that a poset (D, <) is directed (resp. filtered) if for all d1,d> € D thereis d € D such
that dq,dy <d (resp. di,dp > d).

Definition 1. An element x is called to be way below an element x; (or approximates x; from
below) in a poset (X, <) (denoted xy < x1) if for every non-empty directed subset D C X such
that x; < sup D there is an element d € D such that xo < d.

Definition 2. An element x is called to be way above an element x1 (or approximates x1 from
above) in a poset (X, <) (denoted x > x1) if for every non-empty filtered subset D C X such
that x1 > inf D there is an element d € D such that xo > d.

Obviously xg < x;1 or xg > x1 imply respectively xp < x7 or xg > x7 (see more in [1]).

A poset is called continuous (dually continuous) if each element is the least upper bound
of all elements approximating it from below (resp. the greatest lower bound of all elements
approximating it from above).

We are going to apply the above apparatus to the set of all pseudometrics on a fixed set, and
to its subset that consists of all pseudoultrametrics. Ultrametrics (or non-Archimedean metrics
[2]) are studied since the beginning of XX century, cf. a review in [3]. They found numerous
applications, e.g., in computer science.

Monotone families of (pseudo-)ultrametrics were studied in [4], but approximation rela-
tions were out of the scope of the latter paper.

The following notion is a natural mixture of ones of ultrametric and pseudometric.

YAK 515.124
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Definition 3. A mappingd : X x X — R, that satisfies the conditions:

d(x,y) > 0 forall x,y € X (nonnegativeness);

d(x,x) =0 for all x € X (identity);

d(x,y) =d(y, x) for all x,y € X (symmetry);

d(x,y) <max{d(y,z),d(z,x)} forall x,y,z € X (strong triangle inequality);
is called a pseudoultrametric on the set X.

It is just a pseudometric such that the usual triangle inequality d(x,y) < d(y,z) + d(z, x)
holds in a stronger form.

The main results of this paper are somewhat disappointing, but they show that, to obtain
meaningful theory of approximation, narrower classes of pseudometrics should be considered.

1 POSET OF PSEUDOMETRICS

We denote by Ps(X) the set of all pseudometrics on a set X. The partial order on Ps(X)
is defined pointwise: a pseudometric d; precedes a pseudometric d, (written dy < dp) if
di(x,y) < dp(x,y) holds for all points x,y € X.

Obviously the trivial pseudometric d = 0 is the least element of Ps(X), hence Ps(X) is
bounded from below. The greatest lower bound for two pseudometrics is described with the
following statement.

Lemma 1. Fordy,d, € Ps(X) the function

n—1
di(x,y) = inf{ Z{min{dl(tk, tee1), do(te, tee1) P Hm € N, x = to, {1, oo tno1} C X by = y}
k=0

is the infimum of dy, d, in the set Ps(X).
Proof. Properties of symmetry and identity clearly hold for d.. To verify the triangle inequality
d.(x,y) < du(x,2) + . (z,y),

recall that (after renumbering points in the second sum)
m
di(x,z) +di(z,y) = inf{ ) {min{d; (t, 1, t), do(te1, t) }|
k=1

me N, to,tr,...,tm € X, x =to, bty =2z}

n
—i—inf{ Z min{dl(tk,l,tk),dz(tk,l,tk)}]
k=m+1

mneN,I<m<n—1ty,... th1,tn € Xty =21t =y}
n

> inf{ ) {min{dy (t_1, 1), d2(tx—1, tx) }|
k=1

mneN,1<m<n—1ty,... thy_1,tn € X, to =%ty =2,t, =y}

n
> inf{ ) {min{d; (tx_1, 1), d2(tx—1,t) }|
k=1

neN,ty,... th1,th € X, to=xty =y} =du(x,y).



152 NYKOROVYCH S.

Hence d.. € Ps(X).

The simplest sequence f, t1,...,d, that satisfies the above conditions is ty = x, t; = y (for
n = 1). Itimplies d.(x,y) < min{d;(x,v),d2(x,y)}, i.e., d. is a lower bound of the pseudomet-
rics dy, d.

Show that d, is the greatest lower bound. For all x,y € X and d’ € Ps(X) such thatd’ < d,,
d’ < d, we obtain

n
d'(x,y) =inf{ ) d'(ti_1,ti)|n € N, to, ..., ty_1,tn € X, tg = X, ty = y}
k=1
n
<inf{ ) {min{dy (ty_1, 1), do(tx—1, ) }n € N, to, ... ty_1,tn € X, to = X, ty =y}
k=1

= d.(x,y).
O

The least upper bound of pseudometrics dj,dy is the pointwise minimum
d*(x,y) = max{(dy(x,y),d2(x,y)} for all x,y € X, thus Ps(X) is a lattice with the least el-
ement d = 0, but obviously without a greatest element for |X| > 1. Being a lattice, Ps(X) is
both directed and filtered.

This lattice is not distributive.

Example 1. Consider, e.g., the set X = {x1, X, x3} and the pseudometrics

0, {a,b} ={xy,x3} 0ra=,

1 otherwise,

dl (ll, b) = {

dz(g’ b) _ 0, {El, b} = {xl, X3} ora = b’
1  otherwise,

d3(g’ b) _ 0, {El, b} = {xl, XZ} ora = b’
1  otherwise,

foralla,b € X. Then

0, a=b,
v hence (d; V dy) A ds = ds.
1 otherwise,

dy V da(a,b) = {

On the other hand
di Nd3 =dp Nd3 =0, hence (dy ANdz) V (dp ANd3) = 0.
Therefore (dl V dz) Nds # (dl VAN d3> V (dz VAN dg)

Not having a greatest element, the lattice Ps(X) cannot be complete. Nevertheless, it is
straightforward to verify that Ps(X) is a conditionally complete upper semilattice, i.e., each
non-empty set D of pseudometrics that is bounded from above by a pseudometric dy has a
supremum which is calculated pointwise: (sup D)(x,y) = sup{d(x,y) | d € D} forall x,y €
X. The latter supremum exists because the set in the curly braces is bounded by dy(x,y). The
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infimum of a set D (which is always bounded from below by dy = 0) is similar to the one in
Lemma 1:

n
(infD)(x,y) = inf{z inf{d(ty_1,tx) |d € D} | n € N,x =to, {t1, ... th_1} C X, ty = y}.
k=1
Thus Ps(X) is a complete lower semilattice.
Let us start with a simple but important observation.

Lemma 2. Let pseudometrics dy,d; in X be such thatdy(x,y) > di(x,y) > 0 for some x,y € X.
Then neither dy < dq nor dy > d is valid.

Proof. Choose the set D = {(1 —1).d;|n € N} of pseudometrics. It is directed, its supremum
is equal to dy, but (1 — 1) -dy(x,y) < d1(x,y) < do(x,y), hence (1 — 1)d; % dy, thus dy £ dj.

Similarly the set D’ = {(1+ 1) -dy|n € N is filtered with the greatest lower bound dy, but
neither of its element precedes d;, hence d; % d. O

It is easy to see that pseudometrics on a finite set are in the “way below” relation if and
only if the above double inequality does not hold for all pairs of points.

Proposition 1. For pseudometrics dy and d; on a finite set X the following statements are
equivalent:

(1)dy < dq in PS(X),‘

(2)dy > dp in Ps(X);

(3) forall x,y € X eitherdy(x,y) =d1(x,y) = 0ordy(x,y) < dy(x,y) is valid.

Proof. (1) = (3) and (2) = (3) have already been proved. To show (3) = (1), assume that
the condition of the theorem holds for some dy, d; € Ps(X), and a directed set D C Ps(X) is
such that sup D > dq, hence sup{d(x,y) | d € D} > dy(x,y) for all x,y € X. For all pairs
x,y € X such that dy(x,y) > 0 (and hence dq(x,y) > do(x,y)) choose an element d,, € D such
that d,,(x,y) > do(x,y). The set of the chosen elements of D is finite, D is directed, hence
there is d € D that succeeds all dy . Obviously d > dy, thus dy < d;.

Proof of (3) = (2) is analogous. O

Unfortunately, for an infinite set X conditions of the latter proposition are necessary but
not sufficient.

Example 2. Consider X = IN with the standard metricd(x,y) = |x — y| and the set of pseudo-
metrics D = {d;|i € N},
=yl %y <i
dny) = 1T S
li—yl, x>iy<i
0, X,y > 1.

It is directed because i < j implies d; < d;, and sup{d; | i € N} = d. For the metric
d' = 1d and all points x,y € IN we have either d'(x,y) = d(x,y) = 0 ord’(x,y) < d(x,y) but
d'i,i+1)= % > d;(i,i+ 1) = 0, hence neither of d; succeeds d’.

We describe a construction of a pseudometric that precedes a given one, and is obtained by
“gluing” points. In what follows we denote d(x, F) = inf{d(x,y) | y € F}.
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Lemma 3. Letd € Ps(X) and subset F C X be non-empty. Then the functiondr : X x X — R
that is determined with the formula

dr(x,y) = min{d(x,y),d(x,F) +d(y,F)}, xy€X,

is a pseudometric on X, and dr < d. If the set F is bounded, then d(x,y) — d}(x, y) < diam F
forallx,y € X.

Proof. Check the prorerties from the definition of pseudometrics for arbitrary x,y,z € X:
(1) dp(x,y) > 0 because d(x,y) > 0id(x,F) +d(y,F) > 0.
(2) dp(x, x) = min{d(x, x),d(x,F) +d(x,F)} = 0.
(3) dp(x,y) = min{d(x,y),d(x,F) +d(y,F)} = min{d(y, x),d(y,F) +d(x,F)} = dp(y, x).
(4)
dp(x,z) +de(z,y)
= min{d(x,z),d(x,F) +d(z,F)} + min{d(z,y),d(z,F) +d(y,F)}
= min{d(x,z) +d(z,y), (d(x,z) + d(z,F)) +d(y, F),
(d(z,y) +d(z,F)) +d(x,F),d(x,F) + d(z,F) +d(z,F) +d(y, F)}
> min{d(x,y),d(x,F) +d(y,F),d(y,F) +d(x,F),d(x,F) +d(y,F) +2d(z,F)}
= min{d(x,y), d(x, F) +d(y, F)}.
Thus dr is a pseudometric.
Now for arbitrary ¢ > 0 choose z,z" € F such thatd(x,z) < d(x,F) +¢,d(y,z') <d(y,F) +
e. Hence
d(x,F)+d(y,F) >d(x,z) +d(y,z) —2e > d(x,z) +d(y,z) —d(z,2') — 2¢
>d(x,z) +d(y,z) —diam F — 2e > d(x,y) — diam F — 2,
thus
dr(x,y) > d(x,y) — diam F — 2,
then passing to the limit as ¢ tends to 0 we obtain the required inequality. O

Theorem 1. For all pseudometrics dy,d1 on an infinite set X, dy > dy is not valid in Ps(X). If
dy # 0, then dy < d; also does not hold.

Proof. Let dy be way above d;. Choose a sequence x1,xp,--- € X of distinct points and put
am = max{do(x;,x;) | 1 <i,j < m}+mforall m € N. The sequence (& )nen is increasing,
and the functions

0, a=bora,b¢ {xm Xpmi1,.--},
o a, o a=x;Ab=1x;i,]>m,
Sm(a,b) = max{if} ! 7& J a,beX,
a, a=x;,i>mb¢ {XmXmi1,.--}
orb=x;,i>mad¢ {xm Xpi1,---}
are pseudometrics and even pseudoultrametrics. It is easy to see that 6 > 6, > ...,

inf{d,, | m € N} =0 < dy, butd, £ do(e.g., om(Xm, Xmt1) = &1 > do(Xm, Xpm+1))- Therefore
do 3 dy.
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Assume now dy < di, dg # 0. Choose a sequence xp, x1,xp,--- € X of distinct points
such that dy(xg, x;) > 0 for all i € IN. Denote F; = {xo, Xj, Xj 11, Xit2,.-- },i > 1. Let d’ be the
pseudometric on X:

Or ﬂ,bé {x()rxlr"'}r

i—jl, a=x,b=x,

d (a,b) = x,y € X.

i, a=x;,bd¢ {xg,x1,...}
ora ¢ {xg,x1,...},b=x,
Show that the pseudometric p = di + d’ > d; is the least upper bound of the non-decreasing

sequence of pseudometrics p; = gr,. Clearly p(a, F; \ {xo}) — c0asi — co for all points a € X,
hence p(a, F;) — p(a, xp), and

or,(a,b) — min{p(a,b), p(a, x0) + p(b, x0)} = p(a,b).

On the other hand, none of p; succeeds dj because p;(xg, x;) = 0 but dy(xo, x;) > 0. There-
fore dj is not way below d;. O

Thus there is no non-trivial approximation in Ps(X) for infinite X.

2 POSET OF PSEUDOULTRAMETRICS

Consider the subset PsU(X) C Ps(X) that consists of all pseudoultrametrics on X, with
the restriction of the partial order. It is also a lattice, with the meets (the pairwise infima)
calculated pointwise as well, but the formula for the joins (the pairwise suprema) needs to be
modified. For dq,d, € PsU(X) the function

di(x,y) = inf{max{min{d (ty, tx+1), da(tx, tks1)} [ 0 <k <n —1}]
neN,x=ty{t, . thio1} C X th =y}
is the infimum of dy, d; in the set PsU(X). The formula for the infima of arbitrary sets is
modified accordingly. The pseudometrics in Example 1 are pseudoultrametrics, hence the
lattice PsU(X) is not distributive as well.

Mutatis mutandis we obtain a similar result on approximation relations in PsU(X) for a
finite set X.

Proposition 2. For pseudoultrametrics dy and dy on a finite set X the following statements are
equivalent:

(1)dy < dq in PSU(X),’

(2) dy > dg in PsU(X);

(3) for all x,y € X eitherdy(x,y) = di(x,y) = 0ordy(x,y) < dq(x,y) is valid.

Nonetheless, the transfer of Theorem 1 to pseudoultrametrics is not so trivial. We need to
modify Lemma 3.

Lemmad4. Letd € PsU(X) and subset F C X be non-empty. Then the functiondr : X x X — R
that is determined with the formula

dr(x,y) = min{d(x,y), max{d(x,F),d(y,F)}}, xy€X,

is a pseudoultrametric on X, and dp < d. If the set F is bounded, then
d(x,y) < max{dr(x,y),diam F} forall x,y € X.
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Proof. Only the triangle inequality has to be verified. For arbitrary x,y,z € X:
(4)
max{dr(x,z),dr(z,v)
= max{min{d(x, z), max{d(x, F),d(z, F)} }, min{d(z,y), max{d(z, F), F)}}}
— min{max{d(x,2),d(z,y)}, max{d(x,2), d(z, F), d(y, F)},
max{d(z,y),d(z, F),d(x, P)} max{d(x,F),d(z,F),d(z,F),d(y,F)}}
> min{d(x,y), max{d(x, F),d(y,F)} }.
Thus dr is a pseudoultrametric.
Now for arbitrary € > 0 choose points z,z’ € F such that d(x,z) < d(x,F) +¢,d(y,2') <
d(y, F) + ¢. Hence
max{d(x,F),d(y,F)} > max{d(x,z) —¢,d(y,z') — e} = max{d(x,z),d(y,z")} —
> max{d(x,z),d(y,z),d(z,Z')} —¢,

thus
max{ diam F, dr(x, y)}
> max{diam F, min{d(x,y), max{d(x, z),d(y, z), d( —e}}
= min{max{diam F, d(x, y) }, max{diam F, d(x,z) — e,d(y, ) —ed(z,2') —e}}
> max{diam F,d(x,y)} —
for all € > 0, hence max{diam F, dr(x,y)} > d(x,v). O

Now we are ready to prove

Theorem 2. For all pseudoultrametrics dy,d; on an infinite set X, dg > d; is not valid in
PsU(X). Ifdy # 0, then dy < dy also does not hold.

Proof. Recall that the pseudometrics 6,, used in the proof of Theorem 1 are pseudoultrametrics,
hence the entire construction is applicable to proof of dy » dq in PsU(X) as well.

Assume now dy < dq, dg # 0. Choose a sequence xy, X1, X2, - - - € X of distinct points such
that do(xo, x;) > 0 for all i € IN. Put a;, = max{do(x;,xj) | 0 <i,j < m}+mforallm >0
(hence ay = 0), and denote F; = {xo, x;, Xj1+1, Xj12, ... } foralli € N. The formula

0, a,b ¢ {xp,x1,...}ora=n,
d’(a, b) _ Kmax{ij}, 4 = Xi 7& b= Xj, Xy € X,
;, a=ux;,b¢ {x0,x1,...}

ora¢ {xp,x1,...},b=x

defines a pseudoultrametric on X. Then the pseudoultrametric p = sup{dy,d'} > d; is the
least upper bound of the non-decreasing sequence of pseudoultrametrics p; = pf,. Observe
p(a, F;\ {xo}) — o0 asi — oo forall points a € X, hence p(a, F;) — p(a, xp), and

pr (a,b) — min{p(a, b), max{p(a, xo),p(b, x0)}} = p(a,b).
Again, p;(xo, x;) = 0 but dy(xg, x;) > 0, hence p; > dy is impossible, which contradicts to
dg < dj in PsU(X). O

Thus, for an infinite set X the poset PsU(X) is as poor in “way below” and “way above”
relations as Ps(X) is.
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3 CONCLUSIONS

We have proved that the posets Ps(X) and PsU(X) have no nontrivial approximation rela-
tions, hence are not continuous or dually continuous. Therefore we shall restrict our attention
to narrower classes of pseudometrics, namely to compact and locally compact pseudoultra-
metrics. This will be the topic of an upcoming publication.
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Huoposwu C. BioHouteH s anpokcumayii Ha uacmxoso 6nops0KosaHUX MHONCUHAX 1Cces00MeMPUK i nces-
doyvmpamempux // Kapmatcexi maTem. my6a. — 2016. — T.8, Nel. — C. 150-157.

My A0BOAMMO, IO HeTpMBiaAbHI BiAHOIIEHHS ampOKCMMAallil 3HM3Y Ta alpoKCUMallil 3ropu Ha
YaCTKOBO BIOPSIAKOBaHMX MHOXMHaX IICEBAOMETPHK i IIceBAOYABTpaMeTpUK Ha (pikcoBaHill MHO-
>XvHI X MOXKAMBI, SIKIIIO 1 TIABKM SIKIIIO MHOXWHA X CKiHUeHHa.

Kntouosi cnosa i ¢ppasu: TiceBAOMETpUKa, TICEBAOYABTPAMETPIKa, allPOKCUMAIIisl 3HM3Y Ta 3TOPAL.
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w-EUCLIDEAN DOMAIN AND LAURENT SERIES

Itis proved that a commutative domain R is w-Euclidean if and only if the ring of formal Laurent
series over R is w-Euclidean domain. It is also proved that every singular matrice over ring of formal
Laurent series Rx are products of idempotent matrices if R is w -Euclidean domain.
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INTRODUCTION

Let R will always denote a commutative domain with nonzero unit element. Let ¢ : R — Z
be a norm satisfying ¢(0) =0, ¢(a) > 0fora # 0, and ¢(ab) > ¢(a).

Definition 1. Domain R is called Euclidean if for any a,b € R withb # 0, there existgq,v € R
such that

a=bg+r and ¢(r) < ¢(b).

Leta,b € R, b # 0, and k be an arbitrary positive integer. We talk about k-term divisibility
chain [7] if there exists a finite sequence of equalities

a=bgq+r,b=riqa+ry ..., 1k—2 = re_1qx + k. (1)

Definition 2. Domain R is called w-Euclidean ring [7] relatively to norm IN, if for every pair
of elements a,b € R, b # 0 can be found k € IN and such divisibility chain (1) of length k that

¢(rk) < ¢(b).

Clearly, 1-Euclidean domain is an Euclidean domain. Now let Ry = R[[X]][X~!] be the ring
of formal Laurent series with coefficient in R. P. Samuel in [6] proved that if Rx is euclidean,
R is so. Also F. Dress proved the converse in [3]. Also in [1] it is proved similar results are for
2-Euclidean domain.
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MAIN RESULTS

Let R be an integral domain with a norm map ¢ : R — Z and let Ry = R[[X]][X~!] be the
ring of formal Laurent series with coefficient in R.
For any element

f=YaX €Rx, ;R h€Z a,#0

i>h
we put a norm map ¥ : Rx — R satisfying ¢(f) = a5, and ¢(0) = 0, where a;, be a variable
coefficient in the lowest degree.

Proposition 1. For any f,¢ € Rx with g # 0 we have that f = gu or, f = gu + v, where
$(8) 1 ¢(o).

Proof. Let h (resp. k) be the lowest degree of f (resp. g). Set ¢(f) = ¢(g)q +r, where g, € R.
Then we can write
v = f —gX" k¢ = rX" + higher degree terms.

It p(g) {1, we get (g) 17 = ¢(v).

If ¢(g) | 7, we similarly construct v; = v — g, X" kg, (h; = order of v) and so on. If the
process stops after a finite number of steps, we obtain

f=gutov,  P@) 1)
Otherwise the infinite sum
= gX" K g xR g Xk
is true sense, and we obtain f = gu. O
Letamap ¢y : R — Z by ¢x(f) = ¢(¢(f)). Then we obtain the following.

Theorem 1. If R is w-Euclidean domain with respect to ¢, then Rx is w-Euclidean domain
with respect to x = ¢ - .

Proof. By Proposition 1 for any f, g € Rx with g # 0 we have the following;:
(1) f=gu, or
2) f=gutv, 9(g) 1)

It is obvious that the case (1), Rx is Euclidean domain and thus R is w-Euclidean.

In the case of (2) review:

a) if p(¥(v)) < @(¥(g)), then we have ¢,(v) < @y(g) by definition, Ry is Euclidean do-
main and thus R is w-Euclidean;

b) if (¥ (v)) > @(1p(g)), then
P(v) = (g +11, Y(&) =rga+712,..., T2 = Tk1qk + Tk ()

and ¢(rx) < ¢(¢(g)), because R is w-Euclidean domain.
Now if we set
v — quhlfkg =11, (hy-order ofv),
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we have f = (u + g1 X" )¢+ v; and ¢ (v;) = rq. If we set
g — quk’hzvl =10y, (hp-order of v7),
we have ¢ = g, X*20; + v; and (vp) = 5. Continuing this process in the k step we get
Uk_n — X1 Moy = vy, (I — order of v_1),
then vy_p = g X"-1"v;_1 + vp and ¢(vi) = ry. If 7y # 0, we obtain
f=Wu+ quhlfk)g +v1, §= X201+ 0y, v = X Ty 4y,

and
9x(8) = @(¥(g)) > @(rr) = @x(vk).

If rp = 0, we have rx_ = r¢_14x. Then we have.
If (y(g)) > ¢(rk_1), we obtain (k — 1)-term divisibility chain, because

P(P(g)) = ¢x(8) > ¢x(vr—1) = @(r—1).

On the other hand, since ¢(rx_1) > ¢(¢(g)), then with (2) we get ¥(g) = rr_1m, where
m € R. Then ¢(m) = 1.

Hence,
e =p(gm!
and
¥(o) = 9(g)x,
for some x € R. This is contradictory to for ¢(g) 1 ¢(v). O

Theorem 2. If Ry is w-Euclidean domain with respect to ¢, then R is w-Euclidean domain
with respect to ¢.

Proof. Let a,b € R, where b # 0. Since Rx is w-Euclidean domain, there exist such
qi,---,qn,71,--.,n € Rx that

a=bgq1+r,b=riga+r2 ..., tu—2 =Ty_1Gn +"n, 3)

where @y (rn) < @x(D).
Note that

q; = q;quf + higher degree terms, ~r; = g X* 4 higher degree terms

(1) Let @x(r1) < ¢@x(b). If k4 < 0, we have ky = s; and bqfc1 +r;, = 0, and hence
px(r1) = @(rs)) = ¢(—bqy,) > @(b) = @x(b). This is a contradiction. Therefore we get k; > 0,
thena = bal, +7l,, () = gx(r1) < 9x(b) = p(b).

(2) Let x(r1) > @x(b). If s1 + ko < 0, we get s; +kp = sp and r{ q;, + 15, = 0 and note
that a chain 3 we get r, = r1x™ + rpy* for some x*, y* € Rx. Then ¢y (1) = @x(r1x* +rpy*) =
p((x* = g1,y )rs,) = @(rs,) = @x(b).

Hence ¢x(rn) < @x(b), this is contradiction and we get s; + k > 0. Then we can consider
possibility.

Case 1) ry, # 0.
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If k1 < 0, we get bql’q +r¢, = 0. On the other hand with chain 3 we have r,, = bx + r1y, for
some x,y € Ry,

Px(rn) = @x(bx +r1y) = @((x — g1,y )b) > @(b) = gx(b).
This is contradiction, because ¢y (7,) < ¢x(b). Hence we have k; > 0. The we obtain

. / / ! / / / ! / /
a—= b‘7k1 + rsl,b =Tk T Tsyr-rTs, 5 =Ts, 1Ak, T Tspr

where ¢x(r1) = ¢(r;,) < ¢(b) = ¢x(0).
Case 2) r;, = 0.
In this case, we distinguish now two subcases.
1) If ky > 0, it is obvious that

a= bq]/q + rél,b = r.glq;(z +O’

and ¢(0) < ¢(b).

2)If k; < 0 we have k; = 51 < 0 and bqfc1 + 15, = 0.

On the other hand, since b = r{ g, we have r{ q; q; +r, = 0iq; ¢;, +1 = 0and hence
qk,- Iy, are units. Then we can obtain:

b= (e, X 4 ) (g, X0+ ) + (X2 4 ) =1,
2
+ (rglq;(z-i-l + 7’;14_1‘7]/(2))( + (rglqll(z—O—Z + r;1+1q;(2+1 + r;1+2q;(2>x +t (rézxsz + )

Therefore we get the following equations:

’ol / I

rslqk2+1 + r51+1qk2 =0,

1’/ / + 1,/ ! + 1,/ ! 0

519k, 42 51419k, +1 sp+29k, = Y )

! ! / !/ / / !/
rslqkz—FSz + r51+1qk2+52—1 +ot 7"SlJFSquZ + 7’52 =0.

Since q;q is a unit, we have

rien = (@) ak e = (@) 7 g (az,) 7D

Hence we get b | r_ , ;. Similarly, we have

/ /
b ’ r51+2’ T ’r51+52—1'

Then if s; +s, < 0, we have b, |, + {4, = 0 and hence b | r{ ;. By above equations

(4), b | 1y, and ¢(r;,) > @(b). This is a contradiction with ¢(r;,) < @(b). Therefore we get
s1+ s > 0.

Now, if 51 +sp > 0, there exist an integer h such that rélq,/(#h + r;l +th’(2 — 0 and
b | réﬁh = r(. Hence we obtain a = bg, + r}, = bg*.

If 51 4+ 55 = 0, the equation (4) we have

rélq;(z-i-Sz + T + r;1+52q;(2 = rélqll(z—}—Sz + e + (a - quO)q;(z + 7’;2 = 0

Then we obtain

and ¢((q1,) ' (=7%,)) = ¢(r5,) < (). O
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As a consequent we obtain the following.
Theorem 3. R is w-Euclidean domain if and only if Rx is w-Euclidean domain.

A ring R has IP,-property, if every square singular matrix of n order over R is a product
of idempotent matrices. If this is true for any singular matrix over R, then the ring R has
IP-property.

Theorem 4. Let R is Bezout domain with I P,-property, then Rx is a domain with IP-property.

Proof. Let R be Bezout domain with IP,-property, then R is GE;-ring [4]. Since the condition
GE;-ring over Bezout domain implies the presence of the infinite divisibility chain for any two
elements with R, hence R is w-Euclidean domain. According to Theorem 1, Rx is w-Euclidean
domain, then from [2] for any two elements of Ry there exists the infinite divisibility chain.
Then, according to Theorem 6.2 and Proposition 2.4 of [5] implies that Rx has I P-property. [J

Given from theorem 2, consequently the following result is true.

Theorem 5. Let Rx — w-Euclidean domain, then R has I P-property.
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AOBEA€HO, III0 KOMyTaTVBHA OOAACTDb € W-€BKAIAOBOIO TOAi i TIABKM TOAI, KOAM Kinblle dpop-
MaABHMX AOpPaHOBMX PSIAIB € w-eBKAiAOBOIO obaacTio. TaxkoXX IOKa3aHO, IO AOBiABHA OCObAVBa
MaTpuIs HaA KiAbIeM dpopMaAbHUX AOpaHOBUX PSIAiB Rx € A0OYTKOM iAeMIIOTEHTHMX MaTpUIb,
SIKIIO R € w-eBKAiAOBE KiAbITe.

Kontouosi cnoea i ppasu: w-eBKAiAOBa 06AACTD, KinbIle popMarbHMX AOPAHOBUX PSIAIB, iAeMIIO-
TEHTHIi MaTPULI.
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COUNTABLE HYPERBOLIC SYSTEMS IN THE THEORY OF NONLINEAR
OSCILLATIONS

In this article a model example of a mixed problem for a fourth-order differential equation is
reduced to initial-boundary value problem for countable hyperbolic system of first order coherent
differential equations.
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INTRODUCTION

Many problems from Elasticity Theory, Gas dynamics, Theory of plates and shells reduced
to partial higher order differential equations [1, 2, 3] using Fourier method [3] or the method
of Principal coordinates [1]. As a result we get a infinite system of ordinary differential equa-
tions. The Theory of countable ordinary differential systems is described in the monograph
[4]. However, in many cases, particularly in the famous Hadamard’s example [5, p.112] about
correct solvability of initial problem for Cauchy-Riemann equation, if interpret partial solu-
tions like u, = I,(t) cosnx, v, = Ju(t)sinnx, we get a countable system of partial first order
differential equations. Similar systems occur in determining of the generalized solution for
hyperbolic first order equations [5, p.132], in the investigation of mathematical models of self-
excited oscillator with distributed parameters [6], in many periodic solutions of quasi-linear
hyperbolic systems [7] and others. Some questions about the correct solvability of initial-
boundary value problems for countable hyperbolic systems of first order differential equations
are considered in [8, 9, 10, 13].

1 STATEMENT OF PROBLEM

In the domain Q = {(t,x,y) : t € (0,T),x € (0,11),y € (0,1)} we consider fourth order
partial differential equation

upt + B(t, x) (thtx 4 tayy) + C(, %)t + Uyyyy + 2Upyy = f<t, X, Y, U, Ut, Uy, uyy> (1)
with initial

uli=0 = ¢(x,y),

2
ut‘fzozlp(xry)/ O§x§lll OS]/SZZI ( )

YAK 517.956
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and boundary conditions
u|y:0 = u|y I, = 0,
az_u‘ _ Y
A2 ly=0 a2 ly=,
u|x:0 — ,M(t;]/)/ u|x:ll - V(t/y)/ O S y S 12/ O S t S T/

=0, 0<x<[;,0<t<T, (3)

where

1O0,y) = (0,y), v(0,y) =e(l,y), w0, y) =9(0,y), vi(0,y) =v(l,y),
¢(x,0) = ¢(x,1) =0, ¥(x,0) =¢(x,r) =
q)/y/y(xl O) = q)/yy(x 12) =0, lp;/y( ’ ) ngy(x 12) 0.

2 THE REDUCTION EQUATION (1) TO A COUNTABLE SYSTEM OF SECOND ORDER
DIFFERENTIAL EQUATIONS

We will search solution of the problem (1)—(3) using separation of variables method, namely
in the form of a series

u(t,x,y) = vo(t, x) + Z (v (t, x) cos any + wy(t, x) sinayy), (4)
n=1
where «;,, = Z% (see [12, 13]). Substituting (4) in boundary conditions (3), we obtain

Y ou(t,x) = 0 and ¥ a2v,(t,x) = 0. Suppose, that v,(t,x) = 0 for all n € N and
n=0 n=1
(t,x) € II"* = (0, T) x (0, 1h).

Assume that the initial data of the problem (1)—(3) are sufficiently smooth. Let compatibil-
ity conditions are fulfilled and the initial data are unambiguous decomposed in a series

ou Ju 0%u > ow; 0ws; ow; 0ws; .
f(t,x,y,u,g,a,a—yﬁ —Eﬁ,(t,x,wl,wz,..., 5 3 9r Bx ,...)smany, (5)

y) =Y, en(x)sinany, (x,y) =} Pu(x)sinany, (6)
n=1 n=1
y) = Z pn(t) sinany, v(t,y) = Z V() sin ayy. (7)

Let w, = (272”) Substitute equality (4) in equation (1) and conditions (2) and (3). After
multiplying received equalities by sina,,y, (m = 1,2,...) and integrating in the interval from
0 to I, with considering conditions (5)-(7), we obtain the countable system of second-order
differential equations

2w, 2w, Jdw, 2w, 5 Jw,
o2 +B(t'x)<8t8x_w ax )*C( )Gz T Wntn = 2wn =5

(8)

dw; Jdws; dw; 0w
ot "ot ox ox’

:fn<t,x,w1,w2,..., ..), n €N,

with initial and boundary conditions

Jw
Wnli=0 = @n(x), at" o Pa(x), 0<x<K,

wn|x:0 = P‘n(t)/ wn|x:ll = Vn(t)z 0<t<T.
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Propose a change of variables w, = v, e“nt. Then all derivatives will be rewritten in a form

awn o avn (,Unt awn _ avn wnt
o= (G +nmn)ets = gpe,

*w, 9%v, 8 o
5z = (e + 2, o e,

Pwn _ <azvn +wnavn)ewnt’ Pw,  9? P .t

dtdx dtox ox 0x2  0x2

As a result, we obtain the countable system of second order differential equations
9%v, 9%v, d%v,
B(t, x
3+ Bl X5+ Ol 5
dv1 00Uy 0v, 09Uy
- t/ ’ ’ /---/—/—/---/—/—/---)/ N/
fultvonon SEGE TS, e
where
fo=e 9ty (t x, 01t vyt L,
ov ov v ov
atl et 1w, v1evnt 8t2 et 1 wpvpent, ..., a—xle“’"t, a—xze“’”t, o ) :
Initial and boundary conditions will be rewritten in a form
duy, -
0= 1 = <x<
nli—0 = gu(x), =5 =Palx),  0<x<h,

Un|x 0= fin t)/ Un|x:ll = ﬁn(t)z 0<t<T,
where i, (t) = pn(t)e™ ", U, () = va(t)e™ ", Pu(x) = Pu(x) — wWnpu(x).

3 THE REDUCTION TO COUNTABLE SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS

Suppose that A(t, x) = B?(t,x) — 4C(t,x) > 0, for all (¢, x) € II**, so each equation of the
system (8) has hyperbolic type. We denote
_1)?
Al x) = B(t, x) + ( 21) A(t,x)’
v, dvuy,

Uin = w—{—)tlg, Z:1,2

Then
aﬁ _ 02n — Uln
ox N/
avn UZ n - Ul n
= — (B N)——.
ot U2.n ( + \/_) 2\/Z

Due to variables changes, each equation of the system (8) would be equivalent to the system
of equations [5, 11]

9v; , avm_ 1 /0A; oA
ot Mgy T \/_<at FAsigs )(sz"_vlf”)
z U21 — 011 U21 — 011
+ t,x,01,...,021 — B+ VA)-% ., = ..., 9
fn< 1 2,1 ( ) 2\/5 \/Z ) ()
o0vy 02,1 — O1,n .
=0y, — (B+VA) 2L =12, neNN.
o =T BEVAIT R
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Suppose, that A1(t,x) > 0, Ax(t,x) <0 (a sufficient condition is execution the inequality
|B(t,x)| < \/A(t, x)). Conduct characteristic L1 (0,0) through the point (0,0) and characteris-
tic L(0, I7) through the point (0, I1), which are the solutions of Cauchy problems

dx dx
i A (t,x), x(0) =0, i Aa(t,x), x(0) = I;.

Thus, rectangle IT"* is divided into three parts (see Figure 1).

'

My Mo M2

=Y

Figure 1: Partition of domain by characteristics with slope A; > 0, A, < 0.

In subdomain Il for system (9) define the initial conditions

. d :
Unli=0 = @n(%), Vinli=0 = Pu(x) + Ajlt=0o——(x), i=12.

n

dx

In I'T; for v, and vy, define the initial conditions, and for v ,, define the boundary condi-
tions on the left side

- d
Ouli=o = @u(x),  vaulizo = Pu(x) + Aalizo (),

2v/A dii, 2v/A
_g = t 1-— =0-
OLnle=0 B+ v/Alx=0 dt (£)+ ( B+ \/Z) )xzovz,n\x_o

In subdomain I, for v, and vy ,, define the initial conditions, and for v; ,, define the bound-
ary conditions on the right side

s do,
Unli=0 = @n(X), V1inlt=0 = Pu(x) + A1|t=0—— (%),

dx
vl = 2vVA dﬁn(t)+B+\/Z
2= TN B ey dt B— VA

Remark 3.1. If the following condition is not fulfilled Ay > 0,A, < 0, there is possible to get
such cases:

DA > Ay >0,A24+ A3 £0;

i) A1 <Ay <0,A7+ A% #0.

In the first case, for system (1) it is necessary to define the boundary conditions in the next
form

01,n|x=I4-
x:ll |x 1

Uly—o = u(t,y), uxlx—o =v(t,y), 0<y<lh, 0<t<T.
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4!

L
¥

0 # 0 7 X

Figure 2: Partition of domain by characteris- Figure 3: Partition of domain by characteris-
tics with slope A1, A2 > 0. tics with slope A1, A, < 0.

Conduct characteristics L1(0,0) and L,(0,0) through the point (0,0), which are the solu-

tions of Cauchy problems

dx .
i A, x(0)=0, i=1,2.

Thus, rectangle I1"* is devided into three parts (see Figure 2).
In subdomain I'ly define the initial conditions

. d )
=0 = Pn(x) + Aili=0 dxn (x), i=1,2.

Un|t:() = q)n(x)/ Oin

In I, for v, and vy, define the initial conditions, and for v, ,, detine the boundary condi-
tions on the left side

- d
=0 = Pn(x) + Aoli—o (),

Un’t:() = (Pn(x)r 02,1
_ i
=0 gy

(t) + )‘1 |x:017n (t)

01,n

In subdomain I1; for v, detine the initial conditions, and for vy ,, and v; ,, define the bound-
ary conditions on the left side

d
Un|t:0 = Qon(x)z Uz‘,n|x:0 = Z;tn (t) + Ai|x:01/n(t)'

Similarly, the initial and boundary conditions would be defined in case, when A1 < A, <0,
A% + A% > 0 (see Figure 3). In this case for the system (1) we have to set the boundary conditions
in the following form

Ulymy, = (b y), txly=y, =v(ty), 0<y<b, 0<t<T.

4 EXAMPLE

For example, consider a differential equation

7T

G + ty — y2>u + f(t,x,y), (10)

2
Ut — X Uxy + uyyyy + Zutyy = — XUy + (
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where f(t, x,y) — some polynomial of (¢, x,y), with initial conditions

5 5 1
Ulj—o = 0, ut|s=0 = <y5 = Eny4 + gnzy?’ = 67'(4y)(7rx —x%), 0<x<m0<y<m,

and homogeneous boundary conditions
azu’ _ azu’
a2 ly=0 Ay ly=r

Uly—0 = ttly=n = 0, tt|x=0 = U|z= =0, 0<x<7m 0<y<m 0<t<T.

=0,
(11)

The solution can be sought in the form u(t,x,y) = Y wy,(t, x)sin2ny. Functions on the

n
right side of the equation and the initial conditions decomposed in such series

5 5 1 = 15
5_ 2 4,2 23 1 4 _ ;
Y =5y —|—37‘cy 7Y ) 55 sin 2ny,

n=1

flt,x,y) = Z fu(t, x)sin2ny,
n=1
2 00
= e v 1
Sty -y = mZ::l — cos 2my,
2

<— %—{—ﬂy—yz)u =Y Y ) %5,’§’msin2ny,

1 .
k,m: 2 lfk—{—m—i’l:O/
where J;, { _%, if (k—m+n)(m—k+n)=0.

So, we obtain the countable system of second order differential equations

Pw,  ,0%wy own _ 3wn v Wk ok
s~ s Wiy — 2wy = — ;X::—zé"“rfn, neN, (12)

with initial conditions

15
=0 21

ow,
ot
and homogeneous boundary conditions.
Perform a change of variables w, = v,e“’. The system (12) will be rewritten in a form

(ﬂx—xz) 0<x<mneN,

Wy |t:0 - O/

?v, 502 Un avn 2 e vke —Wn km fn
AL SPIPIEEE gl o vl wen,
m

with initial and homogeneous boundary conditions

0v 15
Onlt=0 = 0, a—:tzoz—ﬁ(nx—xz), 0<x<mmneN.
In this case A = 4x2, that is
dvuy, xavn
Lo ox '
duy, 00y,
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As a result, we obtain the countable system of first order differential equations

(avl,n a"'Jln . oi °Z°: vke(“’k wn)t 5km fn
ot " ox =1 m=1 (m ewnt’
007 ,, 007 ,, ®© X yre Wk—wn)t km fn 13
, o Gk sk ) (13)
ot T ox ;El mZ::1 m2 ewnt
90y V1n+ Vo
ot 2
Since Ay = x > 0,A; = —x < 0, initial and boundary conditions will be rewritten in a
form:
15 15
ﬁ(ﬂx x°), —ﬁ(ﬂx — xz), (t,x) € Iy; (14)
15 2
Un’t: t=0 = —ﬁ(nx - X ), x=0 = —U2n (trx) eIly; (15)
y ——E(n —x?) = (t,x) €11 (16)
On|t= 27’15 X X)), - ;X 2-

After solving the problem (13)—(16) (see [9]), we will obtain a system of functions

15¢
Oy = —W(nx — xz),
15t ) )
Uip = _W((l — wpt)(7mx — x7) 4+ t(mx — 2x7)),
15¢
O2,n = —W((l — wnt)(rcx — xz) — t(rcx — 2x2)).
So w, = 52 (mx — x2).

Therefore u(t, x,y) = 5 (x2 — mx) oZo: sz”y is the exact solution of the problem (10)—(11).

In the Figure 4 we can see 3D-graphics of the solution in the case of t = 0.25 and t = 0.5.

Figure 4: Graphics of solutions at t = 0.25 and ¢t = 0.5.

Together with the problem (13)—(16), we consider truncated system
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avl,n _xavl,n _ g f Uke(wk_w")ték,m_{_ fn
ot 0X  Z1m=—1 m2 " ewnt’
vy 0V N o Uke(wkiwn)t k,m fﬂ 17
7 x 7 — 5 4 , ( )
| ox ,El mZ:;l m2 "
9 Oiut 2
(ot 2 ’

with the initial and the boundary conditions (14)—(16). With some suppositions [10], the solu-
tions of the problems (17), (14)-(16) and (13)—(16) will be as close as possible.

5 shows a graph of

(1]

(2]

(3]

(4]

(5]
(6]

(7]

N
Let v} is the solution of the problem (17), (14)—(16) and uN(t, x,y) = ¥ w} sin2ny. Figure
n=1

max{ [uN (t,x,y)—u(t,xy)|}

max{[u(fx )]
XY

or

0B

Figure 5: Dependence of difference between exact and approximate solution by N.
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VY 1iit poboTi Ha MOAEABHOMY IPMKAaAi MilllaHOI 3aAadi AAST AVidpepeHIIIaABHOTO PiBHSIHHSI Je-
TBEPTOTO IOPSIAKY TIOKa3aHO, SIK TaKy 3aAady MOXKa 3BeCTV AO 3aAadi AAsI 3AiUeHHOI rinepboaiunoi
CMCTeMM 3B’SI3HMX PiBHSIHB IEPIIIOTO IOPSIAKY.

Kntouosi cnosa i ppasu: 3niveHHa rimep6oaivHa crcreMa, MilllaHa 3aaaya.
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A CLASS OF JULIA EXCEPTIONAL FUNCTIONS

The class of p-loxodromic functions (meromorphic functions, satisfying the condition
f(gz) = pf(z) for some q € C\{0} and all z € C\{0}) is studied. Each p-loxodromic function
is Julia exceptional. The representation of these functions as well as their zero and pole distribution
are investigated.

Key words and phrases: p-loxodromic function, the Schottky-Klein prime function, Julia excep-
tionality.
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INTRODUCTION

Denote C* = C\{0}, and letg,p € C*, |q| < 1.

Definition 1. A meromorphic in C* function f is said to be p-loxodromic of multiplicator q if for
every z € C*

f(qz) = pf(2). (1)

Let £;, denotes the class of p-loxodromic functions of multiplicator g.

The case p = 1 has been studied earlier in the works of O. Rausenberger [9], G. Valiron
[11] and Y. Hellegouarch [5]. In his work [3, p. 133] which A. Ostrowski [8] called "besonders
schone und tiberraschende" G. Julia gave an example of a meromorphic in the punctured plane
C* function satisfying (1) with p = 1 for some non-zero ¢, |q| # 1, and all z € C*. He noted
that the family {f,(z)}, fu(2z) = f(9"z) is normal [7] in C* because f,(z) = f(z) forall z € C*.

If p = 1 the function f is called loxodromic. Loxodromic functions of multiplicator g form
a field, which is denoted by L,. The set L, forms an Abelian group with respect to addition.

It is obvious that a ratio of two functions from L, is a loxodromic function, and the deriva-

tive of the loxodromic function is p-loxodromic with p = %.

Remark 1. Every f = const belongs to L,, but the unique constant function belonging to L,
isf=0.

If f € L4y and a is a zero of f, then aq", n € Z, are as well. That is, in the case of non-
positive g the zeros of f lay on a logarithmic spiral. Let a = |a|e’, g = |q]e’7. Then the loga-
rithmic spiral in polar coordinates (r, ) takes the form

logr —logla| = k(¢ —w),
YAK 517.53
2010 Mathematics Subject Classification: 30D30, 30D45.
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where k = %. The same concerns the poles of f. The image of a logarithmic spiral on the
Riemann sphere by the stereographic projection intersects each meridian at the same angle
and is called loxodromic curve (Ao¢o( - oblique, dpouol - way). That is why we call (following
G. Valiron) the function from £, loxodromic.

Remark 2. If f € L, and z is its a-point, a € C U {co}, then q"z,n € Z, are its a-points too. In
the case, f € Ly, the previous considerations are valid only for the zeros and the poles of f.

It is easy to verify, that £;, forms the linear spaces over the fields C and L. Also it is clear
that £,, has the following properties.

Proposition. The linear space L, has the following properties.

1. Themap D : f(z) — zf'(z) maps Lgp to Lyp.
2. Themap D, : f(z J}())mapsﬁptoﬁ

) =2
3.fz) €Ly =fl)eL e

Let us give nontrivial example of p-loxodromic function of multiplicator 4. Put

(e 9]

(1—-4"z), 0<]q| <1

n=1

Definition 2. The function

Pe) = (-2 (1) = a-a [Ta-ga0-1)

is called the Schottky-Klein prime function.

This function is holomorphic in C* with zero sequence {g"}, n € Z. It was introduced by
Schottky [10] and Klein [6] for the study of conformal mappings of doubly-connected domains,
see also [2].

It is easy to obtain the following property of P

Plge) = —2P(2). )

Example 1. Consider the function

Using (2), it is easy to show that f € Lg.

1 THE NUMBERS OF ZEROS AND POLES OF p-LOXODROMIC FUNCTIONS IN AN ANNULUS
Let Aj(R) ={z € C:|g|R < |z| <R}, R>0and A; = A4(1).

Theorem 1. Let f € L;, and the boundary of A;(R) contains neither zeros nor poles of f.
Then f has equal numbers of zeros and poles (counted according to their multiplicities) in
every Ay(R).
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Proof. LetT'1 = {z € C: |z| = |g|R} and T, = {z € C : |z| = R} denote the circles bounding
A4(R). Let n(f) be the number of poles of f in Ag(R).
By the argument principle, we have

N [ re, 1o,
(7)== 3 Ibiok r[ Ead ©
Setting ¢ = gz in the second integral of (3), we obtain

(£) - = %r/ (5 - ) 2= @

2

Since f € Ly, the relation (1) implies
f'ez) = Ef'(2) )

Putting (1) and (5) in (4), we obtain the conclusion of the theorem. O

Remark 3. Every non-constant loxodromic function of multiplicator q has at least two poles
(and two zeros) in every annulus A;(R) [5]. As we see from Example 1, the p-loxodromic
function f has the unique pole z = 1 in A;. This is an essential difference between loxodromic
and p-loxodromic functions with p # 1.

2 REPRESENTATION OF p-LOXODROMIC FUNCTIONS

The representation of loxodromic functions from £; was given in [11], [5]. The following
theorem gives the representation of a function from Lg,.
Letay, ...,am and by, ..., by, be the zeros and the poles of f € L, in A, respectively. Denote

al ‘...'am

by by

Theorem 2. The non-identical zero meromorphic in C* function f belongs to Ly, p # 1, if
and only if there exists v € Z such that A = % and f has the form

A= (6)

"z )
P (i)
where c is a constant.

Proof. Firstly, denote

and consider the function
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Since the functions f and M have the same zeros and poles, it follows that their ratio g is

+00
holomorphic in C* function. Let g(z) = Y. c¢,z" be the Laurant expansion of g in C*. Using
n=—oo
relation (1) and the equality (2), we obtain
Ag(qz) = pg(z). ®)

According to (8), we obtain
—+00 —+o0
A Z cng'z" =p Z cpz"
n=—o0o n=—00

for any z € C*. This implies Ac,q" = pc, or c,(Ag" — p) = 0. Then there exists at least one
cy # 0,v € Z, such that
cv(Ag" —p) =0. )

Hence, the relation (9) implies g¥ = % We see also that ¢, = 0if n # v, so we have

¢(z) = cyz'. Thus, we can conclude

where c is a constant.
Secondly, we have f(z) = cz'M(z), v € Z. Show that it belongs to L. Thus, f(qz) =
cq'z" M(gz). Indeed, using (2), we obtain

fqz) = cq"z"AM(z2) = pf(2).

This completes the proof.
U

Corollary 1. Assume f € Ly, if f is holomorphic in C*, then f(z) = 0 or there exists k €
Z\{0} such that p = ¢* and f(z) = cz¥, where c is a constant. Conversely, a holomorphic in
C* function of the form f(z) = cz¥, where k € Z\{0}, c is a constant, belongs to Lyp.

3 ZERO AND POLE DISTRIBUTION
Let {a;}, {b;}, j € Z be a couple of sequences in C*, p # 1. Put

u(r) = [logr/loglq|] — 1.

Note that () = 0if |g| < r < 1. Denote

MO
a]\




176 KHOROSHCHAK V.S., KHRYSTIYANYN A.YA., LUKIVSKA D.V.

Theorem 3. The zero sequence {a;} and the pole sequence {b;} of a non-identical zero mero-
morphic p-loxodromic function of multiplicator q satisty the following conditions:

(i) the number ofa; and b; in every annulus of the form {z : r < |z| < 2r}, r > 0 is bounded
by an absolute constant;

(i) the difference between the numbers of a; and by in every annulus {z : 11 < |z| < r2},
0 < r < rp < 400 is bounded by an absolute constant;

(iii) there exists C; > 0 such that ‘% — 1’ > Cy for every j,k € Z;

(iv) the function 9, (r), where v € Z such that A = qﬂv, and A is given by (6), is bounded for
r> 0.

Proof. Let f be a p-loxodromic of multiplicator g function. If f is holomorphic then by Corol-
lary 1 there exists k € Z\{0} such that f(z) = cz¥, and c is a constant. Hence, f has no zeros
in C*. So there is nothing to prove.

Let f be meromorphic. Then by Remark 2 and Theorem 1 it has infinitely many zeros and
poles.

- . . 1 1 )
(i) First we remark that there exists a unique ny € Z; such that —— < 2 < ————. This

|q|"0 — |q[nmo+1”
log2]
log%q|

' r r .
Since every annulus {z : — < [z] < HTH}, where k € Z, contains the same number of
q

|q|k
U <Ln,2r]
|q|"o

it follows that the annulus {z : r < |z| < 2r} contains at least nym and less than (ny + 1)m
zeros of f. The same is true about the poles of f.

np is equal to [

zeros of f, say m, and

m=1 r
(r,2r] = <—, —
U |g[F" |q|k 1

k=0

(ii) Similarly as in (i) we can find unique 1,1, € Z such that
gt < < ql" < g™ <2 < gl

Hence
ny— 1

(ri,r2) = (ro, lglmTU | U (gl 1gl*1 | U (gl r2).

k:n1

Every annulus of the form {z : |g/**! < |z| < |g|F}, where k € Z, contains equal amount of
zeros and poles of f counted according to their multiplicities (we have denoted this number
by m). Therefore the difference between the numbers of zeros and poles of f in the annulus
{z : r1 < |z| < rp} is no greater than 2m because of the choice of 1y, n;.

(iii) Let ay, a, ..., anm and by, by, ..., by, be the zeros and the poles of fin {z : |g| < |z| < 1}
respectively. Then all the zeros of f have the form ay k= arg, where y € Z, k = 1,2,...,m.
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The same is true about the poles of f, namely B,y = bg", wherev € Z, k = 1,2,...,m. So,

% = Z—iql, where [ € Z.
v,

It is necessary to show that there exists C > 0 such that the inequality

4
bkq 1'>C

holds forall j,k € {1,2,..,m},and ] € Z.
Suppose that for any € > 0 there exist j,k € {1,2,...,m}, and | € Z such that

g —1] <
q <e. (10)
bx

Without loss of generality we can assume that |/| < 2. Indeed, taking into account where
aj, by belong to, we have

a4
bl

1
WW <lql, 1>2

Similarly,
1
> lqllq|" > =2

]l
bk

So, forall j,k € {1,2,..,m},and | > 2

a.
b—]ql—l‘ >1-1q,
k

and forl < -2

a1 ' 1
| S
by 4
Let now |I| < 2. Choose
£ = %min{]a]-ql —bl:j,ke{1,2,.,m}—-1<I<1}.

Then (10) implies
\aqu - bk’ < S‘bk‘ <e.

That is 1
|aqu — bl < Emin{|aqu — bl :j,ke{1,2,..,m},-1<I1<1}

which gives a contradiction.

(iv) We remind that f has representation (7). It can be rewritten as follows

021
o ar ) = z N
f(z):chH;iog nk +oi TR zeC. (11)
k=i <_E>H<1_u>
n=0 be ) n=1 z

Clearly, we can assume ¢ # 0. Consider the integral means I(r) = ZL

log |f(re'®)| a6,

O%N

r > 0.
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Let z = re'?. We have for r > 1[4, p- 8]

/ log |1

1 27
E/log 1-—=
0
The same is true for b;.
Since for every k € {1,2,..,m} we have |[c,g™"| > 1forn € N, and |cxq"| < 1forn €
IN U {0}, where ¢ is a zero or pole of f, then (11) implies

I(r) =vlogr+ Y log" — — Y} log™® b +logle|, r>1.
la;|>1 |]| [b;]>1 | |

do = log™

Jaj] ]\
and, if |a;] <1

Similarly, for 0 < r < 1 we obtain
I(r) =vlogr+ ) log" ‘]‘ Y log* ‘]’+log||
laj]<1 b <1

Hence,
1

[pl®)
Since I(r) is convex with respect to logr and consequently continuous, I(r) is bounded on
[l9],1]. It follows from the definition of a p-loxodromic function of multiplicator g that

I(|qlr) = I(r) + klog |p|
for every k € Z. On the other hand

ulan) = |

W (1) = e exp (1) = rexp{1(r) —u(r)loglpl}, 7 >0.

klog |g| + logr
log g]

]—1:k, g <r <1

That is
M, (|g[fr) =M, (r), gl <r<1

for all k € Z. Then we conclude that 9, (r) remains bounded for all ¥ > 0 which completes
the proof.
U

4 JULIA EXCEPTIONALITY

Definition 3. Let f,,n € IN, be meromorphic functions in a domain G. A sequence { f,(z)} is
said to be uniformly convergent to f(z) on G in the Carathéodory-Landau sense [1] if for any point
zo € G there exists a disk K(zg) centered at this point such that K(zp) C G and

(Ve > 0)(3ng € N)(Vn > no)(Vz € K(z0)) : |fu(z) — f(2)| <&,

whenever f(zy) # oo, or

whenever f(zp) = oo.
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Note that this convergence is equivalent to the convergence in the spherical metric.

Definition 4. A family F of meromorphic in C* functions is said to be normal if every sequence
{fu} C F contains a subsequence which converges uniformly in the Carathéodory-Landau
sense.

Definition 5. A meromorphic in C* function f is called Julia exceptional (see [7]) if for some g,
0 < |g] <1, the family {f,(z)}, n € Z, where f,,(z) = f(q"z), is normal in C*.

In C there are few simple examples of Julia exceptional functions. But in C* we have the
following.
Let f € L;p. We have

fu(2) = f(q"2) = p"f(2)

for every z € C*.

If |p| > 1, then a limiting function of the family {f,(z)}, n € Z, is co. Otherwise, if |p| < 1,
then a limiting function is 0. If |p| = 1, that is p = ¢'®, we have f,(z) = ¢"*f(z). Hence, the
set of limit functions depends on a. If x = 7, where m € Z, k € IN, the number of limiting
functions is less than or equals to 2k. Otherwise, if &« = 7t7, where r € R\Q, the number of
limiting functions is infinite.

Example 2. Let f € L witha = 7. Then

fu(z) = fq"2) = p"f(2) = "1 f(2).

Thus, we obtain eight limiting functions

2.02) (2225

£ £, <7il7 2 Ey

Hence, f is Julia exceptional in C*.
These results can be summarized as follows.

Theorem 4. Each function f € Lg, is Julia exceptional in C*.
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AOCAIAXKYETBCS KAAC P-AOKCOAPOMHMX (PYHKIIiM (MepoMOpdpHIX (pYHKIIIN, IITO 33 AOBOABHSIIOTh
ymoBy f(qz) = pf(z) npu aesikux g € C\{0} arst Bcix z € C\ {0}). AoBeaeHO, 110 KOXHa p-
AokcoppomHa pyHKIisI € JKroaia BuHSITKOBOW. TToaaHO 306paXkeHHST TakuxX pYHKIIiN Ta OIMCaHO
PO3MOAiA iX HYAiB Ta IIOAIOCIB.

Kntouosi cnosa i ppasu: p-arokcoppomHa dyHKIis, nepsyrHa pyHkis HlorTki-Kasiaa, Xroaia
BUHSITKOBiCTb.





