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Moeini B., Işık H., Aydi H. Related fixed point results via C∗-class functions on C∗-

algebra-valued Gb-metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Mytrofanov M.A., Ravsky A.V. A note on approximation of continuous functions on
normed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Lal S., Sharma V.K. On the estimation of functions belonging to Lipschitz class by block

pulse functions and hybrid Legendre polynomials . . . . . . . . . . . . . . . . . . . . . . 111

Bedratyuk L., Luno N. Some properties of generalized hypergeometric Appell polynomials . 129

Kal’chuk I.V., Kharkevych Yu.I., Pozharska K.V. Asymptotics of approximation of func-

tions by conjugate Poisson integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Yanchenko S.Ya. Approximation of the Nikol’skii–Besov functional classes by entire func-

tions of a special form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



Antonova T.M. On convergence criteria for branched continued fraction . . . . . . . . . . . 157

Chaikovs’kyi A., Lagoda O. Bounded solutions of a difference equation with finite number

of jumps of operator coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Baranetskij Ya.O., Kalenyuk P.I., Kopach M.I., Solomko A.V. The nonlocal boundary
value problem with perturbations of mixed boundary conditions for an elliptic equation

with constant coefficients. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Chapovskyi Y.Y., Mashchenko L.Z., Petravchuk A.P. Nilpotent Lie algebras of deriva-

tions with the center of small corank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Raievska I.Yu., Raievska M.Yu. Local nearrings on finite non-abelian 2-generated

p-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Soltanov K., Sert U. Certain results for a class of nonlinear functional spaces . . . . . . . . 208

Popov M.M. On two long standing open problems on Lp-spaces . . . . . . . . . . . . . . . 229

Hentosh O.Ye., Balinsky A.A., Prykarpatski A.K. The generalized centrally extended Lie

algebraic structures and related integrable heavenly type equations . . . . . . . . . . . . 242



Карпатськi
математичнi
публiкацiї

НАУКОВИЙ ЖУРНАЛ

Т.12, №1
2020

ЗМIСТ

Василишин Т.В. Симетричнi функцiї на просторах ℓp(R
n) i ℓp(C

n) . . . . . . . . . 5

Кравцiв В.В. Аналог формули Ньютона для блочно-симетричних полiномiв на ℓp(Cn) 17

Азiзбайов Е.I., Мехралiєв Ю.Т. Нелокальна обернена крайова задача для двовимiр-

ного параболiчного рiвняння з iнтегральною переозначеною умовою . . . . . . . . . 23

Фрончак Р., Гой Т. Тотожностi Мерсенна-Горадама з використанням генератрис . 34

Хаць Р.В. Достатнi умови покращеного регулярного зростання цiлих функцiй в
термiнах їх усереднення . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Ердоган Е. Бiлiнiйнi оператори, що зберiгають нульовий добуток, на просторах по-

слiдовностей . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Махi Ф., Белхельфа М. Лежандровi нормально плоскi пiдмноговиди S-просторових

форм . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Малицька Г.П., Буртняк I.В. Побудова фундаментального розв’язку одного класу
вироджених параболiчних рiвнянь високого порядку . . . . . . . . . . . . . . . . . . 79

Фотiй О., Островський М., Попов М. Iзоморфний спектр та iзоморфна довжина

банахового простору . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Моейнi Б., Iшiк Г., Айдi Г. Стосовно результатiв про нерухому точку для функцiй

класу C∗ на C∗-алгеброзначних Gb-метричних просторах . . . . . . . . . . . . . . 94

Митрофанов М.А., Равський О.В. Про апроксисмацiю неперервних функцiї в нор-

мованих просторах . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Лал Ш., Шарма В.К. Про оцiнку функцiй iз класу Лiпшiца блочно-iмпульсними

функцiями та гiбридними полiномами Лежандра . . . . . . . . . . . . . . . . . . . 111

Бедратюк Л., Луньо Н. Деякi властивостi узгальнених гiпергеометричних много-

членiв Аппеля . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



Кальчук I.В., Харкевич Ю.I., Пожарська К.В. Асимптотика наближення функцiй
спряженими iнтегралами Пуассона . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Янченко С.Я. Наближення класiв функцiй Нiкольського–Бєсова цiлими функцiями
спецiального вигляду . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Антонова Т.М. Про критерiй збiжностi для гiллястого ланцюгового дробу . . . . . . 157

Чайковський А.В., Лагода О.А. Обмеженi розв’язки рiзницевого рiвняння зi скiн-
ченною кiлькiстю стрибкiв операторного коефiцiєнта . . . . . . . . . . . . . . . . . 165

Баранецький Я.О., Каленюк П.I., Копач М.I., Соломко А.В. Нелокальна крайова

задача зi збуреннями мiшаних крайових умов для елiптичного рiвняння iз стали-

ми коефiцiєнтами. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Чаповський Є.Ю., Мащенко Л.З., Петравчук А.П. Нiльпотентнi алгебри Лi ди-

ференцiювань з центром малого корангу . . . . . . . . . . . . . . . . . . . . . . . . 189

Раєвська I.Ю., Раєвська М.Ю. Локальнi майже-кiльця на скiнченних неабелевих не-

метациклiчних 2-породжених p-групах . . . . . . . . . . . . . . . . . . . . . . . . . 199

Солтанов К., Серт У. Деякi результати для одного класу нелiнiйних функцiональ-

них просторiв . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Попов М.М. Про двi давнi нерозв’язанi проблеми про простори Lp . . . . . . . . . . . 229

Гентош О.Є., Балiнський О.А., Прикарпатський А.К. Узагальненi центрально

розширенi Лi-алгебраїчнi структури та асоцйованi iнтегровнi рiвняння небесного

типу . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2020, 12 (1), 5–16 Карпатськi матем. публ. 2020, Т.12, №1, С.5–16

doi:10.15330/cmp.12.1.5-16

VASYLYSHYN T.V.

SYMMETRIC FUNCTIONS ON SPACES ℓp(Rn) AND ℓp(Cn)

This work is devoted to the study of algebras of continuous symmetric polynomials, that is,

invariant with respect to permutations of coordinates of its argument, and of ∗-polynomials on

Banach spaces ℓp(Rn) and ℓp(Cn) of p-power summable sequences of n-dimensional vectors of real

and complex numbers respectively, where 1 ≤ p < +∞.

We construct the subset of the algebra of all continuous symmetric polynomials on the space

ℓp(Rn) such that every continuous symmetric polynomial on the space ℓp(Rn) can be uniquely

represented as a linear combination of products of elements of this set. In other words, we construct

an algebraic basis of the algebra of all continuous symmetric polynomials on the space ℓp(Rn).

Using this result, we construct an algebraic basis of the algebra of all continuous symmetric ∗-poly-

nomials on the space ℓp(Cn).

Results of the paper can be used for investigations of algebras, generated by continuous sym-

metric polynomials on the space ℓp(Rn), and algebras, generated by continuous symmetric ∗-poly-

nomials on the space ℓp(Cn).

Key words and phrases: polynomial, ∗-polynomial, symmetric polynomial, symmetric ∗-polyno-
mial, algebraic basis.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine

E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION

Symmetric (invariant with respect to some group of operators) functions on Banach spaces

were studied by a number of authors [1–8, 10, 11, 15–21, 23]. In particular, in [15] it was con-

structed an algebraic basis (see definition below) of the algebra of all continuous symmetric,

i.e., invariant with respect to permutations of coordinates of its argument, polynomials on the

real Banach space ℓp of p-power summable sequences of real numbers, where 1 ≤ p < +∞.

In [8] it was generalized this result to continuous symmetric polynomials on real separa-

ble rearrangement-invariant sequence Banach spaces. In [11] it was constructed an algebraic

basis of the algebra of all continuous symmetric polynomials on the complex Banach space

ℓp(Cn) of p-power summable sequences of n-dimensional vectors of complex numbers, where

1 ≤ p < +∞. Note that the knowledge of an algebraic basis of an algebra of polynomials is

important for the description of spectra (sets of maximal ideals) of completions of this algebra

(see, e.g., [1, 4, 5, 7, 9, 17]).

∗-Polynomials (see definition below) are generalizations of polynomials, acting between

complex vector spaces, which were firstly studied in [14]. In [13] it was shown that, in some

sense, ∗-polynomials have better approximation properties than polynomials. Symmetric ∗-

polynomials on the finite-dimensional complex vector space were studied in [16]. In particular,

УДК 517.98
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6 VASYLYSHYN T.V.

in [16] it was constructed the set of generating elements of the algebra of all symmetric ∗-

polynomials on the complex space of finite sequences of n-dimensional complex vectors.

In this work we construct an algebraic basis of the algebra of all continuous symmetric poly-

nomials on the real Banach space ℓp(Rn) of p-power summable sequences of n-dimensional

vectors of real numbers, where 1 ≤ p < +∞. Also we construct an algebraic basis of the

algebra of all continuous symmetric ∗-polynomials on the complex Banach space ℓp(Cn).

1 PRELIMINARIES

Let N be the set of all positive integers and Z+ be the set of all nonnegative integers.

Let S be the set of all bijections σ : N → N. For n ∈ N, let Sn be the set of all bijections

σ : {1, . . . , n} → {1, . . . , n}.

1.1 Polynomials

Let X and Y be vector spaces over the fields K1 and K2 resp., such that K1 ⊂ K2 and

K1, K2 ∈ {R, C}. A mapping A : Xm → Y, where m ∈ N, is called an m-linear mapping, if A

is linear with respect to every of its m arguments. An m-linear mapping, which is invariant

with respect to permutations of its arguments is called symmetric. For an m-linear mapping

A : Xm → Y, let A(s) : Xm → Y be defined by

A(s)(x1, . . . , xm) =
1

m! ∑
τ∈Sm

A
(

xτ(1), . . . , xτ(m)

)
.

The mapping A(s) is symmetric and m-linear. It is called the symmetrization of the mapping A.

A mapping P : X → Y is called an m-homogeneous polynomial if there exists an m-linear map-

ping AP : Xm → Y such that P is the restriction to the diagonal of AP, i.e., P(x) = AP(x, . . . , x︸ ︷︷ ︸
m

)

for every x ∈ X. Note that P is also the restriction to the diagonal of the mapping A
(s)
P , which

is the symmetrization of the mapping AP. The mapping A
(s)
P is called the symmetric m-linear

mapping, associated with P. By [14, Theorem 1.10, p. 6], the mapping A
(s)
P can be recovered by

the values of P by means of the formula

A
(s)
P (x1, . . . , xm) =

1

2mm! ∑
ε1,...,εm=±1

ε1 . . . εmP(ε1x1 + . . . + εmxm). (1)

For convenience, we define 0-homogeneous polynomials from X to Y as constant mappings.

A mapping P : X → Y is called a polynomial if it can be represented in the form

P =
K

∑
j=0

Pj, (2)

where K ∈ Z+ and Pj is a j-homogeneous polynomial for every j ∈ {0, . . . , K}. Let deg P be

the maximal number j ∈ Z+, such that Pj 6≡ 0.

For, in general, complex numbers t1, . . . , tm, let Vt1,...,tm be the Vandermonde matrix

Vt1,...,tm :=




1 t1 t2
1 . . . tm−1

1

1 t2 t2
2 . . . tm−1

2
...

...
...

. . .
...

1 tm t2
m . . . tm−1

m


 .
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The following proposition gives us the method of recovering of homogeneous components of

any polynomial P by its values.

Proposition 1 ([12]). Let P be a polynomial of the form (2). Let λ0, . . . , λK be distinct nonzero

real numbers. Then

Pj(x) =
K

∑
s=0

wjsP(λsx),

for every j ∈ {0, . . . , K}, where wjs are elements of the matrix W = (wjs)j,s=0,K, which is the

inverse matrix of the Vandermonde matrix Vλ0,...,λK
.

Suppose X and Y are normed spaces with norms ‖ · ‖X and ‖ · ‖Y respectively. Note that

an m-linear mapping A : Xm → Y is continuous if and only if the value

‖A‖ = sup
‖x1‖X≤1,...,‖xm‖X≤1

‖A(x1, . . . , xm)‖Y

is finite. Similarly, an m-homogeneous polynomial P : X → Y is continuous if and only if the

value

‖P‖ = sup
‖x‖X≤1

‖P(x)‖Y

is finite. By definitions of ‖P‖ and ‖AP‖, and by formula (1),

‖P‖ ≤ ‖A
(s)
P ‖ ≤

mm

m!
‖P‖. (3)

1.2 ∗-Polynomials

Let X and Y be complex vector spaces. A mapping A : Xm+n → Y, where (m, n) ∈

Z2
+ \ {(0, 0)}, is called an (m, n)-linear mapping, if A is linear with respect to every of first

m arguments and it is antilinear with respect to every of last n arguments. An (m, n)-linear

mapping, which is invariant with respect to permutations of its first m arguments and last n

arguments separately, is called (m, n)-symmetric. For (m, n)-linear mapping A : Xm+n → Y, let

A(s) : Xm+n → Y be defined by

A(s)(x1, . . . , xm, xm+1, . . . , xm+n) =
1

m!n! ∑
τ∈Sm

∑
θ∈Sn

A
(

xτ(1), . . . , xτ(m), xm+θ(1), . . . , xm+θ(n)

)
.

The mapping A(s) is (m, n)-symmetric and (m, n)-linear. It is called the (m, n)-symmetrization

of the mapping A. A mapping P : X → Y is called an (m, n)-polynomial if there exists an

(m, n)-linear mapping AP : Xm+n → Y such that P is the restriction to the diagonal of AP, i.e.,

P(x) = AP(x, . . . , x︸ ︷︷ ︸
m+n

)

for every x ∈ X. Note that P is also the restriction to the diagonal of the mapping A
(s)
P ,

which is the (m, n)-symmetrization of the mapping AP. The mapping A
(s)
P is called the (m, n)-

symmetric (m, n)-linear mapping, associated with P. By [22, Theorem 3.1], the mapping A
(s)
P

can be recovered by the values of P by means of the formula

A
(s)
P (x1, . . . , xm+n) =

1

2m+nm!n! ∑
ε1,...,εm+n=±1

ε1 . . . εm+n

2n+1

∑
j=1

1

2n + 1
α2n+1−m

j

× P
(
αj(ε1x1 + . . . + εmxm) + εm+1xm+1 + . . . + εm+nxm+n

)
,

(4)
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where αj = e2πij/(2n+1) for j ∈ {1, . . . , 2n + 1}.

For convenience, we define (0, 0)-polynomials from X to Y as constant mappings.

A mapping P : X → Y is called a ∗-polynomial if it can be represented in the form

P =
K

∑
t=0

t

∑
j=0

Pj,t−j, (5)

where K ∈ Z+ and Pj,t−j is a (j, t − j)-polynomial for every t ∈ {0, . . . , K} and j ∈ {0, . . . , t}.

Let deg P be the maximal number t ∈ Z+, for which there exists j ∈ {0, . . . , t} such that

Pj,t−j 6≡ 0.

Results from [16, Proposition 1] and [16, Proposition 2] imply the following proposition,

which gives us the method of recovering of components of any ∗-polynomial P by its values.

Proposition 2. Let P : X → Y be a ∗-polynomial of the form (5), where X and Y are com-

plex vector spaces. Let λ0, . . . , λK be distinct nonzero real numbers. Let ε0, . . . , εK be complex

numbers such that ε2
0, . . . , ε2

K are distinct and |ε0| = . . . = |εK| = 1. Then

Pj,t−j(x) =
t

∑
l=0

ujlε
t
l

K

∑
s=0

wtsP(λsε lx)

for every t ∈ {0, . . . , K}, j ∈ {0, . . . , t} and x ∈ X, where wts are elements of the matrix

W = (wts)t,s=0,K, which is the inverse matrix of the Vandermonde matrix Vλ0 ,...,λK
, and ujl are

elements of the matrix U = (ujl)j,l=0,K, which is the inverse matrix of the Vandermonde matrix

Vε2
0,...,ε2

K
.

Suppose X and Y are complex normed spaces with norms ‖ · ‖X and ‖ · ‖Y resp. Note that

an (m, n)-linear mapping A : Xm+n → Y is continuous if and only if the value

‖A‖ = sup
‖x1‖X≤1,...,‖xm+n‖X≤1

‖A(x1, . . . , xm+n)‖Y

is finite. Similarly, an (m, n)-polynomial P : X → Y is continuous if and only if the value

‖P‖ = sup
‖x‖X≤1

‖P(x)‖Y

is finite. Formula (4) implies the following inequality

‖A
(s)
P ‖ ≤

(m + n)m+n

m!n!
‖P‖. (6)

1.3 Algebraic combinations

A mapping f : T → K, where T is an arbitrary set and K = R or C, is called an algebraic

combination of mappings f1, . . . , fm : T → K over K if there exists a polynomial Q : Km → K

such that

f (x) = Q( f1(x), . . . , fm(x))

for every x ∈ T.

A set { f1, . . . , fm} of mappings f1, . . . , fm : T → K is called algebraically independent if

Q( f1(x), . . . , fm(x)) = 0
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for every x ∈ T if and only if the polynomial Q is identically equal to zero. If a set of mappings

{ f1, . . . , fm} is algebraically independent and polynomials Q1, Q2 : Km → K are such that

Q1( f1(x), . . . , fm(x)) = Q2( f1(x), . . . , fm(x))

for every x ∈ T, then the polynomial Q1 is identically equal to the polynomial Q2. Thus,

every algebraic combination of elements of an algebraically independent set of mappings is

unique. An infinite set of mappings is called algebraically independent if every its finite subset

is algebraically independent. A subset B of some algebra of mappings A is called an algebraic

basis of A if every element of A can be uniquely represented as an algebraic combination of

some elements of B. Evidently, every algebraic basis is algebraically independent.

1.4 The space ℓp(Kn)

Let n ∈ N, p ∈ [1,+∞) and K = R or C. Let us denote ℓp(Kn) the vector space of all

sequences x = (x1, x2, . . .), where xj =
(

x
(1)
j , . . . , x

(n)
j

)
∈ Kn for j ∈ N, such that the series

∞

∑
j=1

n

∑
s=1

|x
(s)
j |p is convergent. The space ℓp(Kn) with norm

‖x‖ℓp(Kn) =

( ∞

∑
j=1

n

∑
s=1

|x
(s)
j |p

)1/p

is a Banach space.

Definition 1. A function f , defined on ℓp(Kn), is called S-symmetric (or just symmetric when

the context is clear) if f (x ◦ σ) = f (x) for every x ∈ ℓp(Kn) and for every bijection σ ∈ S ,

where x ◦ σ =
(
xσ(1), xσ(2), . . .

)
.

For a multi-index k = (k1, . . . , kn) ∈ Zn
+, let |k| = k1 + . . . + kn. For every k ∈ Zn

+ such that

|k| ≥ ⌈p⌉, where ⌈p⌉ is a ceiling of p, let us define a mapping H
(Kn)
k : ℓp(Kn) → K by

H
(Kn)
k (x) =

∞

∑
j=1

n

∏
s=1
ks>0

(
x
(s)
j

)ks .

Note that H
(Kn)
k is an S-symmetric |k|-homogeneous polynomial. We will use following result,

proven in [11].

Proposition 3 ([11], Proposition 2). For p ∈ [1,+∞) and for every k ∈ Z
n
+ such that |k| ≥ ⌈p⌉,

the polynomial H
(Cn)
k on ℓp(Cn) is continuous and ‖H

(Cn)
k ‖ ≤ 1.

Theorem 1. Polynomials H
(Cn)
k , where k ∈ Zn

+ are such that |k| ≥ ⌈p⌉, form an algebraic basis

of the algebra of all S-symmetric continuous complex-valued polynomials on ℓp(Cn).

Note that Proposition 3 implies that for p ∈ [1,+∞) and for every k ∈ Zn
+ such that |k| ≥

⌈p⌉, the polynomial H
(Rn)
k on ℓp(Rn) is continuous and ‖H

(Rn)
k ‖ ≤ 1.
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2 THE ALGEBRAIC BASIS OF THE ALGEBRA OF ALL SYMMETRIC

CONTINUOUS POLYNOMIALS ON ℓp(Rn)

Let n ∈ N and p ∈ [1,+∞). For every continuous m-homogeneous polynomial P on

ℓp(Rn), which is, in general, complex-valued (we need this assumption for the sake of the

applicability of results of the current section in section 3), let us define an m-homogeneous

polynomial P̂ : ℓp(Cn) → C in the following way. Let A
(s)
P be the m-linear symmetric mapping

associated with P. Let A
(s)

P̂
: ℓp(C

n)× . . . × ℓp(C
n)︸ ︷︷ ︸

m

→ C be defined by

A
(s)

P̂
(z1, . . . , zm) =

1

∑
j1=0

. . .
1

∑
jm=0

ij1+...+jm A
(s)
P

(
wj1(z1), . . . , wjm(zm)

)
, (7)

where operators w0, w1 : ℓp(Cn) → ℓp(Rn) are defined by

w0(z) =
((

Re x
(1)
1 , . . . , Re x

(n)
1

)
,
(
Re x

(1)
2 , . . . , Re x

(n)
2

)
, . . .

)
,

w1(z) =
((

Im x
(1)
1 , . . . , Im x

(n)
1

)
,
(
Im x

(1)
2 , . . . , Im x

(n)
2

)
, . . .

)

for every z =
((

x
(1)
1 , . . . , x

(n)
1

)
,
(
x
(1)
2 , . . . , x

(n)
2

)
, . . .

)
∈ ℓp(Cn). Note that operators w1 and w2 are

linear, continuous and ‖w0‖ = ‖w1‖ = 1. It can be checked that A
(s)

P̂
is an m-linear symmetric

mapping. By the continuity of mappings A
(s)
p , w0 and w1, the mapping A

(s)

P̂
is continuous. By

(7), taking into account ‖w0‖ = ‖w1‖ = 1,

‖A
(s)

P̂
‖ ≤ 2m‖A

(s)
P ‖. (8)

Let P̂ be the restriction of A
(s)

P̂
to the diagonal. Since the mapping A

(s)
P is continuous and m-

linear, it follows that the mapping P̂ is a continuous m-homogeneous polynomial. By (3), (7)

and (8),

‖P̂‖ ≤ ‖A
(s)

P̂
‖ ≤ 2m‖A

(s)
P ‖ ≤

(2m)m

m!
‖P‖. (9)

It can be checked that for every m1-homogeneous polynomial P1 and for every m2-homoge-

neous polynomial P2, which acts from ℓp(Rn) to C, where m1, m2 ∈ N, we have P̂1P2 = P̂1P̂2.

For every continuous polynomial P : ℓp(Rn) → C of the form (2), let

P̂ = P0 + P̂1 + . . . + P̂K.

Proposition 4. Let Γ be an arbitrary index set. For every γ ∈ Γ, let Pγ : ℓp(Rn) → C be a

continuous mγ-homogeneous polynomial, where mγ ∈ N. Suppose the set of polynomials{
P̂γ : γ ∈ Γ

}
is algebraically independent. Then the set of polynomials

{
Pγ : γ ∈ Γ

}
is

algebraically independent.

Proof. Let Γ0 be an arbitrary finite nonempty subset of Γ. Let us show that the set of polynomi-

als
{

Pγ : γ ∈ Γ0

}
is algebraically independent. Suppose

α0 +
µ′

∑
µ=1

∑
l:Γ0→Z+
κ(l)=µ

αl ∏
γ∈Γ0

l(γ)>0

(
Pγ(x)

)l(γ)
= 0 (10)
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for every x ∈ ℓp(Rn), where α0, αl ∈ C, µ′ ∈ N, κ(l) = ∑γ∈Γ0
l(γ)mγ. For µ ∈ {1, . . . , µ′}, let

Qµ(x) = ∑
l:Γ0→Z+
κ(l)=µ

αl ∏
γ∈Γ0

l(γ)>0

(
Pγ(x)

)l(γ)

for every x ∈ ℓp(Rn). By Proposition 1, taking into account (10), α0 = 0 and, for every µ ∈

{1, . . . , µ′}, the polynomial Qµ is identically equal to zero, i.e., ‖Qµ‖ = 0. By (9), ‖Q̂µ‖ ≤
(2µ)µ

µ! ‖Qµ‖. Therefore ‖Q̂µ‖ = 0. Consequently, Q̂µ is identically equal to zero, i.e.,

∑
l:Γ0→Z+
κ(l)=µ

αl ∏
γ∈Γ0

l(γ)>0

(
P̂γ(z)

)l(γ)
= 0

for every z ∈ ℓp(Cn). Since the set of polynomials
{

P̂γ : γ ∈ Γ0

}
is algebraically independent,

it follows that every coefficient αl is equal to zero. Thus, the set of polynomials
{

Pγ : γ ∈ Γ0

}

is algebraically independent.

Since every finite nonempty subset of the set of polynomials
{

Pγ : γ ∈ Γ
}

is algebraically

independent, it follows that the set
{

Pγ : γ ∈ Γ
}

is algebraically independent.

Theorem 2. Let P : ℓp(Rn) → C be a continuous m-homogeneous S-symmetric polynomial.

Then, in the case 1 ≤ m < ⌈p⌉, the polynomial P is identically equal to zero. In the case

m ≥ ⌈p⌉, the polynomial P can be uniquely represented in the form

P(x) = ∑
l:Γm→Z+
κ(l)=m

αl ∏
k∈Γm

l(k)>0

(
H

(Rn)
k (x)

)l(k)
,

where x ∈ ℓp(Rn), αl ∈ C, Γm =
{

k ∈ Zn
+ : ⌈p⌉ ≤ |k| ≤ m

}
and κ(l) = ∑k∈Γm

|k|l(k).

Proof. Let P be a continuous m-homogeneous S-symmetric complex-valued polynomial on

ℓp(Rn), where m ∈ N. Then P̂ is a continuous m-homogeneous complex-valued polynomial

on ℓp(Cn). Let us show that the polynomial P̂ is S-symmetric. Let z ∈ ℓp(Cn) and σ ∈ S . Let

us show that P̂(z ◦ σ) = P̂(z). By (1), taking into account that P is S-symmetric,

A
(s)
P (x1 ◦ σ, . . . , xm ◦ σ) =

1

2mm! ∑
ε1,...,εm=±1

ε1 . . . εmP(ε1x1 ◦ σ + . . . + εmxm ◦ σ)

=
1

2mm! ∑
ε1,...,εm=±1

ε1 . . . εmP((ε1x1 + . . . + εmxm) ◦ σ)

=
1

2mm! ∑
ε1,...,εm=±1

ε1 . . . εmP(ε1x1 + . . . + εmxm)= A
(s)
P (x1, . . . , xm)

(11)

for every x1, . . . , xm ∈ ℓp(Rn). By (7) and (11), taking into account the equalities w0(z ◦ σ) =

w0(z) and w1(z ◦ σ) = w1(z),

P̂(z ◦ σ) = AP̂(z ◦ σ, . . . , z ◦ σ︸ ︷︷ ︸
m

) =
1

∑
j1=0

. . .
1

∑
jm=0

ij1+...+jm AP

(
wj1(z ◦ σ), . . . , wjm(z ◦ σ)

)

=
1

∑
j1=0

. . .
1

∑
jm=0

ij1+...+jm AP

(
wj1(z) ◦ σ, . . . , wjm(z) ◦ σ

)

=
1

∑
j1=0

. . .
1

∑
jm=0

ij1+...+jm AP

(
wj1(z), . . . , wjm(z)

)
= P̂(z).
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Thus, P̂ is S-symmetric. So, P̂ is an S-symmetric continuous m-homogeneous complex-valued

polynomial on ℓp(Cn).

Therefore, by Theorem 1, the polynomial P̂ can be uniquely represented as an algebraic

combination of polynomials H
(Cn)
k , where k ∈ Zn

+ are such that |k| ≥ ⌈p⌉. Since every H
(Cn)
k

is a |k|-homogeneous polynomial and |k| ≥ ⌈p⌉, it follows that, in the case m < ⌈p⌉, the

polynomial P̂ is identically equal to zero. In the case m ≥ ⌈p⌉, the polynomial P̂ is an algebraic

combination of polynomials H
(Cn)
k , where k ∈ Zn

+ are such that m ≥ |k| ≥ ⌈p⌉, i.e.,

P̂(z) = ∑
l:Γm→Z+
κ(l)=m

αl ∏
k∈Γm

l(k)>0

(
H

(Cn)
k (z)

)l(k)
, (12)

for every z ∈ ℓp(Cn), where αl ∈ C, Γm =
{

k ∈ Zn
+ : ⌈p⌉ ≤ |k| ≤ m

}
and κ(l) = ∑k∈Γm

|k|l(k).

Since polynomials P and H
(Rn)
k are restrictions to the space ℓp(Rn) of polynomials P̂ and H

(Cn)
k

respectively, by (12),

P(x) = ∑
l:Γm→Z+
κ(l)=m

αl ∏
k∈Γm

l(k)>0

(
H

(Rn)
k (x)

)l(k)
(13)

for every x ∈ ℓp(Rn). By Theorem 1, the set of polynomials
{

H
(Cn)
k : k ∈ Γm

}
is algebraically

independent. Consequently, by Proposition 4, taking into account the equality Ĥ
(Rn)
k = H

(Cn)
k ,

the set of polynomials
{

H
(Rn)
k : k ∈ Γm

}
is algebraically independent over C. Therefore, the

representation (13) is unique.

Theorem 3. Polynomials H
(Rn)
k , where k ∈ Z

n
+ are such that |k| ≥ ⌈p⌉, form an algebraic basis

of the algebra of all S-symmetric continuous real-valued polynomials on ℓp(Rn).

Proof. Let P be a continuous S-symmetric real-valued polynomial on ℓp(Rn) of the form (2).

Let us show that P can be uniquely represented as an algebraic combination of some elements

of the set
{

H
(Rn)
k : k ∈ Zn

+, |k| ≥ ⌈p⌉
}

. By Proposition 1, for every j ∈ {1, . . . , deg P}, the

j-homogeneous polynomial Pj is continuous, S-symmetric and real-valued. Therefore, by The-

orem 2, if 1 ≤ j < ⌈p⌉, then the polynomial Pj is identically equal to zero, otherwise

Pj(x) = ∑
l:Γj→Z+

κj(l)=j

αl ∏
k∈Γj

l(k)>0

(
H

(Rn)
k (x)

)l(k)

for every x ∈ ℓp(Rn), where αl ∈ C, Γj =
{

k ∈ Zn
+ : ⌈p⌉ ≤ |k| ≤ j

}
and κj(l) = ∑k∈Γj

|k|l(k).

Let us show that all the coefficients αl are real. Since the polynomial Pj is real-valued, it follows

that Pj(x)− Pj(x) = 0 for every x ∈ ℓp(Rn), i.e.,

2i ∑
l:Γj→Z+

κj(l)=j

Im αl ∏
k∈Γj

l(k)>0

(
H

(Rn)
k (x)

)l(k)
= 0 (14)

for every x ∈ ℓp(Rn). By Proposition 4, the set of polynomials

{
H

(Rn)
k : k ∈ Z

n
+, |k| ≥ ⌈p⌉

}
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is algebraically independent over C, therefore it is algebraically independent over R. Conse-

quently, by (14), Im αl = 0 for every coefficient αl , i.e., every αl is real. Thus, we have that for

every x ∈ ℓp(Rn), P(x) = P0 in the case deg P < ⌈p⌉, and

P(x) = P0 +
deg P

∑
j=⌈p⌉

∑
l:Γj→Z+

κj(l)=j

αl ∏
k∈Γj

l(k)>0

(
H

(Rn)
k (x)

)l(k)
(15)

otherwise. Since the set of polynomials {H
(Rn)
k : k ∈ Zn

+, |k| ≥ ⌈p⌉
}

is algebraically indepen-

dent over R, it follows that the representation (15) is unique.

3 SYMMETRIC ∗-POLYNOMIALS ON ℓp(Cn)

Let n ∈ N and p ∈ [1,+∞). Let the mapping J : ℓp(Cn) → ℓp(R2n) be defined by

J(z) =
((

Re z
(1)
1 , Im z

(1)
1 , . . . , Re z

(n)
1 , Im z

(n)
1

)
,
(
Re z

(1)
2 , Im z

(1)
2 , . . . , Re z

(n)
2 , Im z

(n)
2

)
, . . .

)
,

where z =
((

z
(1)
1 , . . . , z

(n)
1

)
,
(
z
(1)
2 , . . . , z

(n)
2

)
, . . .

)
∈ ℓp(Cn). Let us show that the mapping J is

well-defined and bijective. Since all norms on R2 are equivalent, it follows that there exist

constants C > 0 and c > 0 such that

c
√
|t1|2 + |t2|2 ≤

(
|t1|

p + |t2|
p
)1/p

≤ C
√
|t1|2 + |t2|2 (16)

for every (t1, t2) ∈ R2. Therefore

∞

∑
j=1

n

∑
s=1

(∣∣Re z
(s)
j

∣∣p
+

∣∣Im z
(s)
j

∣∣p
)
≤ Cp

∞

∑
j=1

n

∑
s=1

(√∣∣Re z
(s)
j

∣∣2 +
∣∣Im z

(s)
j

∣∣2
)p

= Cp
∞

∑
j=1

n

∑
s=1

∣∣z(s)j

∣∣p
= Cp‖z‖

p

ℓp(Cn)
.

Thus, for every z ∈ ℓp(Cn) the sequence J(z) belongs to the space ℓp(R2n) and ‖J(z)‖
p

ℓp(R2n)
≤

Cp‖z‖
p

ℓp(Cn)
, i.e.,

‖J(z)‖ℓp(R2n) ≤ C‖z‖ℓp(Cn). (17)

Thus, the mapping J is well-defined. Evidently, J is injective. Let us show that J is surjec-

tive. Let x =
((

x
(1)
1 , x

(2)
1 , . . . , x

(2n−1)
1 , x

(2n)
1

)
,
(
x
(1)
2 , x

(2)
2 , . . . , x

(2n−1)
2 , x

(2n)
2

)
, . . .

)
∈ ℓp(R2n). Let

us construct zx ∈ ℓp(Cn) such that J(zx) = x. Let zx =
((

x
(1)
1 + ix

(2)
1 , . . . , x

(2n−1)
1 + ix

(2n)
1

)
,(

x
(1)
2 + ix

(2)
2 , . . . , x

(2n−1)
2 + ix

(2n)
2

)
, . . .

)
. Let us show that zx belongs to ℓp(Cn). By (16),

∞

∑
j=1

n

∑
s=1

∣∣x(2s−1)
j + ix

(2s)
j

∣∣p
=

∞

∑
j=1

n

∑
s=1

(√∣∣x(2s−1)
j

∣∣2 +
∣∣x(2s)

j

∣∣2
)p

≤
∞

∑
j=1

n

∑
s=1

(
1

c

(∣∣x(2s−1)
j

∣∣p
+

∣∣x(2s)
j

∣∣p
)1/p

)p

=
1

cp

∞

∑
j=1

n

∑
s=1

(∣∣x(2s−1)
j

∣∣p
+

∣∣x(2s)
j

∣∣p
)
=

1

cp ‖x‖
p

ℓp(R2n)
.
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Thus, zx belongs to the space ℓp(Cn) and ‖zx‖
p

ℓp(Cn)
≤ 1

cp‖x‖
p

ℓp(R2n)
, i.e., taking into account the

equality J(zx) = x,

‖J−1(x)‖ℓp(Cn) ≤
1

c
‖x‖ℓp(R2n) (18)

for every x ∈ ℓp(R2n). Hence, the mapping J is bijective. Note that the mapping J is real-linear,

i.e., it is additive and J(λz) = λJ(z) for every λ ∈ R and z ∈ ℓp(Cn). By (17) and (18), both

mappings J and J−1 are continuous.

Proposition 5. For every continuous S-symmetric (m1, m2)-polynomial P : ℓp(Cn) → C the

mapping P ◦ J−1 is a continuous S-symmetric (m1 + m2)-homogeneous polynomial, acting

from ℓp(R2n) to C.

Proof. Let P : ℓp(Cn) → C be a continuous S-symmetric (m1, m2)-polynomial. Let A
(s)
P

be the (m1, m2)-symmetric (m1, m2)-linear mapping, associated with P. Let the mapping

BP̃ :
(
ℓp(R2n)

)m1+m2 → C be defined by

BP̃(x1, . . . , xm1+m2) = AP(J−1(x1), . . . , J−1(xm1+m2)),

where x1, . . . , xm1+m2 ∈ ℓp(R2n). Since J−1 is real-linear and AP is (m1, m2)-linear, it follows

that BP̃ is an (m1 + m2)-linear mapping. By (6) and (18),

‖BP̃‖ = sup
‖x1‖ℓp(R2n)

≤1,...,‖xm1+m2
‖
ℓp(R2n)

≤1

|BP̃(x1, . . . , xm1+m2)|

= sup
‖x1‖ℓp(R2n)

≤1,...,‖xm1+m2
‖
ℓp(R2n)

≤1

|AP(J−1(x1), . . . , J−1(xm1+m2))|

≤ sup
‖x1‖ℓp(R2n)

≤1,...,‖xm1+m2
‖
ℓp(R2n)

≤1

‖AP‖‖J−1(x1)‖ℓp(Cn) . . . ‖J−1(xm1+m2)‖ℓp(Cn)

≤
‖AP‖

cm1+m2
sup

‖x1‖ℓp(R2n)
≤1,...,‖xm1+m2

‖
ℓp(R2n)

≤1

‖x1‖ℓp(R2n) . . . ‖xm1+m2‖ℓp(R2n)

=
‖AP‖

cm1+m2
≤

(m1 + m2)
m1+m2‖P‖

m1!m2!cm1+m2
.

Thus, ‖BP̃‖ is finite and, consequently, BP̃ is continuous. Let P̃ be the restriction to the diagonal

of BP̃. Then P̃ is the (m1 + m2)-homogeneous polynomial. Since ‖P̃‖ ≤ ‖BP̃‖, it follows that P̃

is continuous. Note that P̃ = P ◦ J−1. Let us show that P̃ is S-symmetric. Let x ∈ ℓp(R2n) and

σ ∈ S . Note that J−1(x ◦ σ) = J−1(x) ◦ σ. Therefore, since P is S-symmetric,

P̃(x ◦ σ) = P(J−1(x ◦ σ)) = P(J−1(x) ◦ σ) = P(J−1(x)) = P̃(x).

Thus, P̃ is S-symmetric.

Theorem 4. The set of mappings
{

H
(R2n)
k ◦ J : k ∈ Z2n

+ , |k| ≥ ⌈p⌉
}

is an algebraic basis of the

algebra of all continuous S-symmetric ∗-polynomials, acting from ℓp(Cn) to C.

Proof. Let P : ℓp(Cn) → C be a continuous S-symmetric ∗-polynomial of the form (5). By

Proposition 2, taking into account the continuity and the S-symmetry of P, for every t ∈

{0, . . . , K} and j ∈ {0, . . . , t}, the (j, t − j)-polynomial Pj,t−j is continuous and S-symmetric.
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Therefore, by Proposition 5, the mapping Pj,t−j ◦ J−1 is a continuous S-symmetric t-homo-

geneous polynomial, acting from ℓp(R2n) to C. Consequently, by Theorem 2, the polynomial

Pj,t−j ◦ J−1 is identically equal to zero in the case 1 ≤ t < ⌈p⌉, and, otherwise, the polynomial

Pj,t−j ◦ J−1 can be uniquely represented in the form

(Pj,t−j ◦ J−1)(x) = ∑
l:Γt→Z+
κt(l)=t

α
(j,t−j)
l ∏

k∈Γt
l(k)>0

(
H

(R2n)
k (x)

)l(k)
,

where x ∈ ℓp(R2n), α
(j,t−j)
l ∈ C, Γt =

{
k ∈ Z2n

+ : ⌈p⌉ ≤ |k| ≤ t
}

and κt(l) = ∑k∈Γt
|k|l(k).

Therefore, taking into account that J is a bijection, the mapping Pj,t−j is identically equal to

zero in the case 1 ≤ t < ⌈p⌉, and

Pj,t−j(z) = ∑
l:Γt→Z+
κt(l)=t

α
(j,t−j)
l ∏

k∈Γt
l(k)>0

(
(H

(R2n)
k ◦ J)(z)

)l(k)
,

for every z ∈ ℓp(Cn), otherwise. Consequently, P = P0 in the case deg P < ⌈p⌉, and

P(z) = P0 +
deg P

∑
t=⌈p⌉

t

∑
j=0

∑
l:Γt→Z+
κt(l)=t

α
(j,t−j)
l ∏

k∈Γt
l(k)>0

(
(H

(R2n)
k ◦ J)(z)

)l(k)
(19)

for every z ∈ ℓp(Cn), otherwise. By Proposition 4, the set of polynomials
{

H
(R2n)
k : k ∈

Z2n
+ , |k| ≥ ⌈p⌉

}
is algebraically independent. Since J is a bijection, it follows that the set of

∗-polynomials
{

H
(R2n)
k ◦ J : k ∈ Z2n

+ , |k| ≥ ⌈p⌉
}

is algebraically independent. Therefore, the

representation (19) is unique.
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Дана робота присвячена вивченню алгебр неперервних симетричних, тобто, iнварiантних

вiдносно перестановок координат їхнiх аргументiв, полiномiв i ∗-полiномiв на банахових про-

сторах ℓp(Rn) i ℓp(Cn) всiх сумовних у степенi p послiдовностей n-вимiрних векторiв дiйсних i

комплексних чисел вiдповiдно, де 1 ≤ p < +∞.

Сконструйовано пiдмножину алгебри всiх неперервних симетричних полiномiв на просто-

рi ℓp(Rn) таку, що кожен неперервний симетричний полiном на просторi ℓp(Rn) може бути

єдиним чином поданий у виглядi лiнiйної комбiнацiї добуткiв елементiв цiєї множини. Iншими

словами, сконструйовано алгебраїчний базис алгебри всiх неперервних симетричних полiно-

мiв на просторi ℓp(Rn). Використовуючи даний результат, сконструйовано алгебраїчний базис

алгебри всiх неперервних симетричних ∗-полiномiв на просторi ℓp(Cn).

Результати даної роботи можуть бути використанi для дослiджень алгебр, згенерованих

неперервними симетричними полiномами на просторi ℓp(Rn), i алгебр, згенерованих непе-

рервними симетричними ∗-полiномами на просторi ℓp(Cn).

Ключовi слова i фрази: полiном, ∗-полiном, симетричний полiном, симетричний ∗-полiном,

алгебраїчний базис.
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KRAVTSIV V. V.

ANALOGUES OF THE NEWTON FORMULAS FOR THE BLOCK-SYMMETRIC

POLYNOMIALS ON ℓp(Cs)

The classical Newton formulas gives recurrent relations between algebraic bases of symmetric

polynomials. They are true, of course, for symmetric polynomials on infinite-dimensional Banach

sequence spaces.

In this paper, we consider block-symmetric polynomials (or MacMahon symmetric polynomials)

on Banach spaces ℓp(Cs), 1 ≤ p ≤ ∞. We prove an analogue of the Newton formula for the block-

symmetric polynomials for the case p = 1. In the case 1 < p we have no classical elementary

block-symmetric polynomials. However, we extend the obtained Newton type formula for ℓ1(C
s)

to the case of ℓp(Cs), 1 < p ≤ ∞, and in this way we found a natural definition of elementary

block-symmetric polynomials on ℓp(Cs).

Key words and phrases: symmetric polynomials, block-symmetric polynomials, algebraic basis,
Newton’s formula.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine

E-mail: maksymivvika@gmail.com

1 INTRODUCTION

Let X be a Banach space, and let P(X) be the algebra of all continuous polynomials de-

fined on X. Let P0(X) be a subalgebra of P(X). A sequence (Qi)i of polynomials is called an

algebraic basis of P0(X) if for every P ∈ P0(X) there is a unique polynomial q ∈ P(Cn)

for some n such that P(x) = q(Q1(x), . . . , Qn(x)). In other words, if Q is mapping x ∈

X  (Q1(x), . . . , Qn(x)) ∈ C
n, then P = q ◦ Q and this representation is unique. Subalge-

bras of polynomials with countable algebraic bases were considered by many authors (see e.

g. [4, 8, 9, 11, 12]). Typical examples of such kind of algebras are algebras of polynomials which

are invariant with respect to a (semi)group S of operators on X. If X has an unconditional basis

(en), we can consider the group S = S∞ of all permutations of natural numbers N acting on

X by

σ : x =
∞

∑
n=1

xnen  

∞

∑
n=1

x
σ(n)en.

S∞-invariant polynomials on X are called symmetric. Symmetric polynomials and analytic

functions on ℓp were investigated in [1–3, 5, 6, 8]. Linear bases of symmetric polynomials on ℓ1

were considered in [7].

Let Ps(ℓp) be the algebra of all symmetric polynomials on ℓ1. In [10], it is proved that poly-

nomials

Fk =
∞

∑
i=1

xk
i ,

УДК 517.98
2010 Mathematics Subject Classification: 46J15, 46E10, 46E50.
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k ≥ ⌈p⌉ form an algebraic basis in Ps(ℓp), where ⌈p⌉ is the smallest integer, greater than p.

Polynomials Fk are called power symmetric polynomials. In the case p = 1 we can consider

another natural algebraic basis in Ps(ℓ1), which is called the basis of elementary symmetric poly-

nomials, {Gk}
∞
k=1,

Gk =
∞

∑
i1<i2<...<ik

xi
1
xi

2
. . . xi

k
, (1)

The relation between power symmetric polynomials and elementary symmetric polynomials

can be given by the well-known Newton formulas (see, e.g., [17]):

nGn = F1Gn−1 − F2Gn−2 + F3Gn−3 − . . . + (−1)n−2Fn−1G1 + (−1)n−1Fn, n ∈ N.

In the case p > 1 we have no elementary symmetric polynomials, because the series (1) does

not converge for any k. But putting in the Newton formulas Fk = 0 for k < p, we can define

elementary symmetric polynomials on ℓp by

G
(p)
n =

n−⌈p⌉

∑
k=⌈p⌉

(−1)k−1FkGn−k.

It is easy to check that the sequence {G
(p)
n }n>p forms an algebraic basis in Ps(ℓp).

There are other natural representations of S∞ in Banach spaces with bases. For example, if

X is a directs sum of infinite many of “blocks” which are copies of a Banach space X, then S∞

acts permutating the “blocks”. For this case we can consider the algebra of block-symmetric

analytic functions consisting of invariants of this group. Note that this algebra is much more

complicated and in the finitely-dimensional case has no algebraic basis (see, e.g., [15, 19]).

A generalization of the Newton formula for block-symmetric polynomials on ℓ1(C
2) was

proved in [13]. In this paper we propose a generalization of this formula for block-symmetric

polynomials on ℓp(Cs).

2 MAIN RESULT

Let us denote by ℓp(Cs), 1 ≤ p < ∞, the vector space of all sequences

x = (x1, x2, . . . , xm, . . .),

where xj = (x
(1)
j , . . . , x

(s)
j ) ∈ Cs for j ∈ N, such that the series

∞

∑
j=1

s

∑
r=1

∣∣∣x(r)j

∣∣∣
p

is convergent. The

space ℓp(Cs) with norm

‖x‖ =

(
∞

∑
j=1

s

∑
r=1

∣∣∣x(r)j

∣∣∣
p
)1/p

is a Banach space. A polynomial P on the space ℓp(Cs) is called block-symmetric (or vector-

symmetric) if

P(x1, x2, . . . , xm, . . .) = P(x
σ(1), x

σ(2), . . . , x
σ(m), . . .)

for every permutation σ ∈ S∞, where xj ∈ C
s for all j ∈ N. Let us denote by Pvs(ℓp(Cs)) the

algebra of all block-symmetric polynomials on ℓp(Cs).
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The algebra Pvs(ℓp(Cs)) was considered in [14, 16]. Note that in Combinatorics, block-

symmetric polynomials on finite-dimension spaces are called MacMahon symmetric polynomials

(see [18]).

For a multi-index k = (k1, k2, . . . , ks) ∈ Z
s
+ let m = |k | = k1 + k2 + . . . + ks.

In [14] it was proved that polynomials

Hk
m(x) = Hk1,k2,...,ks

m (x) =
∞

∑
j=1

s

∏
r=1

|k |≥⌈p⌉

(x
(r)
j )kr (2)

form an algebraic basis in Pvs(ℓp(Cs)), 1 ≤ p < ∞, where x = (x1, . . . , xm, . . .) ∈ ℓp(Cs),

xj = (x
(1)
j , . . . , x

(s)
j ) ∈ C

s.

In the case of the space ℓ1(C
s) there are elementary block-symmetric polynomials

Rk
m(x) = Rk1,k2,...,ks

m (x) =
∞

∑
i1<...<ik1
j1<...<jk2

···
l1<...<lks

ikp 6=jkq 6=...6=lkr

x
(1)
i1

. . . x
(1)
ik1

x
(2)
j1

. . . x
(2)
jk2

. . . x
(s)
l1

. . . x
(s)
lks

,

(3)

where (x
(1)
i , x

(2)
i , . . . , x

(s)
i ) ∈ C

s.

Combining (2) and (3), we can get an analog of Newton’s formula for block-symmetric

polynomials on ℓ1(C
s).

Theorem 1. The following formula is true for the algebraic bases of symmetric polynomials

on ℓ1(C
s).

nRk1,k2,...,ks
n = ∑

|q |=1
kr≥qr

H
q1,q2,...,qs

1 R
k1−q1,k2−q2,...,ks−qs

n−1

− ∑
|q |=2
kr≥qr

2!

q1!q2! . . . qs!
H

q1,q2,...,qs

2 R
k1−q1,k2−q2,...,ks−qs

n−2 + . . .

+ (−1)n−2 ∑
|q |=n−1

kr≥qr

(n − 1)!

q1!q2! . . . qs!
H

q1,q2,...,qs

n−1 R
k1−q1,k2−q2,...,ks−qs

1

+ (−1)n−1 n!

k1!k2! . . . ks!
Hk1,k2,...,ks

n ,

(4)

where q = (q1, q2, . . . , qs), Rk1,k2,...,ks
0 ≡ 1 and if kr < qr for some r = 1, . . . , s, then

R
k1−q1,k2−q2,...,ks−qs
m ≡ 0.

Proof. Let us consider the polynomial P(t1x(1) + t2x(2) + . . . + tsx(s)), which is symmetric on

the space ℓ1 with respect to simultaneously permutations of t1x
(1)
i + t2x

(2)
i + . . . + tsx

(s)
i , i ≥ 1.

Let us denote by t̃x = t1x(1) + t2x(2) + . . . + tsx(s). For the algebraic bases Fk(t̃x) and Gk(t̃x) of

this polynomial the Newton formula holds

nGn(t̃x) = F1(t̃x)Gn−1(t̃x)− F2(t̃x)Gn−2(t̃x)

+ F3(t̃x)Gn−3(t̃x)− . . . + (−1)n−2Fn−1(t̃x)G1(t̃x) + (−1)n−1Fn(t̃x).
(5)
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Each of polynomials Fm(t̃x) and Gm(t̃x) can be represented as a linear combination of polyno-

mials Hk1,k2,...,ks
m (x) and Rk1,k2,...,ks

m (x) respectively. Indeed,

Gn(t̃x) = Gn(t1x(1) + t2x(2) + . . . + tsx(s))

= ∑
i1<...<in

(t1x(1) + t2x(2) + . . . + tsx(s))i1 . . . (t1x(1) + t2x(2) + . . . + tsx(s))in

= ∑
p1+p2+...+ps=n

t
p1
1 t

p2
2 . . . t

ps
s R

p1,p2,...,ps
n (x)

(6)

and

Fn(t̃x) = Fn(t1x(1) + t2x(2) + . . . + tsx(s)) =
∞

∑
i=1

(t1x(1) + t2x(2) + . . . + tsx(s))n
i

= ∑
k1+k2+...+ks=n

n!

k1!k2! . . . ks!
tk1
1 tk2

2 . . . tks
s Hk1,k2,...,ks

n (x).
(7)

So each term of equality (5) can be represented by polynomials Hk1,k2,...,ks
m and R

p1,p2,...,ps
m . Then

we obtain

F1(t̃x)Gn−1(t̃x) =

(

∑
k1+k2+...+ks=1

1!

k1!k2! . . . ks!
tk1
1 tk2

2 . . . tks
s Hk1,k2,...,ks

1 (x)

)

×

(

∑
p1+p2+...+ps=n−1

t
p1
1 t

p2
2 . . . t

ps
s R

p1,p2,...,ps

n−1 (x)

)

= ∑
k1+k2+...+ks=1

p1+p2+...+ps=n−1

1!

k1!k2! . . . ks!
t
k1+p1
1 t

k2+p2
2 . . . t

ks+ps
s Hk1,k2,...,ks

1 (x)R
p1 ,p2,...,ps

n−1 (x),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fr(t̃x)Gn−r(t̃x) =

(

∑
k1+k2+...+ks=r

r!

k1!k2! . . . ks!
tk1
1 tk2

2 . . . tks
s Hk1,k2,...,ks

r (x)

)

×

(

∑
p1+p2+...+ps=n−r

t
p1
1 t

p2
2 . . . t

ps
s R

p1,p2,...,ps
n−r (x)

)

= ∑
k1+k2+...+ks=r

p1+p2+...+ps=n−r

r!

k1!k2! . . . ks!
t
k1+p1
1 t

k2+p2
2 . . . t

ks+ps
s Hk1,k2,...,ks

r (x)R
p1 ,p2,...,ps
n−r (x).

If we substitute this equalities and equalities (6), (7) into (5) and equate multipliers at the

all powers of ti, i = 1, . . . , s we obtain the required formula.

Note that equation (4) is invertible and so we have

n!

k1! . . . ks!
Hk1,...,ks

n = ∑
|q |=n−1

kr≥qr

(n − 1)!

q1! . . . qs!
H

q1,...,qs

n−1 R
k1−q1,...,ks−qs

1 + . . .

+ (−1)n−1 ∑
|q |=2
kr≥qr

2!

q1! . . . qs!
H

q1,...,qs

2 R
k1−q1,...,ks−qs

n−2

+ (−1)n ∑
|q |=1
kr≥qr

H
q1,...,qs

1 R
k1−q1,...,ks−qs

n−1 + (−1)n+1nRk1,...,ks
n .
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Let us rewrite formula (4) using multi-index notations. We denote by k ! = k1!k2! . . . ks!

and by k − q = (k1 − q1, k2 − q2, . . . ks − qs). Also, we say that k ≥ q if and only if k1 ≥ q1,

k2 ≥ q2, . . . , ks ≥ qS. Then (4) can be expressed by

nRk
n = ∑

|q |=1
k≥q

H
q
1 R

k −q
n−1 − ∑

|q |=2
k≥q

|q |!

q !
H

q
2 R

k−q
n−2 + · · ·+ (−1)n−2 ∑

|q |=n−1
k≥q

|q |!

q !
H

q
n−1R

k−q
1

+ (−1)n−1 n!

k !
Hk

n =
n

∑
j=1

(−1)j−1 ∑
|q |=j
k≥q

|q |!

q !
H

q
j R

k −q
n−j , where n = |k |.

(8)

Comparing formula (8) with the classical Newton formula we can see that their are coincide

if s = 1.

Let us turn out to the space ℓp(Cs). Taking into account formula (2) we can see that by

definition, Hk
m = 0 in Pvs(ℓp(Cs)) if |k | < ⌈p⌉. So, using (8), we can define elementary block-

symmetric polynomials on ℓp(Cs) by

nRk
n =

n−⌈p⌉

∑
j=⌈p⌉

(−1)j−1 ∑
|q |=j
k≥q

|q |!

q !
H

q
j R

k−q
n−j , where n = |k | ≥ ⌈p⌉. (9)

Theorem 2. Elementary block-symmetric polynomials on ℓp(Cs) defined by (9) form an alge-

braic basis of n-homogeneous polynomials n ≥ ⌈p⌉ in Pvs(ℓp(Cs)).

Proof. It is easy to see that equation (9) is invertible. So we have a bijection between polynomi-

als H
q
n and R

q
n . Since {H

q
n }n≥⌈p⌉ is an algebraic basis in Pvs(ℓp(Cs)), so the set {R

q
n }n≥⌈p⌉ is

an algebraic basis in Pvs(ℓp(Cs)) too.
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Кравцiв В.В. Аналог формули Ньютона для блочно-симетричних полiномiв на ℓp(Cn) // Карпат-

ськi матем. публ. — 2020. — Т.12, №1. — C. 17–22.

Класичнi формули Ньютона задає рекурентнi спiввiдношення мiж алгебраїчними базиса-

ми симетричних полiномiв. Цi формули залишаються правильними i для симетричних полi-

номiв на нескiнченновимiрних банахових просторах послiдовностей.

В цiй статтi ми розглядаємо блочно-симетричнi полiноми (або симетричнi полiнома Мак-

махона) на банахових просторах ℓp(Cs), 1 ≤ p ≤ ∞. Ми доводимо аналог формули Ньютона

для блочно-симетричних полiномiв у випадку p = 1. У випадку 1 < p немає класичних еле-

ментарних блочно-симетричних полiномiв. Проте ми продовжили отриману формулу типу

Ньютона для ℓ1(C
s) на випадок ℓp(Cs), 1 < p ≤ ∞, i, в такий спосiб, запропонували природнє

означення елементарних блочно-симетричних полiномiв на ℓp(Cs).

Ключовi слова i фрази: симетричнi полiноми, блочно-симетричнi полiноми, алгебраїчний

базис, формула Ньютона.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2020, 12 (1), 23–33 Карпатськi матем. публ. 2020, Т.12, №1, С.23–33

doi:10.15330/cmp.12.1.23-33

AZIZBAYOV E.I. , MEHRALIYEV Y.T.

NONLOCAL INVERSE BOUNDARY-VALUE PROBLEM FOR A 2D PARABOLIC

EQUATION WITH INTEGRAL OVERDETERMINATION CONDITION

This article studies a nonlocal inverse boundary-value problem for a two-dimensional second-

order parabolic equation in a rectangular domain. The purpose of the article is to determine the

unknown coefficient and the solution of the considered problem. To investigate the solvability of

the inverse problem, we transform the original problem into some auxiliary problem with trivial

boundary conditions. Using the contraction mappings principle, existence and uniqueness of the

solution of an equivalent problem are proved. Further, using the equivalency, the existence and

uniqueness theorem of the classical solution of the original problem is obtained.
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1 INTRODUCTION AND FORMULATION OF THE INVERSE PROBLEM

In the present paper, we consider an inverse boundary-value problem for a two-dimen-

sional parabolic equation in a rectangular domain. The main goal of this article is to prove the

existence and uniqueness of a classical solution of an inverse boundary-value problem.

The inverse problems arise in many different areas of mathematical modeling types, such as

mineral exploration, biology, medicine, seismology, desalination of seawater, movement of liq-

uid in a porous medium, financial market behavior, etc. Fundamentals of the theory and prac-

tice of research of inverse problems were established and developed in the pioneering works

of Tikhonov [18], Lavrent’ev [15], Ivanov [10], Romanov [17], Denisov [3, 4]. Recently, there

have been many studies of inverse problems for 1D parabolic and other types of equations. A

more detailed bibliography and a classification of problems may be found in [1, 2, 6, 7, 11, 12].

Problems of the solvability of inverse problems for a two-dimensional heat equation is ex-

tensively studied by many authors, see, for example, Ismailov [5], Ivanchov [8, 9], Kabanikhin

[13], Kinash [14], Zaynullov [19], and others. But the statement of the problem and the proof

techniques used in this study are different from representations in these papers.

Motivated by these works, we study in this paper the existence and uniqueness of a classical

solution for the following inverse problem: in the domain DT = Q̄xy × [0, T], where Qxy =

{(x, y) : 0 < x < 1, 0 < y < 1}, consider a two-dimensional parabolic equation

ut(x, y, t)− c(t)(uxx(x, y, t) + uyy(x, y, t)) = a(t)u(x, y, t) + f (x, y, t), (x, y, t) ∈ DT, (1)

УДК 517.95
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with the nonlocal condition

u(x, y, 0) + δu(x, y, T) = ϕ(x, y), (x, y) ∈ Q̄xy, (2)

the boundary conditions

u(0, y, t) = ux(1, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T, (3)

uy(x, 0, t) = u(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T, (4)

and the overdetermination condition

u(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)u(x, y, t)dxdy = h(t), 0 ≤ t ≤ T, 0 < x0, y0 < 1, (5)

where δ ≥ 0 is known number, (x0, y0) ∈ Qxy is some fixed point, 0 < c(t), f (x, y, t), ϕ(x, y),

h(t) are given functions, u(x, y, t) and a(t) are unknown functions.

Definition 1. The pair {u(x, y, t), a(t)} is said to be a classical solution of the problem (1)–(5),

if the functions u(x, y, t) ∈ C2,2,1(DT) and a(t) ∈ C[0, T] satisfy equation (1) in DT, and the

conditions (2)–(5) in the classical (usual) sense.

To investigate the existence and uniqueness of the classical solution of problem (1)–(5), we

prove the following theorem.

Theorem 1. Suppose that δ ≥ 0, f (x, y, t) ∈ C(DT), ϕ(x, y) ∈ C(Q̄xy), K(x, y) ∈ L1(Qxy),

h(t) ∈ C1[0, T], h(t) 6= 0, 0 ≤ t ≤ T and the compatibility condition

ϕ(x0, y0) +

1
∫

0

1
∫

0

K(x, y)ϕ(x, y) dx dy = h(0) + δh(T), (6)

holds true. Then the problem of finding a classical solution of (1)–(5) is equivalent to the

problem of determining the functions u(x, y, t) ∈ C2,2,1(DT) and a(t) ∈ C[0, T], satisfying

(1)–(4), and the condition

h′(t)− c(t)



uxx(x0, y0, t) + uyy(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)(uxx(x, y, t) + uyy(x, y, t)) dx dy





= a(t)h(t) + f (x0, y0, t) +

1
∫

0

1
∫

0

K(x, y) f (x, y, t) dx dy, 0 ≤ t ≤ T.

(7)

Proof. Let {u(x, y, t), a(t)} be the classical solution of problem (1)–(5). Then from equation (1),

we have

d

dt



u(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)u(x, y, t) dx dy





− c(t)



uxx(x0, y0, t) + uyy(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)(uxx(x, y, t) + uyy(x, y, t)) dx dy




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= a(t)



u(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)u(x, y, t) dx dy





+ f (x0, y0, t) +

1
∫

0

1
∫

0

K(x, y) f (x, y, t) dx dy, 0 ≤ t ≤ T.

(8)

Differentiating both sides of (6) with respect to t gives

d

dt



u(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)u(x, y, t) dx dy



 = h′(t), 0 ≤ t ≤ T. (9)

From (8), taking into account (5) and (9), we arrive at (7).

Now, assume that {u(x, y, t), a(t)} is a solution to the problem (1)–(4), (7). Then from (7)

and (8), we get

d

dt



u(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)u(x, y, t) dx dy − h(t)





= a(t)



u(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)u(x, y, t) dx dy − h(t)



 , 0 ≤ t ≤ T.

(10)

Using (2) and the compatibility condition (6), we obtain the following relation

u(x0, y0, 0) +

1
∫

0

1
∫

0

K(x, y)u(x, y, 0) dx dy − h(0)

+ δ



u(x0, y0, T) +

1
∫

0

1
∫

0

K(x, y)u(x, y, T) dx dy − h(T)





= u(x0, y0, 0) + δu(x0, y0, T) +

1
∫

0

1
∫

0

K(x, y)(u(x, y, 0) + u(x, y, T)) dx dy

− (h(0) + δh(T)) = ϕ(x0, y0) +

1
∫

0

1
∫

0

K(x, y)ϕ(x, y) dx dy − (h(0) + δh(T)) = 0.

(11)

It is clear that the general solution of equation (10) has the form

u(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)u(x, y, t) dx dy − h(t) = ce

t
∫

0

a(τ)dτ

, (12)

where c is an arbitrary constant.

Hence, using (11), we find

c



1 + δe
−

T
∫

0

a(τ)dτ



 = 0. (13)
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By virtue of δ ≥ 0, from (13), we obtain that c = 0. Setting c = 0 in (12), we conclude that

u(x0, y0, t) +

1
∫

0

1
∫

0

K(x, y)u(x, y, t) dx dy − h(t) = 0, 0 ≤ t ≤ T.

Hence, the condition (5) is satisfied. The proof is complete.

2 SOLVABILITY OF THE INVERSE BOUNDARY-VALUE PROBLEM

We seek the first component u(x, y, t) of classical solution {u(x, y, t), a(t)} of the problem

(1)–(4), (7) in the form

u(x, y, t) =
∞

∑
k=1

∞

∑
n=1

uk,n(t) sin λkx cos γny,

λk =
π

2
(2k − 1), γn =

π

2
(2n − 1), k, n = 1, 2, . . . ,

(14)

where

uk,n(t) = 4

1
∫

0

1
∫

0

u(x, y, t) sin λkx cos γny dx dy.

Applying the formal scheme of the Fourier method, from (1) and (2), we have

u′
k,n(t) + (λ2

k + γ2
n)c(t)uk,n(t) = Fk,n(t; u, a), 0 ≤ t ≤ T, (15)

uk,n(0) + δuk,n(T) = ϕk,n, k, n = 1, 2, . . . , (16)

where

Fk,n(t; u, a) = fk,n(t) + a(t)uk,n(t),

fk,n(t) = 4

1
∫

0

1
∫

0

f (x, y, t) sin λkx cos γny dx dy, ϕk,n = 4

1
∫

0

1
∫

0

ϕ(x, y) sin λkx cos γny dx dy.

Solving problem (15), (16), we find

uk,n(t) =
ϕk,ne

−
t
∫

0

µ2
k,nc(s)ds

1 + δe
−

T
∫

0

µ2
k,nc(s)ds

+

t
∫

0

Fk,n(τ; u, a)e
−

t
∫

τ
µ2

k,nc(s)ds
dτ

− δe
−

T
∫

0

µ2
k,nc(s)ds

1 + δe
−

T
∫

0

µ2
k,nc(s)ds

T
∫

0

Fk,n(τ; u, a)e
−

t
∫

τ
µ2

k,nc(s)ds
dτ,

(17)

where

µ2
k,n = λ2

k + γ2
n.
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Substituting the expressions uk,n(t) (k, n = 1, 2, . . .) described by (17) into (14), to determine

the first component of the solution (1)–(4), (7), we obtain

u(x, y, t) =
∞

∑
k=1

∞

∑
n=1



















ϕk,ne
−

t
∫

0

µ2
k,nc(s)ds

1 + δe
−

T
∫

0

µ2
k,nc(s)ds

+

t
∫

0

Fk,n(τ; u, a)e
−

t
∫

τ
µ2

k,nc(s)ds
dτ

− δe
−

T
∫

0

µ2
k,nc(s)ds

1 + δe
−

T
∫

0

µ2
k,nc(s)ds

T
∫

0

Fk,n(τ; u, a)e
−

t
∫

τ
µ2

k,nc(s)ds
dτ



















sin λkx cos γny.

(18)

Further from (7), taking into account h(t) 6= 0, we get

a(t) = [h(t)]−1

{

h′(t)−
(

f (x0 , y0, t) +

1
∫

0

1
∫

0

K(x, y) f (x, y, t) dx dy

)

− c(t)
∞

∑
k=1

∞

∑
n=1

uk,n(t)pk,n

}

,

(19)

where

pk,n = µ2
k,n

(

sin λkx0 cos γny0 +

1
∫

0

1
∫

0

K(x, y) sin λkx cos γny dx dy

)

.

Next, substituting the expressions uk,n(t) (k, n = 1, 2, . . .) represented by (17) into (19), to

find the second component of the solution (1)–(4), (7), we have

a(t) = [h(t)]−1







h′(t)−



 f (x0, y0, t) +

1
∫

0

1
∫

0

K(x, y) f (x, y, t) dx dy





− c(t)
∞

∑
k=1

∞

∑
n=1











ϕk,ne
−

t
∫

0

µ2
k,nc(s)ds

1 + δe
−

T
∫

0

µ2
k,nc(s)ds

+

t
∫

0

Fk,n(τ; u, a)e
−

t
∫

τ
µ2

k,nc(s)ds
dτ

− δe
−

T
∫

0

µ2
k,nc(s)ds

1 + δe
−

T
∫

0

µ2
k,nc(s)ds

T
∫

0

Fk,n(τ; u, a)e
−

t
∫

τ
µ2

k,nc(s)ds
dτ











pk,n



















.

(20)

Thus, the solution of problem (1)–(4), (7) was reduced to the solution by systems (18), (20)

with respect to unknown functions u(x, y, t) and a(t).

Proceeding from the definition of the solution of the problem (1)–(4), (7) the following

statement is proved.

Lemma 1. If {u(x, y, t), a(t)} is any solution of (1)–(4), (7) then the functions

uk,n(t) = 4

1
∫

0

1
∫

0

u(x, y, t) sin λkx cos γny dx dy, k, n = 1, 2, . . . ,

satisfy the system (17) on the interval [0, T].
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Proof. Let {u(x, y, t), a(t)} be any solution of problem (1)–(4), (7). Multiplying both sides of

the equation (1) by function 4 sin λkx cos γny (k, n = 1, 2, . . . ) and integrating both sides with

respect to x and y from 0 to 1, and using relationships

4

1
∫

0

1
∫

0

ut(x, y, t) sin λkx cos γny dx dy =
d

dt

(

4

1
∫

0

1
∫

0

u(x, y, t) sin λkx cos γny dx dy

)

= u′
k,n(t),

4

1
∫

0

1
∫

0

(

uxx(x, y, t) + uyy(x, y, t)
)

sin λkx cos γny dx dy

=− (λ2
k + γ2

n)

(

4

1
∫

0

1
∫

0

u(x, y, t) sin λkx cos γny dx dy

)

=−(λ2
k + γ2

n)uk,n(t), k, n = 1, 2, . . . ,

we get that the equation (15) is satisfied.

Similarly, from (2) we obtain that condition (16) is satisfied. Thus, uk,n(t), k, n = 1, 2, . . . , is

a solution to the problem (15), (16). Hence, it straightforward follows that the functions uk,n(t),

k, n = 1, 2, . . . , satisfy on [0, T] system (17). Thus the lemma is proved.

Obviously, if

uk,n(t) = 4

1
∫

0

1
∫

0

u(x, y, t) sin λkx cos γny dx dy, k, n = 1, 2, . . . ,

is a solution to system (17), then the functions

u(x, y, t) =
∞

∑
k=1

∞

∑
n=1

uk,n(t) sin λkx cos γny,

and a(t) is a solution of system (18), (20).

From Lemma 1 it follows the next assertion.

Corollary 1. Suppose that system (18), (20) has a unique solution. Then the problem (1)–(4),

(7), couldn’t have more than one solution, in other words, if problem (1)–(4), (7) has a solution,

then it is a unique.

In order to study the problem (1)–(4), (7), we consider the following spaces. Let B3
2,T denote

the set of all functions of the form

u(x, y, t) =
∞

∑
k=1

∞

∑
n=1

uk,n(t) sin λkx cos γny, λk =
π

2
(2k− 1), γn =

π

2
(2n− 1), k, n = 1, 2, . . . ,

considered in domain DT, where the functions uk,n(t), k, n = 1, 2, . . . , are continuous on [0, T],

and satisfy the condition

{

∞

∑
k=1

∞

∑
n=1

(µ3
k,n ‖uk,n(t)‖C[0,T])

2

} 1
2

< +∞.
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The norm in the space B3
2,T is defined as follows

‖u(x, y, t)‖B3
2,T

=

{

∞

∑
k=1

∞

∑
n=1

(

µ3
k,n ‖uk,n(t)‖C[0,T]

)2
} 1

2

.

We denote by E3
T the topological product of B3

2,T × C[0, T]. The norm of the element z =

{u, a} is determined by the formula

‖z‖E3
T
= ‖u(x, y, t)‖B3

2,T
+ ‖a(t)‖C[0,T] .

It is known [16] that the spaces B3
2,T and E3

T are Banach spaces.

Now, consider the operator

Φ(u, a) = {Φ1(u, a), Φ2(u, a)}
in the space E3

T, where

Φ1(u, a) = ũ(x, y, t) =
∞

∑
k=1

∞

∑
n=1

ũk,n(t) sin λkx cos γny,

Φ2(u, a) = ã(t),

and the functions ũk,n(t), k, n = 1, 2, . . ., ã(t) are equal to the right-hand sides of (17), (20)

respectively.

It is easy to see that

1 + δe
−

T
∫

0

λ2
k

β(s) ds

1+λ2
k

α(s) ≥ 1,

µ3
k,n ≤ (λ2

k + γ2
k)(λk + γn) = λ3

k + λ2
kγn + γ2

kλk + γ3
n,

T
∫

0

| fk,n(τ)| dτ ≤
√

T





T
∫

0

| fk,n(τ)|2 dτ





1
2

,

|pk,n| =



1 +

1
∫

0

1
∫

0

|K(x, y)| dx dy



 µ2
k,n ≡ pµ2

k,n.

Taking into consideration these relations, we have
{

∞

∑
n=1

∞

∑
k=1

(

µ3
k,n ‖ũk,n(t)‖C[0,T]

)2
}

1
2

≤ 3

(

∞

∑
n=1

∞

∑
k=1

(

λ3
k |ϕk,n|

)2
)

1
2

+ 3

(

∞

∑
n=1

∞

∑
k=1

(λ2
kγn |ϕk,n|)2

) 1
2

+ 3

(

∞

∑
n=1

∞

∑
k=1

(λkγ2
n |ϕk,n|)2

) 1
2

+ 3

(

∞

∑
n=1

∞

∑
k=1

(γ3
n |ϕk,n|)2

) 1
2

+ 3(1 + δ)







√
T











T
∫

0

∞

∑
n=1

∞

∑
k=1

(λ3
k | fk,n(τ)|)2dτ





1
2

+





T
∫

0

∞

∑
n=1

∞

∑
k=1

(λ2
kγn | fk,n(τ)|)2dτ





1
2

+





T
∫

0

∞

∑
n=1

∞

∑
k=1

(λkγ2
n | fk,n(τ)|)2dτ





1
2

+





T
∫

0

∞

∑
n=1

∞

∑
k=1

(γ3
n | fk,n(τ)|)2dτ





1
2







+ T ‖a(t)‖C[0,T]

(

∞

∑
k=1

∞

∑
k=1

(µ3
k,n ‖uk,n(t)‖C[0,T])

2

) 1
2



 ,

(21)
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‖ã(t)‖C[0,T]

≤
∥

∥

∥[h(t)]
−1
∥

∥

∥

C[0,T]







∥

∥

∥

∥

∥

∥

h′(t)−



 f (x0, y0, t) +

1
∫

0

1
∫

0

K(x, y) f (x, y, t) dx dy





∥

∥

∥

∥

∥

∥

C[0,T]

+ p ‖c(t)‖C[0,T]

(

∞

∑
k=1

∞

∑
k=1

µ−2
k

) 1
2





(

∞

∑
n=1

∞

∑
k=1

(λ3
k |ϕk,n|)2

) 1
2

+

(

∞

∑
n=1

∞

∑
k=1

(λ2
kγn |ϕk,n|)2

) 1
2

+

(

∞

∑
n=1

∞

∑
k=1

(λkγ2
n |ϕk,n|)2

) 1
2

+

(

∞

∑
n=1

∞

∑
k=1

(γ3
n |ϕk,n|)2

) 1
2

+ (1 + δ)
√

T











T
∫

0

∞

∑
n=1

∞

∑
k=1

(λ3
k | fk,n(τ)|)2dτ





1
2

+





T
∫

0

∞

∑
n=1

∞

∑
k=1

(λ2
kγn | fk,n(τ)|)2dτ





1
2

+





T
∫

0

∞

∑
n=1

∞

∑
k=1

(λkγ2
n | fk,n(τ)|)2dτ





1
2

+





T
∫

0

∞

∑
n=1

∞

∑
k=1

(γ3
n | fk,n(τ)|)2dτ





1
2







+ (1 + δ)T ‖a(t)‖C[0,T]

(

∞

∑
k=1

∞

∑
k=1

(µ3
k,n ‖uk,n(t)‖C[0,T])

2

) 1
2











.

(22)

Assume that the data for the problem (1)–(4), (7) satisfy the following conditions:

(A) ϕ(x, y), ϕx(x, y), ϕxx(x, y), ϕy(x, y), ϕxy(x, y), ϕyy(x, y) ∈ C(Q̄xy),

ϕxxy(x, y), ϕxyy(x, y), ϕxxx(x, y), ϕyyy(x, y) ∈ L2(Qxy),

ϕ(0, y) = ϕx(1, y) = ϕxx(0, y) = 0, 0 ≤ y ≤ 1,

ϕy(x, 0) = ϕ(x, 1) = ϕyy(x, 1) = 0, 0 ≤ x ≤ 1;

(B) f (x, y, t), fx(x, y, t), fxx(x, y, t), fy(x, y, t), fxy(x, y, t), fxy(x, y, t) ∈ C(DT),

fxxy(x, y, t), fxyy(x, y, t), fxxx(x, y, t), fyyy(x, y, t) ∈ L2(DT),

f (0, y, t) = fx(1, y, t) = fxx(0, y, t) = 0, 0 ≤ y ≤ 1, 0 ≤ t ≤ T,

fy(x, 0, t) = f (x, 1, t) = fyy(x, 1, t) = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ T;

(C) δ ≥ 0, K(x, y) ∈ L1(Qxy), 0 < c(t) ∈ C[0, T], h(t) ∈ C1[0, T], h(t) 6= 0, 0 ≤ t ≤ T.

Then, from (21) and (22), respectively, we obtain

‖ũ(x, y, t)‖B3
2,T

≤ A1(T) + B1(T) ‖a(t)‖C[0,T] ‖u(x, y, t)‖B3
2,T

, (23)

‖ã(t)‖C[0,T] ≤ A2(T) + B2(T) ‖a(t)‖C[0,T] ‖u(x, y, t)‖B3
2,T

, (24)

where

A1(T) = 3 ‖ϕxxx(x, y)‖L2(Qxy)
+ 3

∥

∥ϕxyy(x, y)
∥

∥

L2(Qxy)
+ 3

∥

∥ϕxxy(x, y)
∥

∥

L2(Qxy)

+ 3
∥

∥ϕyyy(x, y)
∥

∥

L2(Qxy)
+ (1 + δ)

√
T 3
(

‖ fxxx(x, y, t)‖L2(DT)

+ 3
∥

∥ fxyy(x, y, t)
∥

∥

L2(DT)
+ 3

∥

∥ fxxy(x, y, t)
∥

∥

L2(DT)

+ 3 ‖ fxxx(x, y, t)‖L2(DT)
+ 3

∥

∥ fyyy(x, y, t)
∥

∥

L2(DT)

)

,

B1(T) = 3(1 + δ)T,
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A2(T) =
∥

∥

∥[h(t)]
−1
∥

∥

∥

C[0,T]

{∥

∥

∥

∥

(h′(t)−
(

f (x0, y0, t) +

1
∫

0

1
∫

0

K(x, y) f (x, y, t) dx dy

)∥

∥

∥

∥

C[0,T]

+ p ‖c(t)‖C[0,T]

( ∞

∑
k=1

∞

∑
k=1

µ−2
k

)
1
2
[

‖ϕxxx(x, y)‖L2(Qxy)
+
∥

∥ϕxyy(x, y)
∥

∥

L2(Qxy)

+
∥

∥ϕxxy(x, y)
∥

∥

L2(Qxy)
+
∥

∥ϕyyy(x, y)
∥

∥

L2(Qxy)
+ (1 + δ)

√
T
(

‖ fxxx(x, y, t)‖L2(DT)

+
∥

∥ fxyy(x, y, t)
∥

∥

L2(DT)
+
∥

∥ fxxy(x, y, t)
∥

∥

L2(DT)

+ ‖ fxxx(x, y, t)‖L2(DT)
+
∥

∥ fyyy(x, y, t)
∥

∥

L2(DT)

)

]}

,

B2(T) =
∥

∥

∥[h(t)]
−1
∥

∥

∥

C[0,T]
p ‖c(t)‖C[0,T]

(

∞

∑
k=1

∞

∑
k=1

µ−2
k

)
1
2

(1 + δ)T.

From inequalities (23) and (24) we conclude

‖ũ(x, y, t)‖B3
2,T

+ ‖ã(t)‖C[0,T] ≤ A(T) + B(T) ‖a(t)‖C[0,T] ‖u(x, t)‖B3
2,T

, (25)

where

A(T) = A1(T) + A2(T), B(T) = B1(T) + B2(T).

Let KR denote the closed ball of radius R = A(T) + 2 centered at zero in E3
T.

Theorem 2. Let the conditions (A)–(C) and the condition

B(T)(A(T) + 2)2
< 1 (26)

be fulfilled. Then problem (1)–(4), (7) has a unique solution in the ball KR.

Proof. Let us consider in the space E3
T the equation

z = Φz, (27)

where z = {u, a}. The components Φi(u, a), i = 1, 2, of operator Φ(u, a) defined by the right

side of equations (18), (20), respectively. Now, consider the operator Φ(u, a) in the ball KR of

the space E3
T.

Similar to (25) we obtain that for any z, z1, z2 ∈ KR the following inequalities hold

‖Φz‖E3
T
≤ A(T) + B(T) ‖p(t)‖C[0,T] ‖u(x, y, t)‖B3

2,T
≤ A(T) + B(T)(A(T) + 2)2, (28)

‖Φz1 − Φz2‖E3
T
≤ B(T)R

(

‖u1(x, y, t)− u2(x, y, t)‖B3
2,T

+ ‖a1(t)− a2(t)‖C[0,T]

)

. (29)

Then by (26), from estimates (28) and (29) it is clear that the operator Φz acts in a ball KR

and satisfy the conditions of the contraction mapping principle. Therefore the operator Φz

has a unique fixed point {u, a} in the ball KR, which is a unique solution of equation (27), i.e.,

{u, a} is a unique solution of the systems (18), (20) in the ball KR.

The function u(x, y, t) as an element of the space E3
T is continuous and has continuous

derivatives ux(x, y, t), uxx(x, y, t), uy(x, y, t), uxy(x, y, t), uyy(x, y, t) in DT.
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From the equation (15) it is clear that

u′
k,n(t) + (λ2

k + γ2
n)c(t)uk,n(t) = Fk,n(t; u, a), 0 ≤ t ≤ T,

{ ∞

∑
n=1

∞

∑
k=1

(

µk,n

∥

∥u′
k,n(t)

∥

∥

C[0,T]

)2
}

1
2

≤
√

2 ‖c(t)‖C[0,T] ‖u(x, y, t)‖B3
2,T

+
∥

∥

∥

∥

∥ fx(x, y, t) + fy(x, y, t) + p(t)(ux(x, y, t) + uy(x, y, t))
∥

∥

C[0,T]

∥

∥

∥

L2(Qxy)
.

Thus ut(x, y, t) is continuous in DT.

It is not hard to verify that equation (1) and conditions (2)–(4), (7) are satisfied in the usual

sense. Thus, the solution of the problem (1)–(4), (7) is a pair of functions {u(x, t), a(t)}. By

virtue of the Lemma 1, it is unique in the ball KR. Theorem has been proved.

Thus, by Theorem 1 and Theorem 2, we arrive at the following main result.

Theorem 3. Assume that all conditions of Theorem 2 and compatibility condition

ϕ(x0, y0) +

1
∫

0

1
∫

0

K(x, y)ϕ(x, y) dx dy = h(0) + δh(T)

hold. Then problem (1)–(5) has a unique classical solution in the ball KR for sufficiently small

values of T.
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Азiзбайов Е.I., Мехралiєв Ю.Т. Нелокальна обернена крайова задача для двовимiрного параболiчного

рiвняння з iнтегральною переозначеною умовою // Карпатськi матем. публ. — 2020. — Т.12, №1.

— C. 23–33.

В роботi дослiджено нелокальну обернену крайову задачу для двовимiрного параболiчно-

го рiвняння другого порядку у прямокутнiй областi. Метою цiєї статтi є визначення невiдо-

мого коефiцiєнта та розв’язку вказаної задачi. Щоб дослiдити роз’язнiсть оберненої задачi,

ми перетворюємо оригiнальну задачу у деяку допомiжну задачу з тривiальними крайовими

умовами. Використовуючи принцип стискаючих вiдображень, доведено iснування i єдинiсть

розв’язку для еквiвалентної задачi. Використовуючи еквiвалентнiсть, отримано теорему про

iснування i єдинiсть класичного розв’язку оригiнальної задачi.

Ключовi слова i фрази: обернена задача, двовимiрне параболiчне рiвняння, метод Фур’є, кла-

сичний розв’язок, переозначена умова.
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MERSENNE-HORADAM IDENTITIES USING GENERATING FUNCTIONS

The main object of the present paper is to reveal connections between Mersenne numbers Mn =

2n − 1 and generalized Fibonacci (i.e., Horadam) numbers wn defined by a second order linear

recurrence wn = pwn−1 + qwn−2, n ≥ 2, with w0 = a and w1 = b, where a, b, p > 0 and q 6= 0 are

integers. This is achieved by relating the respective (ordinary and exponential) generating functions

to each other. Several explicit examples involving Fibonacci, Lucas, Pell, Jacobsthal and balancing

numbers are stated to highlight the results.

Key words and phrases: Mersenne numbers, Horadam sequence, Fibonacci sequence, Lucas se-
quence, Pell sequence, generating function, binomial transform.
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INTRODUCTION

A generalized Fibonacci sequence (wn)n≥0 = (wn(a, b; p, q))n≥0 is defined by a second order

homogeneous linear recurrence

wn = pwn−1 + qwn−2, n ≥ 2,

with w0 = a and w1 = b, where a, b, p and q are integers with p > 0, q 6= 0. Since these

numbers were first studied by A.F. Horadam (see, e.g., [11, 12]), they are often referred to as

Horadam numbers. The Binet formula for wn is given by [11]

wn = αrn
1 + βrn

2 , n ≥ 0,

where r1 =
p+
√

p2+4q
2 and r2 =

p−
√

p2+4q
2 denote the distinct roots of the quadratic equation

x2 − px − q = 0,

α =
a

2
+

2b − ap

2
√

p2 + 4q
and β =

a

2
− 2b − ap

2
√

p2 + 4q
.

It is worth noticing that an equivalent version of the Binet formula is given by

wn = b
rn

1 − rn
2

r1 − r2
+ aq

rn−1
1 − rn−1

2

r1 − r2
, n ≥ 1.
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The sequence can be extended to negative subscripts according to

w−n = −1

q
(pw−n+1 − w−n+2), n ≥ 1.

Further results on Horadam sequences can be found in the survey paper [14]. In what

follows, we will make frequent use of the generating functions of (wn)n≥0. We know [15] that

the sequence wn has the ordinary (non-exponential) generating function

w(z) =
∞

∑
n=0

wnzn =
a + (b − ap)z

1 − pz − qz2
, (1)

while for sequences w2n+1 and w2n

w1(z) =
∞

∑
n=0

w2n+1zn =
a + (bp − qa − ap2)z

1 − (p2 + 2q)z + q2z2
, (2)

w2(z) =
∞

∑
n=0

w2nzn =
b + (apq − bq)z

1 − (p2 + 2q)z + q2z2
. (3)

The Horadam sequence generalizes many other number and polynomial sequences, for

instance, the Fibonacci sequence Fn = wn(0, 1; 1, 1), the Lucas sequence Ln = wn(2, 1; 1, 1), the

Pell sequence Pn = wn(0, 1; 2, 1), the Jacobsthal sequence Jn = wn(0, 1; 1, 2), the Mersenne sequence

Mn = wn(0, 1; 3,−2), the balancing numbers Bn = wn(0, 1; 6,−1), and so on. The first few terms

of each sequence are stated below.

n 0 1 2 3 4 5 6 7 8 9 10 11

Fn 0 1 1 2 3 5 8 13 21 34 55 89

Ln 2 1 3 4 7 11 18 29 47 76 123 199

Pn 0 1 2 5 12 29 70 169 408 985 2378 5741

Jn 0 1 1 3 5 11 21 43 85 171 341 683

Mn 0 1 3 7 15 31 63 127 255 511 1023 2047

Bn 0 1 6 35 204 1189 6930 40391 235416 1372105 7997214 46611179

The sequences (Fn)n≥0, (Ln)n≥0, (Pn)n≥0, (Jn)n≥0, (Mn)n≥0 and (Bn)n≥0 are indexed in

the On-Line Encyclopedia of Integer Sequences [19] (see entries A000045, A000032, A000129,

A001045, A000225 and A001109, respectively).

In the present paper, we derive some connection formulas between Mersenne numbers and

the Horadam sequence.

Recall that Mersenne numbers Mn belong to the Horadam sequence family. They are given

by the explicit form

Mn = 2n − 1, n ≥ 0.

Mersenne numbers are popular research objects because of their interesting properties. For

instance, Mersenne numbers are numbers with the following representation in the binary sys-

tem: (1)2, (11)2, (111)2, (1111)2, (11111)2, . . . . Also, the Mersenne number sequence contains

primes, the so called Mersenne primes of the form 2n − 1. A simple calculation shows that if

Mn is a prime number, then n is a prime number, though not all Mn are prime. Mersenne

primes are also connected to perfect numbers. The search for Mersenne primes is an active
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field of research (see [18], among others). More information about Mersenne numbers and its

generalizations can be taken from the papers [1, 3–6, 9, 10, 13, 16, 20] and references contained

therein.

We conclude this section with some generating functions, which will be needed in the

proofs. Using (1)–(3) we easily obtain non-exponential generating functions of the sequences

Mn, M2n+1 and M2n as follows

m(z) =
∞

∑
n=0

Mnzn =
z

1 − 3z + 2z2
, (4)

m1(z) =
∞

∑
n=0

M2n+1zn =
1 + 2z

1 − 5z + 4z2
, (5)

m2(z) =
∞

∑
n=0

M2nzn =
3z

1 − 5z + 4z2
. (6)

Finally, the exponential generating functions of the sequences Mn, M2n+1 and M2n can be

derived as

µ(z) =
∞

∑
n=0

Mn
zn

n!
= 2e

3z
2 sinh

( z

2

)

, (7)

µ1(z) =
∞

∑
n=0

M2n+1
zn

n!
= 2e

5z
2 sinh

(

3z

2

)

+ e4z, µ2(z) =
∞

∑
n=0

M2n
zn

n!
= 2e

5z
2 sinh

(

3z

2

)

.

1 MERSENNE-HORADAM IDENTITIES USING ORDINARY GENERATING FUNCTIONS

Our first result provides a relation between Mersenne and Horadam numbers using its

ordinary generating functions. The method of proof is the same as in [7] and [8]. We note that,

in what follows, we will used the standard convention that
n

∑
k=0

ak = 0 for n < 0.

Theorem 1. For n ≥ 0, the following formula holds

wn = a + (b − a)Mn +
n−1

∑
k=1

(

(p − 3)wn−k + (q + 2)wn−k−1

)

Mk.

Proof. By (1) and (4), we get

z

m(z)
= 1 − 3z + 2z2 = (1 − pz − qz2) + (pz + qz2 − 3z + 2z2) =

a + (b − ap)z

w(z)

+ (p − 3)z + (q + 2)z2 =
a + (b − ap)z + (p − 3)zw(z) + (q + 2)z2w(z)

w(z)
,

and thus zw(z) = am(z) + (b − ap)zm(z) + (p − 3)zw(z)m(z) + (q + 2)z2w(z)m(z).

Expanding both sides of the last equation as a power series in z yields

z
∞

∑
n=0

wnzn = a
∞

∑
n=0

Mnzn + (b − ap)
∞

∑
n=0

Mnzn+1

+ (p − 3)z
∞

∑
n=0

wnzn
∞

∑
n=0

Mnzn + (q + 2)z2
∞

∑
n=0

wnzn
∞

∑
n=0

Mnzn.
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Using the formula for multiplication of two power series

∞

∑
n=0

anzn
∞

∑
n=0

bnzn =
∞

∑
n=0

n

∑
k=0

akbn−kzn, (8)

we then obtain

∞

∑
n=0

wnzn+1 = a
∞

∑
n=0

Mnzn + (b − ap)
∞

∑
n=1

Mn−1zn

+ (p − 3)
∞

∑
n=0

n

∑
k=0

wn−k Mkzn+1 + (q + 2)
∞

∑
n=0

n

∑
k=0

wn−k Mkzn+2,

az +
∞

∑
n=2

wn−1zn = az + a
∞

∑
n=2

Mnzn + (b − ap)
∞

∑
n=2

Mn−1zn

+ (p − 3)
∞

∑
n=2

n−1

∑
k=0

wn−k−1Mkzn + (q + 2)
∞

∑
n=2

n−2

∑
k=0

wn−k−2Mkzn.

Comparing the coefficients on both sides, we obtain

wn = aMn+1 + (b − ap)Mn + (p − 3)
n

∑
k=0

wn−kMk + (q + 2)
n−1

∑
k=0

wn−k−1Mk

= a(2Mn + 1) + (b − ap)Mn + (p − 3)
n−1

∑
k=0

wn−k Mk + (p − 3)aMn + (q + 2)
n−1

∑
k=0

wn−k−1Mk

= a + (b − a)Mn +
n−1

∑
k=1

(

(p − 3)wn−k + (q + 2)wn−k−1

)

Mk,

as desired.

Example 1. By choosing suitable values on a, b, p and q, one can obtain the following identities

valid for n ≥ 0:

Fn = Mn −
n−1

∑
k=1

(2Fn−k − 3Fn−k−1) Mk, Ln = 2 − Mn −
n−1

∑
k=1

(2Ln−k − 3Ln−k−1) Mk,

Pn = Mn −
n−1

∑
k=1

(Pn−k − 3Pn−k−1) Mk, Jn = Mn − 2
n−1

∑
k=1

(Jn−k − 2Jn−k−1) Mk,

Bn = Mn +
n−1

∑
k=1

(3Bn−k + Bn−k−1) Mk.

In a similar manner, we can use the generating functions (2), (5) and (3), (6), respectively,

to prove two other relations between odd (even) indexed Horadam and Mersenne numbers.

These relations are contained in the next two theorems, those proofs we leave to the reader.

Theorem 2. For n ≥ 1, the following formula hold

w2n+1 + 2w2n−1 = 3b + (bp2 + apq + bq − b)M2n−1

+
n−1

∑
k=1

(

(p2 + 2q − 5)pw2(n−k) + (q2 + qp2 − 5q + 4)w2(n−k)−1

)

M2k−1.
(9)
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Example 2. Formula (9) yields

F2n+1 + 2F2n−1 = 3 + M2n−1 −
n−1

∑
k=1

(

2F2(n−k) − F2(n−k)−1

)

M2k−1,

L2n+1 + 2L2n−1 = 3 + 3M2n−1 −
n−1

∑
k=1

(

2L2(n−k) − L2(n−k)−1

)

M2k−1,

P2n+1 + 2P2n−1 = 3 + 4M2n−1 + 2
n−1

∑
k=1

(

P2(n−k) + 2P2(n−k)−1

)

M2k−1,

J2n+1 + 2J2n−1 = 2 + M2n,

B2n+1 + 2B2n−1 = 3 + 34M2n−1 + 2
n−1

∑
k=1

(

87B2(n−k) − 13B2(n−k)−1

)

M2k−1.

Theorem 3. For n ≥ 0, the following formulas hold

w2n = a +
pb + qa − a

3
M2n +

1

3

n−1

∑
k=1

(

(p2 + 2q − 5)w2(n−k) + (4 − q2)w2(n−k−1)

)

M2k. (10)

Example 3. It follows from (10) that

F2n =
1

3
M2n −

1

3

n−1

∑
k=1

(

2F2(n−k) − 3F2(n−k−1)

)

M2k,

L2n = 2 +
1

3
M2n −

1

3

n−1

∑
k=1

(

2L2(n−k) − 3L2(n−k−1)

)

M2k,

P2n =
2

3
M2n +

1

3

n−1

∑
k=1

(

P2(n−k) + 3P2(n−k−1)

)

M2k,

J2n =
1

3
M2n, (11)

B2n = 2M2n +
1

3

n−1

∑
k=1

(

29B2(n−k) + 3B2(n−k−1)

)

M2k.

Note that formula (11) is known (see [4]).

We finally remark, that Theorems 1, 2 and 3 can be generalized to sums of certain products

of wn and Mn; see [7] and [8] for details.

2 MERSENNE-HORADAM IDENTITIES VIA EXPONENTIAL GENERATING FUNCTIONS

Let us first consider the fundamental Fibonacci sequence un = wn(0, b; p, q). In this section,

we derive connection formulas between un and Mersenne numbers Mn involving binomial

coefficients.

Let u(z), u1(z) and u2(z) be the exponential generating function of the sequences un, u2n+1

and u2n. Then we have
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u(z) =
∞

∑
n=0

un
zn

n!
=

2b

∆
e

pz
2 sinh

(

∆z

2

)

, (12)

u1(z) =
∞

∑
n=0

u2n+1
zn

n!
=

2b(p2 + q)

p∆
e

p2+q
2 z sinh

(

p∆z

2

)

− b

2p∆

(

(p2 + 2q − p∆)e
p2+2q+p∆

2 z − (p2 + 2q + p∆)e
p2+2q−p∆

2 z

)

,

u2(z) =
∞

∑
n=0

u2n
zn

n!
=

2b

∆
e

p2+2q
2 z sinh

(

p∆z

2

)

,

where ∆ =
√

p2 + 4q; see [15].

Theorem 4. For n ≥ 0, the following identity holds

un =
b

∆

(

p − 3∆

2

)n n

∑
k=0

(

n

k

)(

2∆

p − 3∆

)k

Mk. (13)

Proof. Using (7) and (12), we have

u
( z

∆

)

=
b

∆
µ(z)e(

p
2∆

− 3
2)z.

From the formula above we now obtain
∞

∑
n=0

un
zn

∆nn!
=

b

∆

∞

∑
n=0

Mn
zn

n!
·

∞

∑
n=0

(

p

2∆
− 3

2

)n zn

n!
=

b

∆

∞

∑
n=0

n

∑
k=0

Mk

k!

(

p

2∆
− 3

2

)n−k zn

(n − k)!

=
b

∆

∞

∑
n=0

n

∑
k=0

(

n

k

)(

p

2∆
− 3

2

)n−k

Mk
zn

n!
,

and after simplification we have (13).

Example 4. Let n ≥ 0. Then formula (13) gives

Fn =
1√
5

(

1 − 3
√

5

2

)n n

∑
k=0

(

n

k

)

(

−15 +
√

5

22

)k

Mk, Jn =
(−4)n

3

n

∑
k=0

(

n

k

)(

−3

4

)k

Mk,

Pn =
(1 − 3

√
2)n

2
√

2

n

∑
k=0

(

n

k

)

(

−12 + 2
√

2

17

)k

Mk, Bn =
(3 − 6

√
2)n

4
√

2

n

∑
k=0

(

n

k

)

(

−16 + 4
√

2

21

)k

Mk.

Theorem 4 highlights the following issue. If we define the sequence an as

an =

(

2∆

p − 3∆

)n

Mn,

then the sequence

bn =
∆

b

(

p − 3∆

2

)−n

un,

is the binomial transform of an, where the binomial transform and its inverse transform are

given by [2, 17]

bn =
n

∑
k=0

(

n

k

)

ak ⇔ an =
n

∑
k=0

(

n

k

)

(−1)n−kbk.

The inverse relation immediately gives the next identity.
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Theorem 5. For n ≥ 0, we have

Mn =
∆1−n

b

(

3∆ − p

2

)n n

∑
k=0

(

n

k

)(

2

3∆ − p

)k

uk. (14)

Example 5. Formula (14) yields

Mn =
√

5

(

15 −
√

5

10

)n n

∑
k=0

(

n

k

)

(

1 + 3
√

5

22

)k

Fk, (15)

Mn = 3

(

4

3

)n n

∑
k=1

(

n

k

)

Jk

4k
, Mn =

√
8

(

6 −
√

2

4

)n n

∑
k=0

(

n

k

)

(

1 + 3
√

2

17

)k

Pk,

Mn = 4
√

2

(

12 − 3
√

2

8

)n n

∑
k=0

(

n

k

)

(

1 + 2
√

2

21

)k

Bk.

Note that formula (15) may be rewritten in terms of the golden ratio ϕ = 1+
√

5
2 as follows

Mn =

(

ϕ2 + 2

(2ϕ − 1)ϕ

)n n

∑
k=1

(

n

k

)

ϕ2k − (−1)k

(ϕ2 + 2)k
.

We also have the following summation identity.

Theorem 6. Let A and B be arbitrary complex numbers. Then for n ≥ 1 it is true that

n

∑
k=0

(

n

k

)

AkBn−kuk =
b

∆

n

∑
k=0

(

n

k

)

(A∆)k

(

Ap + 2B − 3∆A

2

)n−k

Mk.

Proof. It is known [17] that if an is an arbitrary sequence of numbers with exponential generat-

ing function F(z), then

S(z) =
∞

∑
n=0

Sn(A, B; a)
zn

n!
= eBzF(Az),

where

Sn(A, B; a) =
n

∑
k=0

(

n

k

)

AkBn−kak.

Hence,

Su(z) =
∞

∑
n=0

Sn(A, B; u)
zn

n!
=

b

∆
2e

Ap+2B
2 z sinh

(

A∆z

2

)

,

SM(z) =
∞

∑
n=0

Sn(A, B; M)
zn

n!
= 2e

3A+2B
2 z sinh

(

Az

2

)

,

and finally
∞

∑
n=0

Sn(A, B; u)
zn

n!
=

b

∆

∞

∑
n=0

Sn

(

A∆,
Ap + 2B − 3∆A

2
; M

)

zn

n!
.
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We give some examples of the above summation identity. However, we restrict the list of

examples to the pair (Fn, Mn). If (A, B) = (1, 1), then

n

∑
k=0

(

n

k

)

Fk =
1√
5

n

∑
k=0

(

n

k

)

(
√

5)k(1 −
√

5)n−k

(

3

2

)n−k

Mk.

Since
n

∑
k=1

(n
k)Fk = F2n, we can restate the identity as (η = −1/ϕ)

F2n =
(3η)n

ϕ − η

n

∑
k=0

(

n

k

)(

ϕ − η

3η

)k

Mk.

If (A, B) = (−1, 1), then

Fn =
(2ϕ − η)n

ϕ − η

n

∑
k=0

(−1)k+1

(

n

k

)(

ϕ − η

2ϕ − η

)k

Mk.

This identity may be compared with the one from Example 8, where we have shown that

Fn =
(2η − ϕ)n

ϕ − η

n

∑
k=0

(

n

k

)(

ϕ − η

2η − ϕ

)k

Mk.

Our last example is (A, B) = (1,−1/2). In this case, we get the relation

n

∑
k=0

(

n

k

)

(−1)n−k2−(n−k)Fk = 5
n−1

2

n

∑
k=0

(

n

k

)

(−1)n−k

(

3

2

)n−k

Mk

or
n

∑
k=0

(

n

k

)

(−2)kFk = 3n5
n−1

2

n

∑
k=0

(

n

k

)(

−2

3

)k

Mk.

Theorem 7. For n ≥ 0 it holds that

un =
b

∆

(

3p − 5∆

6

)n n

∑
k=0

(

n

k

)(

2∆

3p − 5∆

)k

M2k

and

M2n =
∆

b

(

5∆ − 3p

2∆

)n n

∑
k=0

(

n

k

)(

6

5∆ − 3p

)k

uk.

Proof. The first formula follows from the relation u
(

3z
∆

)

= b
∆

µ2(z)e

(

3p
2∆

− 5
2

)

z
and an application

of formula (8). Moreover, the first formula shows that un
∆
b

(

6
3p−5∆

)n
is the binomial transform

of M2n

(

2∆
3p−5∆

)n
.

The second formula is a rearrangement of the inverse binomial transform relation.

Theorem 8. For n ≥ 0 it holds that

un =
b

∆

(

3p − 5∆

6

)n n

∑
k=0

(

n

k

)(

2∆

3p − 5∆

)k

M2k+1 −
b

∆

(

p + ∆

2

)n

,

and

M2n+1 =
∆

b

(

5∆ − 3p

2∆

)n n

∑
k=1

(

n

k

)(

6

5∆ − 3p

)k

uk + 4n.
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Proof. To prove the first formula we use

u

(

3z

∆

)

=
b

∆

(

µ1(z)e
(

3p
2∆

− 5
2 )z − e(

3p
2∆

+ 3
2 )z
)

.

The second formula is once more an application of the inverse binomial transform, where

we used that
(

5∆ − 3p

2∆

)n n

∑
k=0

(

n

k

)(

3∆ + 3p

5∆ − 3p

)k

=

(

5∆ − 3p

2∆

)n (

1 +
3∆ + 3p

5∆ − 3p

)n

= 4n.

Theorem 9. For n ≥ 0 we have

u2n =
b

∆

(

3p2 + 6q − 5p∆

6

)n n

∑
k=1

(

n

k

)(

2p∆

3p2 + 6q − 5p∆

)k

M2k

and

M2n =
∆

b

(

5p∆ − 3p2 − 6q

2p∆

)n n

∑
k=1

(

n

k

)(

6

5p∆ − 3p2 − 6q

)k

u2k.

Proof. The first formula follows from the relation

u2(z) =
b

∆
e(

p2+2q
2 − 5p∆

b )zµ2

(

p∆

3
z

)

and an application of formula (8). The second formula is a rearrangement of the inverse bino-

mial transform relation.

A proof comparable to the one given for Theorem 4 yields the following relation between

numbers u2n+1 and M2n+1. In this case we use the relations

2p∆ · u1(z) = 2(p2 + q)e
3p2+6q−5p∆

6 zµ1

(

p∆z

3

)

−
(

2(p2 + q) + b(p2 + 2q − p∆)
)

e
p2+2q+p∆

2 z + b(p2 + 2q + p∆)e
p2+2q−p∆

2 z

and

2(p2 + q)µ1(z) = 2p∆u1

(

3z

p∆

)

e
−3p2−6q+5p∆

2p∆
z

+ (2(p2 + q) + b(p2 + 2q − p∆))e4z − b(p2 + 2q + p∆)ez.

Theorem 10. For n ≥ 0

u2n+1 = b
p2 + q

p∆

(

3p2 + 6q − 5p∆

6

)n n

∑
k=1

(

n

k

)(

2p∆

3p2 + 6q − 5p∆

)k

M2k+1

− b
3p2 + 4q − p∆

2p∆

(

p2 + 2q + p∆

2

)n

+ b
p2 + 2q + p∆

2p∆

(

p2 + 2q − p∆

2

)n

and

M2n+1 =
(p∆)1−n

b(p2 + q)

(

5p∆ − 3p2 − 6q

2

)n n

∑
k=1

(

n

k

)(

6

5p∆ − 3p2 − 6q

)k

u2k+1

+
p2 + 2q − p∆

2(p2 + q)
· 4n − p2 + 2q + p∆

2(p2 + q)
+ 4n.
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3 MERSENNE-LUCAS IDENTITIES VIA EXPONENTIAL GENERATING FUNCTIONS

In this section we establish connections between the fundamental Lucas sequence

vn = wn(2, p; p, q) and Mersenne numbers Mn.

Theorem 11. For n ≥ 0

Mn + 2 =

(

3∆ − p

2∆

)n n

∑
k=0

(

n

k

)

vk

(

2

3∆ − p

)k

,

and

vn =

(

p − 3∆

2

)n n

∑
k=0

(

n

k

)

(Mk + 2)

(

2∆

p − 3∆

)k

. (16)

Proof. It is known that the exponential generating function of the sequence vn can be given as

v(z) =
∞

∑
n=0

vn
zn

n!
= 2e

p
2 z cosh

(

∆

2
z

)

. (17)

Using (7) and (17) we obtain

µ′(z) =
∞

∑
n=0

nMn
zn−1

n!
=

∞

∑
n=0

Mn+1
zn

n!
= 3e

3z
2 sinh

( z

2

)

+ e
3z
2 cosh

( z

2

)

=
3

2
µ(z) +

1

2
v
( z

∆

)

e(
3
2−

p
2∆)z.

Therefore,
∞

∑
n=0

(2Mn+1 − 3Mn)
zn

n!
= v

( z

∆

)

e

(

3∆−p
2∆

)

z
.

To complete the first part, observe that 2Mn+1 − 3Mn = Mn + 2. To get (16) we may apply

the argument of the inverse binomial transform.

When vn = Ln is the Lucas sequence, then

Mn + 2 =

(

ϕ − 2η

ϕ − η

)n n

∑
k=0

(

n

k

)

(ϕ − 2η)−kLk,

and

Ln = (2η − ϕ)n
n

∑
k=0

(

n

k

)(

ϕ − η

2η − ϕ

)k

(Mk + 2).

In view of
n

∑
k=0

(

n

k

)(

ϕ − η

2η − ϕ

)k

=

(

η

2η − ϕ

)n

,

we observe that an equivalent version of the last identity is

Ln = 2ηn + (2η − ϕ)n
n

∑
k=1

(

n

k

)(

ϕ − η

2η − ϕ

)k

Mk. (18)

We also have the following summation identity.
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Theorem 12. Let A and B be arbitrary complex numbers. Then for n ≥ 0 it is true that

n

∑
k=0

(

n

k

)

AkBn−kvk =
n

∑
k=0

(

n

k

)

(A∆)k

(

Ap + 2B − 3∆A

2

)n−k

(Mk + 2).

Proof. The proof is very similar to that one given in the last section and omitted.

As examples, we will state the companion results for vn = Ln from the previous section. If

(A, B) = (1, 1), then

n

∑
k=0

(

n

k

)

Lk =
n

∑
k=0

(

n

k

)

(
√

5)k(1 −
√

5)n−k

(

3

2

)n−k

(Mk + 2).

This gives the identity

L2n = 2η2n + (3η)n
n

∑
k=1

(

n

k

)(

ϕ − η

3η

)k

Mk.

If (A, B) = (−1, 1), then the result is

Ln = 2ϕn + (2ϕ − η)n
n

∑
k=1

(

n

k

)

(−1)k

(

ϕ − η

2ϕ − η

)k

Mk,

which should be compared with (18).

Finally, for (A, B) = (1,−1/2) we get the relation

n

∑
k=0

(

n

k

)

2−(n−k)Lk = (−1)n21−n5
n
2 + 5

n
2

n

∑
k=0

(

n

k

)

(−1)n−k

(

3

2

)n−k

Mk

or
n

∑
k=0

(

n

k

)

(−2)k Lk = 2 · 5
n
2 + 3n5

n
2

n

∑
k=1

(

n

k

)(

−2

3

)k

Mk.

The results of this section also highlight some other hidden relations, since ([4], Proposi-

tion 2.4)

Mn + 2 =

{

jn, if n is even,

3Jn, if n is odd,

where (Jn)n≥0 is the Jacobsthal and (jn)n≥0 is the Jacobsthal-Lucas sequence.
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Фрончак Р., Гой Т. Тотожностi Мерсенна-Горадама з використанням генератрис // Карпатськi

матем. публ. — 2020. — Т.12, №1. — C. 34–45.

У роботi вcтановленi формули зв’язку мiж числами Мерсенна Mn = 2n − 1 та узагальне-

ними числами Фiбоначчi (числами Горадама) wn, якi задовольняють лiнiйне рекурентне спiв-

вiдношення другого порядку wn = pwn−1 + qwn−2, де n ≥ 2, w0 = a, w1 = b, числа a, b, p > 0

i q 6= 0 є цiлими. При цьому ми використовуємо вiдповiднi спiвiдношення мiж звичайними та

експоненцiйними генератрисами обох числових послiдовностей. Зокрема, наведенi приклади,

якi стосуються чисел Фiбоначчi, Люка, Пелля, Якобсталя та збалансованих чисел.

Ключовi слова i фрази: Числа Мерсенна, послiдовнiсть Горадама, послiдовнiсть Фiбоначчi,

послiдовнiсть Люка, послiдовнiсть Пелля, генератриса, бiномiальне перетворення.
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KHATS’ R.V.

SUFFICIENT CONDITIONS FOR THE IMPROVED REGULAR GROWTH OF ENTIRE

FUNCTIONS IN TERMS OF THEIR AVERAGING

Let f be an entire function of order ρ ∈ (0,+∞) with zeros on a finite system of rays

{z : arg z = ψj}, j ∈ {1, . . . , m}, 0 ≤ ψ1 < ψ2 < . . . < ψm < 2π and h(ϕ) be its indicator. In

2011, the author of the article has been proved that if f is of improved regular growth (an entire

function f is called a function of improved regular growth if for some ρ ∈ (0,+∞), ρ1 ∈ (0, ρ),

and a 2π-periodic ρ-trigonometrically convex function h(ϕ) 6≡ −∞ there exists a set U ⊂ C con-

tained in the union of disks with finite sum of radii and such that log | f (z)| = |z|ρh(ϕ) + o(|z|ρ1),

U 6∋ z = reiϕ → ∞), then for some ρ3 ∈ (0, ρ) the relation

∫ r

1

log | f (teiϕ)|

t
dt =

rρ

ρ
h(ϕ) + o(rρ3), r → +∞,

holds uniformly in ϕ ∈ [0, 2π]. In the present paper, using the Fourier coefficients method, we

establish the converse statement, that is, if for some ρ3 ∈ (0, ρ) the last asymptotic relation holds

uniformly in ϕ ∈ [0, 2π], then f is a function of improved regular growth. It complements simi-

lar results on functions of completely regular growth due to B. Levin, A. Grishin, A. Kondratyuk,

Ya. Vasyl’kiv and Yu. Lapenko.

Key words and phrases: entire function of completely regular growth, entire function of improved
regular growth, indicator, Fourier coefficients, averaging, finite system of rays.

Drohobych Ivan Franko State Pedagogical University, 24 Franko Str., 82100, Drohobych, Ukraine

E-mail: khats@ukr.net

1 INTRODUCTION

It is well known ([13, p. 24]) that an entire function f of order ρ ∈ (0,+∞) may be repre-

sented in the form

f (z) = zλeQ(z)
∞

∏
n=1

E

(
z

λn
, p

)
,

where λn are all nonzero roots of the function f (z), λ ∈ Z+ is the multiplicity of the root at

the origin, Q(z) = ∑
ν
k=1 Qkzk is a polynomial of degree ν ≤ ρ, p ≤ ρ is the smallest integer

for which ∑
∞
n=1 |λn|−p−1

< +∞ and E(w, p) = (1 − w) exp(w + w2/2 + · · · + wp/p) is the

Weierstrass primary factor.

Let f be an entire function of order ρ ∈ (0,+∞). The function

h(ϕ) = h f (ϕ) = lim sup
r→∞

log | f (reiϕ)|

rρ , ϕ ∈ [0, 2π],

УДК 517.5
2010 Mathematics Subject Classification: 30D15, 30D20, 30D30.

c©Khats’ R.V., 2020
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is called the indicator of f ([13, p. 51]). The indicator is a continuous 2π-periodic ρ-trigonomet-

rically convex function (see [13, pp. 53–54]). A set C ⊂ C is called a C0-set ([13, p. 90]) if it can

be covered by a system of disks {z : |z− ak | < sk}, k ∈ N, satisfying ∑
|ak|≤r

sk = o(r) as r → +∞.

An entire function f of order ρ ∈ (0,+∞) with the indicator h(ϕ) is said to be of completely

regular growth in the sense of Levin and Pfluger ([13, p. 139]) if there exists a C0-set such that

log | f (reiϕ)| = rρh(ϕ) + o(rρ), C0 6∋ reiϕ → ∞, uniformly in ϕ ∈ [0, 2π). In the theory of entire

functions of completely regular growth (see [13, pp. 139–167]) the following theorem is valid.

Theorem A ([13, p. 150]). In order that an entire function f of order ρ ∈ (0,+∞) with the

indicator h(ϕ) be of completely regular growth, it is necessary and sufficient that uniformly in

ϕ ∈ [0, 2π] one of the following relations hold:

Jr
f (ϕ) :=

∫ r

1

log | f (teiϕ)|

t
dt =

rρ

ρ
h(ϕ) + o(rρ), r → +∞,

Ir
f (ϕ) :=

∫ r

1
Jt

f (ϕ)
dt

t
=

rρ

ρ2
h(ϕ) + o(rρ), r → +∞.

Similar results for entire functions of ρ-regular growth were obtained by A. Grishin [2]

and for meromorphic functions of completely regular growth of finite λ-type ([11, p. 75]) by

A. Kondratyuk [11, p. 112] and Ya. Vasyl’kiv [14] (see also Yu. Lapenko [12]).

In [5, 16] the notion of entire function of improved regular growth was introduced, and

a criterion for this regularity was obtained in terms of the distribution of zeros under the

condition that they are located on a finite system of rays.

An entire function f is called a function of improved regular growth ([5, 16]) if for some ρ ∈

(0,+∞) and ρ1 ∈ (0, ρ), and a 2π-periodic ρ-trigonometrically convex function h(ϕ) 6≡ −∞

there exists a set U ⊂ C contained in the union of disks with finite sum of radii and such

that log | f (z)| = |z|ρh(ϕ) + o(|z|ρ1), U 6∋ z = reiϕ → ∞. If an entire function f is of im-

proved regular growth, then it has the order ρ and indicator h(ϕ) ([16]). In the case when

zeros of an entire function f of improved regular growth are situated on a finite system of rays

{z : arg z = ψj}, j ∈ {1, . . . , m}, 0 ≤ ψ1 < ψ2 < . . . < ψm < 2π, the indicator h has the form

(see [16])

h(ϕ) =
m

∑
j=1

hj(ϕ), ρ ∈ (0,+∞) \ N, (1)

where hj(ϕ) is a 2π-periodic function such that on [ψj, ψj + 2π)

hj(ϕ) =
π∆j

sin πρ
cos ρ(ϕ − ψj − π), ∆j ∈ [0,+∞).

In the case ρ ∈ N, the indicator h is defined by the formula ([5])

h(ϕ) =






τf cos(ρϕ + θ f ) +
m

∑
j=1

hj(ϕ), p = ρ,

Qρ cos ρϕ, p = ρ − 1,

(2)

where δ f ∈ C, τf = |δ f /ρ + Qρ|, θ f = arg(δ f /ρ + Qρ) and hj(ϕ) is a 2π-periodic function such

that on [ψj, ψj + 2π)

hj(ϕ) = ∆j(π − ϕ + ψj) sin ρ(ϕ − ψj)−
∆j

ρ
cos ρ(ϕ − ψj).
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At present, many different conditions are known that are necessary and sufficient for the

improved regular growth of entire functions (see [1,3–10,15–17]). In view of this, it is natural to

establish an analog of Theorem A for the class of entire functions of improved regular growth.

In this direction, the following results were obtained in [6, 8].

Theorem B ([8]). If an entire function f of order ρ ∈ (0,+∞) is of improved regular growth,

then for some ρ2 ∈ (0, ρ), one has

Ir
f (ϕ) =

rρ

ρ2
h(ϕ) + O(rρ2), r → +∞,

uniformly in ϕ ∈ [0, 2π].

Theorem C ([6]). If an entire function f of order ρ ∈ (0,+∞) with zeros on a finite system of

rays {z : arg z = ψj}, j ∈ {1, . . . , m}, 0 ≤ ψ1 < ψ2 < . . . < ψm < 2π, is of improved regular

growth, then for some ρ3 ∈ (0, ρ) the relation

Jr
f (ϕ) =

rρ

ρ
h(ϕ) + o(rρ3), r → +∞, (3)

holds uniformly in ϕ ∈ [0, 2π], where h(ϕ) be defined by (1) and (2).

However, the problem of finding the converse of Theorems B and C remained open. The

aim of the present paper is to prove the converse of Theorem C. Our principal result is the

following theorem.

Theorem 1. Let f be an entire function of order ρ ∈ (0,+∞) with zeros on a finite system of

rays {z : arg z = ψj}, j ∈ {1, . . . , m}, 0 ≤ ψ1 < ψ2 < . . . < ψm < 2π and h(ϕ) be its indicator.

If for some ρ3 ∈ (0, ρ) the relation (3) holds uniformly in ϕ ∈ [0, 2π] with h(ϕ) defined by (1)

and (2), then f is a function of improved regular growth.

2 PRELIMINARIES

Let f be an entire function with f (0) = 1 and (λn)n∈N be the sequence of its zeros. For

k ∈ Z and r > 0, we set

nk(r, f ) := ∑
|λn|≤r

e−ik arg λn , Nk(r, f ) :=
∫ r

0

nk(t, f )

t
dt,

N∗
k (r, f ) :=

∫ r

0

Nk(t, f )

t
dt, n(r, ψ; f ) := ∑

|λn|≤r, arg λn=ψ

1,

N(r, ψ; f ) :=
∫ r

0

n(t, ψ; f )

t
dt, N∗(r, ψ; f ) :=

∫ r

0

N(t, ψ; f )

t
dt,

ck(r, log | f |) :=
1

2π

∫ 2π

0
e−ikϕ log | f (reiϕ)| dϕ, ck(r, Jr

f ) :=
1

2π

∫ 2π

0
e−ikϕ Jr

f (ϕ) dϕ.

In the proof of Theorem 1, we use the following auxiliary statements.

Lemma 1 ([5, 16]). An entire function f of order ρ ∈ (0,+∞) with zeros on a finite system of

rays {z : arg z = ψj}, j ∈ {1, . . . , m}, 0 ≤ ψ1 < ψ2 < . . . < ψm < 2π, is a function of improved

regular growth if and only if for some ρ4 ∈ (0, ρ) and each j ∈ {1, . . . , m}

n(t, ψj; f ) = ∆jt
ρ + o(tρ4), t → +∞, ∆j ∈ [0,+∞), (4)
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and, in addition, for ρ ∈ N and some ρ5 ∈ (0, ρ) and δ f ∈ C, one has

∑
0<|λn|≤r

λ
−ρ
n = δ f + o(rρ5−ρ), r → +∞. (5)

In this case, the indicator h(ϕ) be defined by formulas (1) and (2).

We remark that, for ρ = p+ 1 equality (4) holds with ∆j = 0, because ∑n∈N |λn|
−p−1

< +∞

(see [5, p. 19]).

Lemma 2. If an entire function f of order ρ ∈ (0,+∞) satisfies the conditions of Theorem 1,

then for some ρ3 ∈ (0, ρ) and each k ∈ Z, one has

ck(r, Jr
f ) = ck

rρ

ρ
+ o(rρ3), r → +∞, (6)

N∗
k (r, f ) = ck

(
1 −

k2

ρ2

)
rρ

ρ
+ o(rρ3), r → +∞, (7)

where

ck :=
1

2π

∫ 2π

0
e−ikϕh(ϕ) dϕ =

ρ

ρ2 − k2

m

∑
j=1

∆je
−ikψj, ∆j ∈ [0,+∞), (8)

if ρ ∈ (0,+∞) \ N, and

ck =





ρ

ρ2 − k2

m

∑
j=1

∆je
−ikψj, |k| 6= ρ = p,

τf eiθ f

2
−

1

4ρ

m

∑
j=1

∆je
−iρψj , k = ρ = p,

0, |k| 6= ρ = p + 1,
Qρ

2
, k = ρ = p + 1,

(9)

if ρ ∈ N.

Proof. Under the conditions of the lemma, by using (3), for some ρ3 ∈ (0, ρ) and each k ∈ Z,

we get

ck(r, Jr
f ) =

1

2π

∫ 2π

0
e−ikϕ

(
rρ

ρ
h(ϕ) + o(rρ3)

)
dϕ = ck

rρ

ρ
+ o(rρ3), r → +∞,

where ck is defined by formulas (8) and (9) (see [6, 7, 9, 10]). Thus, relation (6) holds. Let us

prove relation (7). Using relations (see [14, pp. 39, 43], [11, pp. 107, 112], [6, p. 13])

ck(r, Jr
f ) =

∫ r

0

ck(t, log | f |)

t
dt,

Nk(r, f ) = ck(r, log | f |) − k2
∫ r

0

dt

t

∫ t

0

ck(u, log | f |)

u
du, k ∈ Z, r > 0,

we obtain

N∗
k (r, f ) =

∫ r

0

Nk(t, f )

t
dt = ck(r, Jr

f )− k2
∫ r

0

dt

t

∫ t

0

ck(u, Ju
f )

u
du, k ∈ Z, r > 0.

Then, using (6) and passing to the limit as r → +∞, we get

N∗
k (r, f ) = ck

rρ

ρ
+ o(rρ3)− k2

∫ r

0

dt

t

∫ t

0

(
ck

uρ−1

ρ
+ o(uρ3−1)

)
du = ck

(
1 −

k2

ρ2

)
rρ

ρ
+ o(rρ3).

Lemma 2 is proved.
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Lemma 3. Let f be an entire function of order ρ ∈ (0,+∞) with zeros on a finite system of rays

{z : arg z = ψj}, j ∈ {1, . . . , m}, 0 ≤ ψ1 < ψ2 < . . . < ψm < 2π. In order that the equality

N∗(r, ψj; f ) =
∆j

ρ2
rρ + o(rρ3), r → +∞, ∆j ∈ [0,+∞), (10)

holds for some ρ3 ∈ (0, ρ) and each j ∈ {1, . . . , m}, it is necessary and sufficient that, for some

ρ3 ∈ (0, ρ) and k0 ∈ Z and each k ∈ {k0, k0 + 1, . . . , k0 + m − 1}, relation (7) with ck, defined

by (8) and (9) be true. Besides, we have
m

∑
j=1

∆je
−iρψj = 0, if ρ ∈ N.

Proof. Necessity. Since (see [11, p. 127])

nk(r, f ) =
m

∑
j=1

e−ikψjn(r, ψj; f ), k ∈ Z,

then

Nk(r, f ) =
m

∑
j=1

e−ikψj

∫ r

0

n(t, ψj; f )

t
dt =

m

∑
j=1

e−ikψj N(r, ψj; f ),

N∗
k (r, f ) =

m

∑
j=1

e−ikψj N∗(r, ψj; f ), k ∈ Z.

Using (10), for some ρ3 ∈ (0, ρ) and each k ∈ Z we obtain relation (7) with ck, defined by (8)

and (9). In this case,
m

∑
j=1

∆je
−iρψj = 0, if ρ ∈ N.

Let us prove the sufficiency. Without loss of generality, we can assume that k0 = 0. Then, by

analogy with [7, p. 1957] (see also [10, p. 118], [11, p. 127]), for k ∈ {0, 1, . . . , m − 1} we get

N∗
0 (r, f ) = N∗(r, ψ1; f ) + N∗(r, ψ2; f ) + . . . + N∗(r, ψm; f ),

N∗
1 (r, f ) = e−iψ1 N∗(r, ψ1; f ) + e−iψ2 N∗(r, ψ2; f ) + . . . + e−iψm N∗(r, ψm; f ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N∗
m−1(r, f ) = e−i(m−1)ψ1 N∗(r, ψ1; f ) + e−i(m−1)ψ2 N∗(r, ψ2; f ) + . . . + e−i(m−1)ψm N∗(r, ψm; f ).

This is a system of linear equations for the unknowns N∗(r, ψj; f ), j ∈ {1, . . . , m}. Its determi-

nant is the nonzero Vandermonde determinant

D =

∣∣∣∣∣∣∣∣∣

1 1 . . . 1

e−iψ1 e−iψ2 . . . e−iψm

. . . . . . . . . . . .

e−i(m−1)ψ1 e−i(m−1)ψ2 . . . e−i(m−1)ψm

∣∣∣∣∣∣∣∣∣

6= 0.

Therefore, the functions N∗(r, ψj; f ), j ∈ {1, . . . , m}, can be represented as linear combinations

of the functions N∗
k (r, f ), k ∈ {0, 1, . . . , m − 1}. Using (7), we obtain relation (10), where by

the Cramer’s rule ∆j = ρ2Dj/D, j ∈ {1, . . . , m}, and Dj is the determinant formed from the

determinant D by replacing the j-column with the corresponding column (c̃0, c̃1, . . . , c̃m−1),

c̃k := ck
ρ

(
1 − k2

ρ2

)
, k ∈ {0, 1, . . . , m − 1}. Lemma 3 is proved.
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Remark 1. Let ρ ∈ (0,+∞) \ N, µn =
(
n + n

log n

)1/ρ
, {λn : n ∈ N\{1}} :=

⋃m
j=1{µnei

2π(j−1)
m :

n ∈ N\{1}}, m ∈ N \ {1} and ([7, p. 1958])

f (z) =
∞

∏
n=1

(
1 −

z

λn

)
exp

(
p

∑
ζ=1

1

ζ

(
z

λn

)ζ
)

, p = [ρ].

Then for each j ∈ {1, . . . , m}, we obtain (see [7, p. 1959])

N∗

(
r,

2π(j − 1)

m
; f

)
=

rρ

ρ2
+ O

(
rρ

log r

)
, r → +∞.

Therefore, relation (10) is not true for any ρ3 ∈ (0, ρ). Furthermore,

N∗
0 (r, f ) =

m

∑
j=1

N∗

(
r,

2π(j − 1)

m
; f

)
=

m

ρ2
rρ + O

(
rρ

log r

)
, r → +∞.

Thus, relation (7) is not true for k = 0. Moreover, since

m

∑
j=1

e−ik
2π(j−1)

m =
1 − e−2πki

1 − e−i 2πk
m

= 0, k ∈ {1, . . . , m − 1},

we conclude that

nk(r, f ) = ∑
µn≤r

m

∑
j=1

e−ik
2π(j−1)

m = 0,

for each k ∈ {1, . . . , m − 1} and all r > 0. Therefore, relation (7) holds for any ρ3 ∈ (0, ρ) and

each k ∈ {1, . . . , m − 1}.

Lemma 4. Let f be an entire function of order ρ ∈ (0,+∞) with zeros on a finite system of rays

{z : arg z = ψj}, j ∈ {1, . . . , m}, 0 ≤ ψ1 < ψ2 < . . . < ψm < 2π. In order that the equality (4)

holds for some ρ4 ∈ (0, ρ) and each j ∈ {1, . . . , m}, it is necessary and sufficient that for some

ρ3 ∈ (0, ρ) and each j ∈ {1, . . . , m} relation (10) be true.

Proof. Indeed, using Lemma 3 from [15, p. 143] twice, we obtain the required statement.

3 PROOF OF THEOREM 1

Let the conditions of Theorem 1 be satisfied. Then, by Lemmas 2–4, the relations (6), (7)

and (4) hold. Let us prove the equality (5) for ρ ∈ N. Since (see the proof of Lemmas 2 and 3)

ck(r, log | f |) = Nk(r, f ) + k2
∫ r

0

ck(t, Jt
f )

t
dt, Nk(r, f ) =

m

∑
j=1

e−ikψj N(r, ψj; f ), k ∈ Z,

and ([4, p. 101])

cρ(r, log | f |) =
1

2
Qρrρ +

1

2ρ ∑
0<|λn|≤r

((
r

λn

)ρ

−

(
λn

r

)ρ)
, k = ρ = p ∈ N,
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then, using formulas (4), (6), (7), (9) and the identity
m

∑
j=1

∆je
−iρψj = 0, ρ = p ∈ N, for some

ρ5 ∈ (0, ρ) we get

∑
0<|λn|≤r

λ
−ρ
n =2ρr−ρcρ(r, log | f |) − ρQρ + r−ρ ∑

0<|λn|≤r

(
λn

r

)ρ

=2ρr−ρ

(
Nρ(r, f ) + ρ2

∫ r

0

cρ(t, Jt
f )

t
dt

)
− ρQρ + r−2ρ

m

∑
j=1

e−iρψj

∫ r

0
tρdn(t, ψj; f )

=2ρr−ρ

(
m

∑
j=1

e−iρψj

∫ r

0

n(t, ψj; f )

t
dt + ρ2

∫ r

0

cρ(t, Jt
f )

t
dt

)
− ρQρ

+ r−2ρ
m

∑
j=1

e−iρψj

(
rρn(r, ψj; f )− ρ

∫ r

0
tρ−1n(t, ψj; f ) dt

)

=2ρr−ρ

(
m

∑
j=1

e−iρψj

∫ r

0
(∆jt

ρ−1 + o(tρ4−1)) dt + ρ2
∫ r

0

(
cρ

ρ
tρ−1 + o(tρ3−1)

)
dt

)

− ρQρ + r−2ρ
m

∑
j=1

e−iρψj

(
∆jr

2ρ + o(rρ4+ρ)− ρ

∫ r

0
(∆jt

2ρ−1 + o(tρ4+ρ−1)) dt

)

=2ρr−ρ

(
rρ

ρ

m

∑
j=1

∆je
−iρψj + cρrρ + o(rρ4) + o(rρ3)

)
− ρQρ

+ r−2ρ
m

∑
j=1

e−iρψj

(
∆j

2
r2ρ + o(rρ4+ρ)

)

=ρ(τf eiθ f − Qρ) + o(rρ4−ρ) + o(rρ3−ρ) = δ f + o(rρ5−ρ), r → +∞.

Hence, equality (5) holds for ρ = p with δ f = ρ(τf eiθ f − Qρ). In the case ρ = p + 1, condition

(5) follows from (4) (see [5, p. 23, Remark 2]). Thus, according to Lemma 1, the entire function

f is a function of improved regular growth. This completes the proof of Theorem 1.

Combining Theorem 1 with Theorem C, we obtain the following theorem.

Theorem 2. In order that an entire function f of order ρ ∈ (0,+∞) with zeros on a finite

system of rays {z : arg z = ψj}, j ∈ {1, . . . , m}, 0 ≤ ψ1 < ψ2 < . . . < ψm < 2π, be of improved

regular growth with the indicator h(ϕ) defined by (1) and (2), it is necessary and sufficient

that for some ρ3 ∈ (0, ρ) the relation (3) holds uniformly in ϕ ∈ [0, 2π].

Remark 2. For each m ∈ N \ {1; 2} there exists an entire function f of order ρ ∈ (0,+∞) \ N

with zeros on a finite system of rays {z : arg z = ψj}, ψj := 2π(j−1)
m , j ∈ {1, . . . , m}, such that

uniformly in ϕ ∈ [0, 2π] the relation (3) is not true for any ρ3 ∈ (0, ρ) and f is not a function of

improved regular growth.

Indeed, let f be an entire function of order ρ ∈ (0,+∞) \ N, defined as in Remark 1. Then

(see [7, p. 1959])

n

(
t,

2π(j − 1)

m
; f

)
= tρ −

tρ

ρ log t
+ o

(
tρ

log t

)
, t → +∞,

for each j ∈ {1, . . . , m}. Thus, relation (4) is not true for any ρ4 ∈ (0, ρ), and, according to

Lemma 1, the entire function f is not a function of improved regular growth. Further, for each
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j ∈ {1, . . . , m}, we obtain ([7, p. 1959])

c0(r, log | f |) =
m

∑
j=1

N

(
r,

2π(j − 1)

m
; f

)
=

m

ρ
rρ + O

(
rρ

log r

)
, r → +∞.

Furthermore, (see [6, p. 11], [7, p. 1959])

ck(r, log | f |) = c−k(r, log | f |), k ≤ −1,

ck(r, log | f |) =
1

2k ∑
µn≤r

[(
r

µn

)k

−
(µn

r

)k
]

m

∑
j=1

e−ik
2π(j−1)

m , 1 ≤ k ≤ p,

and

ck(r, log | f |) = −
1

2k

{

∑
µn>r

(
r

µn

)k

+ ∑
µn≤r

(µn

r

)k
}

m

∑
j=1

e−ik
2π(j−1)

m , k ≥ p + 1,

where (see Remark 1)
m

∑
j=1

e−ik
2π(j−1)

m =

{
0, k ∈ N, k 6= m,

m, k = m.

In view of this, since

ck(r, Jr
f ) =

∫ r

0

ck(t, log | f |)

t
dt, k ∈ Z, r > 0,

c0(r, Jr
f ) =

m

ρ2
rρ + O

(
rρ

log r

)
, r → +∞,

Jr
f (ϕ) = ∑

k∈Z

ck(r, Jr
f )e

ikϕ = c0(r, Jr
f ) + ∑

k∈Z\{0}

ck(r, Jr
f )e

ikϕ, ϕ ∈ [0, 2π],

we conclude that the relation (3) is not true for any ρ3 ∈ (0, ρ).
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Хаць Р.В. Достатнi умови покращеного регулярного зростання цiлих функцiй в термiнах їх усере-

днення // Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 46–54.

Нехай f — цiла функцiя порядку ρ ∈ (0,+∞) з нулями на скiнченнiй системi променiв

{z : arg z = ψj}, j ∈ {1, . . . , m}, 0 ≤ ψ1 < ψ2 < . . . < ψm < 2π i h(ϕ) — її iндикатор. У

2011 роцi автор цiєї статтi довiв, що якщо f є функцiєю покращеного регулярного зростання

(цiла функцiя f називається функцiєю покращеного регулярного зростання, якщо для деяких

ρ ∈ (0,+∞), ρ1 ∈ (0, ρ) i 2π-перiодичної ρ-тригонометрично опуклої функцiї h(ϕ) 6≡ −∞ iснує

множина U ⊂ C, яка мiститься в об’єднаннi кругiв iз скiнченною сумою радiусiв, така, що

log | f (z)| = |z|ρh(ϕ) + o(|z|ρ1), U 6∋ z = reiϕ → ∞), то для деякого ρ3 ∈ (0, ρ) спiввiдношення

∫ r

1

log | f (teiϕ)|

t
dt =

rρ

ρ
h(ϕ) + o(rρ3), r → +∞,

виконується рiвномiрно за ϕ ∈ [0, 2π]. В данiй роботi, використовуючи метод коефiцiєнтiв

Фур’є, ми встановлюємо обернене твердження, а саме, якщо для деякого ρ3 ∈ (0, ρ) останнє

асимптотичне спiввiдношення виконується рiвномiрно за ϕ ∈ [0, 2π], то f є функцiєю покра-

щеного регулярного зростання. Це доповнює аналогiчнi результати Б. Левiна, А. Гришина,

А. Кондратюка, Я. Василькiва та Ю. Лапенка про функцiї цiлком регулярного зростання.

Ключовi слова i фрази: цiла функцiя цiлком регулярного зростання, цiла функцiя покраще-

ного регулярного зростання, iндикатор, коефiцiєнти Фур’є, усереднення, скiнченна система

променiв.
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ZERO PRODUCT PRESERVING BILINEAR OPERATORS ACTING IN SEQUENCE

SPACES

Consider a couple of sequence spaces and a product function — a canonical bilinear map asso-

ciated to the pointwise product — acting in it. We analyze the class of “zero product preserving”

bilinear operators associated with this product, that are defined as the ones that are zero valued in

the couples in which the product equals zero. The bilinear operators belonging to this class have

been studied already in the context of Banach algebras, and allow a characterization in terms of

factorizations through ℓr(N) spaces. Using this, we show the main properties of these maps such

as compactness and summability.
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ing map, product.

Faculty of Art and Science, Department of Mathematics, Marmara University, 34722, Kadıköy/Istanbul, Turkey
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1 INTRODUCTION

Let us fix a couple of Banach spaces having a characteristic operation involving couples of

vectors for giving an element in other Banach space. For example, the pointwise product of

functions from Lp and Lp′ for obtaining an element of L1, or the internal product in a Banach al-

gebra. Let us call “product” this bilinear map. Bilinear maps factoring through such a product

preserve some of its good properties, and so it is interesting to know which bilinear operators

satisfy such a factorization. This general philosophy is in the root of some current develop-

ments in mathematical analysis, mainly in the Banach algebras and vector lattices setting (see

for example [1, 5, 7, 12] and references therein).

In this paper we analyze the class of bilinear maps factoring through a product in a dif-

ferent context. We study the main characterizations and properties when the operators act in

couples of classical Banach sequence spaces (ℓp(N)-spaces). The essential result (Theorem 1)

shows that the factorization is equivalent to a certain “zero product preservation” property.

Concretely, bilinear maps satisfying this property are the ones that are 0-valued for couples of

elements whose products are equal to zero.

Let us explain the relation of our class of maps with some notions and results that can be

found in the current literature. Alaminos J. et al have studied zero product preserving bilinear

maps defined on a product of Banach algebras and C∗-algebras to get a characterization for

(weighted) homomorphisms and derivations. They have obtained a class of Banach algebras

A that satisfy the equality ϕ(ab, c) = ϕ(a, bc), a, b, c ∈ A, for every continuous zero product

preserving bilinear map ϕ : A × A → B. By adding some conditions to the algebra, they have

УДК 517.98
2010 Mathematics Subject Classification: Primary 47H60 46B45; Secondary 46B42, 47A68.

c© Erdoğan E., 2020
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proved that ϕ(ab, c) = ϕ(a, bc) gives a factorization for the bilinear operator ϕ as ϕ(a, b) :=

P(ab) for a certain linear map P : A → B [1]. Recently, Alaminos J. et al have shown in [2] that

there are some Banach algebras that do not satisfy the equality ϕ(ab, c) = ϕ(a, bc) such as the

algebra C1[0, 1] of continuously differentiable functions from [0, 1] to C, although the operator

ϕ is zero product preserving map. In particular, this shows that any bilinear operator cannot

be factored through the product.

In the meantime, some authors have studied the zero product preserving property for the

bilinear maps acting in vector lattices and function spaces with the name orthosymmetry. This

term is firstly used by Buskes G. and van Rooij A. to give a factorization for bilinear maps

defined on vector lattices and they obtained the powers of vector lattices by orthosymmetric

maps, see [6, 7]. Recently, Ben Amor F. has studied the commutators of orthosymmetric maps

in [4] and investigated an expanded class of orthosymmetric bilinear maps that are related

to symmetric operators given by Buskes G. and van Rooij A. The interested reader can see

the reference [5] for a detailed information about the orthosymmetric maps acting in vector

lattices.

In a different direction, factorization of zero product preserving bilinear maps for the con-

volution product acting in function spaces has been studied by Erdoğan E. et al (see [10]).

Recently, Erdoğan E. and Gök Ö. have studied a class of bilinear operators acting in a pro-

duct of Banach algebras of integrable functions and showed a zero product preserving bilinear

operator defined on the product of Banach algebras that factors through a subalgebra of abso-

lutely integrable functions by convolution product (see [11]). Moreover, Erdoğan E. et al have

obtained a class of zero product preserving bilinear operators acting in pairs of Banach func-

tion spaces that factor through the pointwise product and they have given characterizations

by means of norm inequalities for these bilinear maps [12].

The aim of this paper is to give a new version of the factorization results given in the men-

tioned studies for the zero product preserving bilinear operators defined on the product of

sequence spaces. We center our attention on bilinear operators B defined on the product of

Banach spaces E and F satisfying the zero product preserving property

x⊛ y = 0 implies B(x, y) = 0, (x, y) ∈ E × F,

where ⊛ is defined using the pointwise product of sequences, showing that they are exactly

the ones that factors through ⊛.

This paper is organised as follows: Section 2 is devoted to giving some preliminary results

on products and factorization through them. In Section 3, the main result of the paper on

factorization of zero product preserving on sequence spaces is proved (Theorem 1). Using it,

compactness and summability properties of product factorable operators are investigated and

some applications are given.

2 PRELIMINARIES: PRODUCTS AND BILINEAR MAPS

We use standard notations and notions from Banach space theory. The sets of natural num-

bers and integers are denoted by N and Z, respectively. For a Banach space E, BE will denote

the unit ball of E. We write χA for the characteristic function of a set A. Operator (linear or

multilinear) indicates continuous operator. The space of all linear operators between Banach
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spaces X, Y is denoted by L(X, Y), and we write B(X ×Y, Z) for the vector space of all bilinear

Z-valued operators, where Z is also a Banach space.

For a positive real number p, ℓp(N) is the space of all complex valued absolutely p-sum-

mable sequences. It is a Banach space with the norm ‖(xi)‖p =
( ∞

∑
i=1

|xi|
p
)1/p

for p ≥ 1, and

ℓ∞(N) shows the Banach space of all bounded sequences endowed with the norm ‖(xi)‖∞ =

supi∈N
|xi|.

If µ is a measure and 1 ≤ p < ∞, we write Lp(µ) for the Lebesgue space of classes of µ-a.e.

equal p-integrable functions.

We call a continuous operator (weakly) compact if it maps the closed unit ball to a relatively

(weakly) compact set.

A Banach space E has Dunford-Pettis property if every weakly compact linear operator

T : E → F is completely continuous (that is, it maps every weakly compact set A ∈ E into a

compact set with respect to the norm topology of the Banach space F).

A linear operator T : X → Y is said to be (p, q)-summing (T ∈ Πp,q(X, Y)) if there is a

constant k > 0 such that for every x1, . . . , xn ∈ X and for all positive integers n

( n

∑
i=1

∥∥T(xi)
∥∥p

Y

)1/p
≤ k sup

x′∈BX′

( n

∑
i=1

|〈xi, x′〉|q
)1/q

.

For the summing operators we refer the reader to [9].

Throughout the paper we will use the term product for a specific bilinear map, typically

with some special properties and being canonical in some sense. However, the only assump-

tion on such a product is that it is a continuous bilinear map. We will need stronger properties

for the products that are presented in [12] by Erdoğan E. et al.

Definition 1. Consider a bilinear operator ⊛ : X × Y → Z, (x, y)  ⊛(x, y) =: x⊛ y, where

X, Y, Z are Banach spaces. We say that the bilinear operator⊛ is a norm preserving product (n.p.

product for short) if it satisfies the inclusion BZ ⊆ ⊛(BX × BY) and

‖x⊛ y‖Z = inf
{
‖x′‖X‖y′‖Y : x′ ∈ X, y′ ∈ Y, x⊛ y = x′ ⊛ y′

}
,

for every (x, y) ∈ X × Y.

Now let us give some examples of bilinear operators that are n.p. product or not.

Example 1. Let (Ω, Σ, µ) be a complete σ-finite measure space and let (E, ‖.‖E) be a Banach

function space over µ. (For the definition of Banach function space we refer to [14, Def 1.b.17]).

We will write E(p), p ≥ 1, for the p-convexification of the Banach lattice E in the sense of

[14, Ch. 1.d] (see also the equivalent notion of pth power in [17, Ch.2] for a more explicit

description). In the case that E is a Banach function space, E(p) is also a Banach function space

with the norm ‖ f‖E(p) = ‖| f |p‖
1/p
E for f ∈ E (see [16, Prop.1]).

Let us consider the bilinear operator defined by the (µ-a.e.) pointwise product ⊙ : E(p) ×

E(q) → E(r), ( f , g)  f · g, where
1

p
+

1

q
=

1

r
for 1 ≤ r < p, q < ∞. We claim that this bilinear

map is a norm preserving product. Indeed, consider f ∈ BE(r) , h := | f |r/psgn f ∈ E(p) and

g := | f |r/q ∈ E(q), where sgn f denotes the sign function of f . By the definition of the norm of
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the p-convexification, it follows that ‖h‖E(p) =
∥∥∥
∣∣∣| f |r/psgn f

∣∣∣
p∥∥∥

1/p

E
= ‖| f |r‖

1/p
E = ‖ f‖

r/p

E(r) ≤ 1.

Similarly, ‖g‖E(q) = ‖ f‖
r/q

E(r) ≤ 1. Therefore, BE(r) ⊆ ⊙(BE(p) × BE(q)) is obtained.

Let us show now that ‖h · g‖E(r) = inf{‖h′‖E(p)‖g′‖E(q) : h′ ∈ E(p), g′ ∈ E(q), h · g = h′ · g′}

for h ∈ E(p) and g ∈ E(q). Indeed, by the generalized Hölder’s inequality we have that h · g ∈

E(r) and ‖h · g‖E(r) ≤ ‖h‖E(p)‖g‖E(q) (see [16, Lemma 1]). Since this inequality holds for all

couples (h′, g′) such that f = h · g = h′ · g′, we obtain ‖h · g‖E(r) ≤ inf{‖h′‖‖g′‖ : h · g = h′ · g′}.

Conversely, consider an arbitrary element f ∈ E(r). Then f has the following factorization:

h = | f |r/psgn f ∈ E(p), g = | f |r/q ∈ E(q) and h · g ∈ E(r). Moreover, ‖h‖E(p) = ‖ f‖
r/p

E(r) and

‖g‖E(q) = ‖ f‖
r/q

E(r) . Therefore ‖h‖E(p)‖g‖E(q) = ‖ f‖
r/p

E(r)‖ f‖
r/q

E(r) = ‖ f‖E(r) . This proves

‖ f‖E(r) = ‖h · g‖E(r) ≥ inf
{
‖h′‖E(p)‖g′‖E(q) : h · g = h′ · g′

}
,

and so ⊙ is an n.p. product.

Note that if we consider E = L1(µ) we obtain that the pointwise product is an n.p. product

from Lp(µ) × Lq(µ) to Lr(µ). In particular, if µ is the counting measure on N, the pointwise

product ⊙ : ℓp(N) × ℓq(N) → ℓr(N) is an n.p. product (for a more detailed information

see [16, Lemma 1] or [17, Lemma 2.21(i)]).

Example 2. Let E, F be normed spaces and E ⊗ F denotes their algebraic tensor product. Pro-

jective norm π and injective norm ε on E⊗ F are calculated by π(z) = inf
{

∑
n
i=1 ‖xi‖‖yi‖ : z =

∑
n
i=1 xi ⊗ yi

}
, and ε(z) = sup

{
〈x′ ⊗ y′, z〉 : x′ ∈ BE′ , y′ ∈ BF′

}
, respectively (see [8, Section

2,3]). It is well-known that any reasonable tensor norm α on the tensor product E ⊗ F satisfies

the inequality ε ≤ α ≤ π. For every (x, y) ∈ E × F, it is seen that by the definitions of these

norms

ε(x ⊗ y) ≤ α(x ⊗ y) ≤ π(x ⊗ y) ≤ inf{‖x′‖‖y′‖ : x′ ⊗ y′ = x ⊗ y}.

Besides, for every simple tensor x ⊗ y it is known that for any reasonable tensor norm α

we have α(x ⊗ y) = ‖x‖E‖y‖F (see [8, §12.1]). Then, any reasonable tensor norm satisfies

the equality involving the norm in Definition 1. But the tensor product does not satisfy the

inclusion, since clearly it is not surjective. So, it is not a norm preserving product.

Example 3. Let us define the following seminorm on X ⊗ L(X, Y). If z = ∑
n
j=1 xj ⊗ Tj is such

that ∑
n
j=1 Tj(xj) = yz ∈ Y, we define

π•(z) = inf
{

π(z′) : z′ =
m

∑
j=1

x′j ⊗ T′
j , such that

m

∑
j=1

T′
j (x′j) = yz

}
.

That is, π• is the quotient norm given by the tensor contraction c : X⊗̂πL(X, Y) → Y de-

fined as c(z) = c
(

∑
n
j=1 ∑

n
j=1 xj ⊗ Tj

)
= ∑

n
j=1 •(xj, Tj) = ∑

n
j=1 Tj(xj) associated to the following

factorization.

X × L(X, Y)

⊗
��

•

%%
X⊗̂π L(X, Y) c // Y.
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The description of this seminorm can be found in [18]. It defines a norm if we construct a

quotient space X⊗̂π•L(X, Y) by identifying the equivalence classes of the projective tensor pro-

duct X⊗̂π L(X, Y) with the range of c in Y, i.e. c(X⊗̂πL(X, Y)) ⊂ Y. Thus, for z = ∑
n
j=1 xj ⊗ Tj

and z′ = ∑
m
j=1 x′j ⊗ T′

j , z ∼ z′ if and only if ∑
m
j=1 Tj(x′j) = ∑

n
j=1 Tj(xj). The norm of a class

[z] = {z′ : z ∼ z′}, for z = ∑
n
j=1 xj ⊗ Tj, is given by

π•(z) = inf{π(z′) : z ∼ z′}.

Let us show that • is a norm preserving product.

Fix T ∈ L(X, Y) and x ∈ X and consider yz = T(x); clearly the inequality ‖yz‖ ≤ ‖T‖‖x‖

holds. Now, consider another tensor z = ∑
n
i=1 xi ⊗ Ti such that yz = ∑

n
i=1 Ti(xi). Since ‖yz‖ =

‖∑
n
i=1 Ti(xi)‖ ≤ ∑

n
i=1 ‖Ti‖‖xi‖, we obtain that ‖x • T‖ = ‖yz‖ ≤ π•(z).

In the opposite direction, for y ∈ Y there are elements T0 ∈ L(X, Y) and x0 ∈ X such that

T0(x0) = y and ‖y‖ = ‖T0‖‖x0‖. To see this, just take a couple (x0, x′0) of norm one elements

x0 ∈ X and x′0 ∈ X′ such that 〈x0, x′0〉 = 1. Now define T0(x) := 〈x, x′0〉 y, x ∈ X, and note

that ‖T0‖ = ‖y‖. Therefore, if z = x0 ⊗ T0, we have that y = yz. So, this gives in particular

that BY ⊆ •(BX × BL(X,Y)), since π•(z) ≤ ‖yz‖. Together with the inequality in the previous

paragraph this also gives ‖x0 • T0‖ = ‖yz‖ = π•(z). More precisely, we have proven that

‖x • T‖Y = inf
{
‖x0‖X‖T0‖L(X,Y) : x0 ∈ X, T0 ∈ L(X, Y), x • T = x0 • T0

}

for all T ∈ L(X, Y) and x ∈ X. Thus, • is a norm preserving product.

Since to find the factors of a Banach space is a current problem in the mathematical liter-

ature, there are found more examples of the norm preserving products including the Banach

function spaces (see [13, 15, 19]).

Let X, Y, Z be Banach spaces. A bilinear operator B : X × Y → Z is called ⊛-factorable

for the Banach valued n.p. product ⊛ : X × Y → G if there exists a linear continuous map

T : G → Z such that B factors through T and ⊛ (see [12, Definition 1]).

In this case, the following triangular diagram

X × Y B //

⊛

##

Z

G

T

OO

holds. In the paper [12], Erdogan E. et al have proved a necessary and sufficint condition for

⊙-factorability by a summability requirement as follows.

Lemma 1 (Lemma 1, [12]). The bilinear operator B : X × Y → Z is ⊛-factorable for the n.p.

product⊛ if and only if there exists a constant K such that for all x1, . . . , xn ∈ X and y1, . . . , yn ∈

Y we have ∥∥∥
n

∑
i=1

B(xi, yi)
∥∥∥

Z
≤ K

∥∥∥
n

∑
i=1

xi ⊛ yi

∥∥∥
G

.

Example 4. Consider a bilinear continuous operator B : ℓ2(N) × ℓ2(N) → ℓ1(N). Let us

use the result above for characterizing when B is ⊙-factorable with respect to the pointwise

product. It was shown in the first example that the pointwise product ⊙ from ℓ2(N)× ℓ2(N)
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to ℓ1(N) is an n.p. product. Let (a, b) =
(

∑
∞
k=1 αkχ{k}, ∑

∞
m=1 βmχ{m}

)
∈ ℓ2(N)× ℓ2(N). Then

the image of this element under pointwise product is

a ⊙ b =
∞

∑
k=1

αk

∞

∑
m=1

βm(χ{k} ⊙ χ{m}) =
∞

∑
k=1

αkβkχ{k}.

Thus, for the finite sets of sequences a1, . . . , an, b1, . . . , bn we have

n

∑
i=1

ai ⊙ bi =
n

∑
i=1

∞

∑
k=1

αikβikχ{k} =
∞

∑
k=1

( n

∑
i=1

αikβik

)
χ{k}.

The ℓ1(N) norm of this sequence is ‖(zk)‖ℓ1(N) = ∑
∞
k=1 |∑

n
i=1 αikβik|. By Lemma 1, we

obtain that the bilinear operator B factors through the pointwise product if and only if there is

a constant K for all finite sequences (ai)
n
i=1, (bi)

n
i=1 ⊂ ℓ2(N) such that

∥∥∥
n

∑
i=1

B(ai, bi)
∥∥∥

1
≤ K

∞

∑
k=1

∣∣∣
n

∑
i=1

αikβik

∣∣∣.

Let us consider now a more specific bilinear operator B : ℓ2(N)× ℓ2(N) → ℓ1(N): a diago-

nal multilinear operator. Recall that a bilinear operator B ∈ B(ℓ2(N)× ℓ2(N), ℓ1(N)) is called

bilinear diagonal if there is a bounded sequence ξ = (ξk)k such that B(a, b) = ∑
∞
k=1 ξkαkβkχ{k}.

By Hölder inequality, it is easily seen that B ∈ B(ℓ2(N) × ℓ2(N), ℓ1(N)) if and only if ξ ∈

ℓ∞(N). For arbitrary finite sequences (ai)
n
i=1, (bi)

n
i=1 ⊂ ℓ2(N), we obtain

∥∥∥
n

∑
i=1

B(ai, bi)
∥∥∥

1
=

∥∥∥
n

∑
i=1

∞

∑
k=1

ξkαikβikχ{k}

∥∥∥
1
≤ ‖ξk‖∞

∞

∑
k=1

∣∣∣
n

∑
i=1

αikβik

∣∣∣ = K
∞

∑
k=1

∣∣∣
n

∑
i=1

αikβik

∣∣∣.

Therefore, it is seen that every bilinear diagonal operator is factorable through ⊙. Remark

that a bilinear diagonal operator satisfies that B(a, b) = 0 whenever a ⊙ b = 0. We will prove

in what follows that this is also a sufficient condition for factorability of bilinear operators

defined on the topological product of sequence spaces.

3 THE POINTWISE PRODUCT IN SEQUENCE SPACES

Let us center our attention in this section in a particular product that is important in math-

ematical analysis. It is given by the pointwise product of sequences, functions and generalized

sequences belonging to Banach lattices. In order to give a full generality to our results, we will

consider several extensions of the bilinear map given by the pointwise products.

In the case of sequences, we will consider the following notion. The reference product is

the pointwise product of sequences, that is ⊙ : ℓp(N) × ℓq(N) → ℓr(N), a ⊙ b = a · b =

(aibi)
∞
i=1 ∈ ℓr(N), that is well-defined and continuous by Hölder’s inequality. This is clearly

an n.p. product, as have been explained in the previous section. Also, it has commutativity

and associativity properties.

The following notion is crucial in this paper.

Let X, Y, Z be Banach spaces. We say that a bilinear continuous operator B : X ×Y → Z is

zero “product”-preserving if it is 0-valued for couples of elements whose product equals 0.

Theorem 1. Let
1

p
+

1

q
=

1

r
for 1 ≤ r < p, q < ∞. Consider a bilinear operator B : ℓp(N) ×

ℓq(N) → Y. The following assertions are equivalent.



ZERO PRODUCT PRESERVING BILINEAR OPERATORS ACTING IN SEQUENCE SPACES 61

(1) The operator B is zero ⊙-preserving, i.e. B(x, y) = 0 whenever x ⊙ y = 0.

(2) The operator B is ⊙-factorable. That is, there is a linear and continuous operator T :

ℓr(N) → Y such that B = T ◦ ⊙, and so we have the factorization

ℓp(N)× ℓq(N) B //

⊙

''

Y

ℓr(N).

T

OO

Proof. Let us show that there is a linear continuous operator T such that B := T ◦ ⊙ whenever

the operator B is a zero ⊙-preserving. Define the map Tn : ℓp(N) ⊙ ℓq(N) → Y, Tn(z) :=

B(z ⊙ χ{1,2,...,n}, χ{1,2,...,n}) for all n ∈ N, where z ∈ ℓp(N) ⊙ ℓq(N); note that z ⊙ χ{1,2,...,n} ∈

ℓp(N), and χ{1,2,...,n} ∈ ℓq(N), and so Tn is well defined for each n ∈ N. The linearity of Tn

is a consequence of the linearity of the bilinear operator B in the first variable. To show the

boundedness of the map Tn, we give an equivalent formula for this operator. Since χ{1,2,...,n} =

∑
n
i=1 χ{i} by the properties of characteristic function, we have

Tn(a ⊙ b) = B(a ⊙ b ⊙ χ{1,2,...,n}, χ{1,2,...,n}) =
n

∑
i=1

B(a ⊙ b ⊙ χ{1,2,...,n}, χ{i}).

The pointwise product of a = (αk)
∞
k=1 ∈ ℓp(N) and b = (βk)

∞
k=1 ∈ ℓq(N) is a ⊙ b =

(αkβk)
∞
k=1 = ∑

∞
k=1 αkβkχ{k}. By the continuity of B, the image of the couple (a, b) ∈ ℓp(N) ×

ℓq(N) under the bilinear operator B is

B(a, b) = B
( ∞

∑
k=1

αkχ{k},
∞

∑
m=1

βmχ{m}

)
=

∞

∑
k=1

αk

∞

∑
m=1

βmB(χ{k}, χ{m}).

Since χ{k} ⊙ χ{m} = 0 (k 6= m) and by the zero ⊙-preservation of the operator B, we have

B(a, b) = ∑
∞
k=1 αkβkB(χ{k}, χ{k}). Thus,

Tn(a ⊙ b) =
n

∑
i=1

B(a ⊙ b ⊙ χ{1,2,...,n}, χ{i}) =
n

∑
i=1

B
( ∞

∑
k=1

αkβkχ{k} ⊙ χ{1,2,...,n}, χ{i}

)

=
n

∑
i=1

n

∑
k=1

αkβkB(χ{k}, χ{i}).

Using the zero ⊙-preservation property once again, we obtain

Tn(a ⊙ b) =
n

∑
i=1

αiβiB(χ{i}, χ{i}) = B
( n

∑
i=1

αiβiχ{i},
n

∑
i=1

χ{i}

)
= B

( n

∑
i=1

αiχ{i},
n

∑
i=1

βiχ{i}

)
.

By the boundedness of the bilinear operator B, it follows that

sup
z∈Bℓr(N)

‖Tnz‖Y = sup
(a,b)∈B

ℓp(N)×B
ℓq(N)

z=a⊙b

∥∥∥B
( n

∑
i=1

αiχ{i},
n

∑
i=1

βiχ{i}

)∥∥∥
Y

≤ sup
(a,b)∈B

ℓp(N)×B
ℓq(N)

z=a⊙b

n

∑
i=1

|αiβi|‖B(χ{i}, χ{i})‖Y < ∞.
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This shows that Tn is (uniformly) bounded, n ∈ N, and therefore (Tn)∞
n=1 is a bounded

sequence of linear operators acting in ℓr(N), since ℓr(N) = ℓp(N)⊙ ℓq(N). Indeed, note that

since ⊙ is an n.p. product, we have that it is surjective and preserves the norm, and so for

every z ∈ ℓr(N) we find adequate a ∈ ℓp(N) and b ∈ ℓq(N) such that z = a ⊙ b.

The sequence {Tn(a ⊙ b)}∞
n=1 is a Cauchy sequence for every a ∈ ℓp(N) and b ∈ ℓq(N),

and it is convergent by completeness of the Banach space Y. Indeed, since a ⊙ b ∈ ℓr(N), then

for every ε > 0, there is an N ∈ N such that

∥∥∥
∞

∑
i=n

αiχ{i}

∥∥∥
ℓp(N)

∥∥∥
∞

∑
i=n

βiχ{i}

∥∥∥
ℓq(N)

<
ε

‖B‖
∀n > N.

Using again that B(χ{i}, χ{j}) = 0 if i 6= j, we obtain

‖Tm(a ⊙ b)− Tn(a ⊙ b)‖Y =
∥∥∥B

( m

∑
i=n+1

αiβiχ{i},
m

∑
i=n+1

χ{i}

)∥∥∥
Y

≤ ‖B‖
∥∥∥

m

∑
i=n+1

αiχ{i}

∥∥∥
ℓp(N)

∥∥∥
m

∑
i=n+1

βiχ{i}

∥∥∥
ℓq(N)

< ε ∀m > n > N.

Let us define now the limit operator T : ℓr(N) → Y of the operator sequence {Tn}, that

is T(a ⊙ b) = limn→∞ Tn(a ⊙ b). It is easily seen that T is well defined and linear. Since

Tn(a ⊙ b) converges for every a⊙ b ∈ ℓr(N), then it is bounded for every a⊙ b. By the Uniform

Boundedness Theorem, it follows that T is continuous. Therefore, we obtain

B(a, b) = lim
n→∞

n

∑
i=1

αiβiB(χ{i}, χ{i}) = lim
n→∞

Tn(a ⊙ b) = T(a ⊙ b).

Besides, the image of an element is independent from its representation. Indeed, for the ele-

ment x = a1 ⊙ b1 = a2 ⊙ b2, we obtain

T(a1 ⊙ b1) = lim
n→∞

B(a1 ⊙ b1 ⊙ χ{1,2,...,n}, χ{1,2,...,n})

= lim
n→∞

B(a2 ⊙ b2 ⊙ χ{1,2,...,n}, χ{1,2,...,n}) = T(a2 ⊙ b2).

Hence we obtain the factorization of the bilinear operator B through the pointwise product as

B = T ◦ ⊙.

For the converse, assume that the map B is ⊙-factorable. Then, by Lemma 1 given in

[12] (see also page 59) it is obtained that there is a positive real number K such that, for all

x1, . . . , xn ∈ ℓp(N) and y1, . . . , yn ∈ ℓq(N), the following inequality holds

∥∥∥
n

∑
i=1

B(xi, yi)
∥∥∥

Y
≤ K

∥∥∥
n

∑
i=1

xi ⊙ yi

∥∥∥
ℓr(N)

.

Clearly, this inequality implies zero ⊙-preservation of the bilinear map B. This finishes the

proof.

Now we will give a generalization of our results. Consider two Banach spaces E and F that

are isomorphic -as Banach spaces- to ℓp(N) and ℓq(N), respectively, and the isomorphisms

are given by the operators P : E → ℓp(N) and Q : F → ℓq(N). We define the product

⊙P×Q : E × F → ℓr(N) by

⊙P×Q(x, y) = P(x)⊙ Q(y), x ∈ E, y ∈ F.
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To make this definition more understandable, let us illustrate it by the following diagram

E × F
⊙P×Q //

P×Q
��

ℓr(N).

ℓp(N)× ℓq(N)

⊙

55

In this situation considered above of the product ⊙P×Q = P(.) ⊙ Q(.), a bilinear map

B : E × F → Y is zero ⊙P×Q-preserving if

⊙P×Q(x, y) = 0 implies B(x, y) = 0

for all x ∈ E and y ∈ F. Namely, the map B is said to be zero ⊙P×Q-preserving if B(x, y) = 0

whenever P(x)⊙ Q(y) = 0.

Theorem 2. Let
1

p
+

1

q
=

1

r
for 1 ≤ r < p, q < ∞. Let the Banach spaces E and F be isomorphic

to ℓp(N) and ℓq(N) by means of the isomorphisms P and Q, respectively. Consider a Banach

valued bilinear operator B : E × F → Y. The following assertions imply each other.

(1) The operator B is ⊙P×Q-factorable. That is, there exists a linear continuous operator

T : ℓr(N) → Y such that B = T ◦ ⊙P×Q, and the following diagram commutes.

E × F B //

P×Q
��

Y

ℓp(N)× ℓq(N)
⊙ // ℓr(N).

T

OO

(2) There is a positive real number K such that, for every finite set of elements {xi}
n
i=1 ∈ E

and {yi}
n
i=1 ∈ F, the following inequality holds

∥∥∥
n

∑
i=1

B(xi, yi)
∥∥∥

Y
≤ K

∥∥∥
n

∑
i=1

P(xi)⊙ Q(yi)
∥∥∥
ℓr(N)

.

(3) The operator B is zero ⊙P×Q-preserving, that is, x ⊙P×Q y = 0 implies B(x, y) = 0.

Proof. Let us prove that (3) implies (1). Under the conditions of the theorem, consider the

bilinear map B = B ◦ (P−1 × Q−1) : ℓp(N)× ℓq(N) → Y. We have that for all x ∈ E and y ∈ F,

x ⊙P×Q y = P(x) ⊙ Q(y) = 0 implies that 0 = B(x, y) = B(P(x), Q(y)) = 0. That is, since P

and Q are isomorphisms, we have that for all a ∈ ℓp(N) and b ∈ ℓq(N), a ⊙ b = 0 implies that

B(a, b) = 0.

We are in situation of using Theorem 1 for B. So we have that there is a linear operator

T : ℓr(N) → Y such that B = T ◦ ⊙. By the definition of B, we obtain B = B ◦ (P × Q) =

T ◦ ⊙ ◦ (P × Q), the required factorization.

The equivalences among the three statements of the theorem follow directly using Lemma

1 in [12] and this factorization.
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We will say a bilinear map B : X × X → Y is symmetric if B( f , g) = B(g, f ) for every couple

( f , g) ∈ X × X.

It is easily seen that any ⊙-factorable bilinear map B : ℓp(N) × ℓp(N) → Y factorized

through ℓr(N) for 2r = p is symmetric, since B(an, bn) = T(an ⊙ bn) = T(bn ⊙ an) = B(bn, an)

holds for all (an)∞
n=1, (bn)∞

n=1 ∈ ℓp(N) by the commutativity of the pointwise product.

Now, we will give symmetry condition for general product.

Corollary 1. Let the Banach space X be isomorphic to ℓp(N) for p ≥ 2. Then any zero ⊙P×P-

preserving bilinear map B : X × X → Y satisfies the symetry condition, that is B(x, y) =

B(y, x) for all x, y ∈ X.

Proof. Since the map B is zero ⊙P×P-preserving, it is ⊙P×P-factorable. Then, for r = p/2 there

is a linear continuous map T : ℓr(N) → Y defined by B(x, y) = T ◦ ⊙ ◦ (P × P)(x, y) =

T(P(x)⊙ P(y)). By the commutativity of the pointwise product we get the symmetry

B(x, y) = T(P(x) ⊙ P(y)) = T(P(y) ⊙ P(x)) = B(y, x).

Remark 1. The extension of the result given in Theorem 1 from the case of ⊙ to the case of

⊙P×Q products implicitly shows a fundamental fact about factorization through the point-

wise product. The requirement “a ⊙ b = 0 implies B(a, b) = 0” can be understood as a

lattice-type property: indeed, note that for sequences a and b in the corresponding spaces,

a ⊙ b = 0 if and only if a and b are disjoint, and so we can rewrite the requirement of being

zero ⊙-preserving as “if |a| ∧ |b| = 0, then B(a, b) = 0”. Since P and Q are just (Banach space)

isomorphisms, we have shown that the property is primarely related to the pointwise product,

and not to the lattice properties. The result is particularly meaningful if we consider P and Q to

be the isomorphisms associated to changes of unconditional basis of ℓp(N) and ℓq(N) whose

elements are not in general disjoint.

Remark 2. Consider the bilinear map B : E × E′ → Y, where E′ denotes the topological dual of

E. This bilinear map can only be ⊙P×Q-factorable through the sequence space ℓ1(N). Indeed,

let P denote the isomorphism between E and ℓp(N) (p ≥ 1). Since the duals of isomorphic

spaces are isomorphic, it follows that E′ is isomorphic to (ℓp(N))′ = ℓp′(N) for
1

p
+

1

p′
= 1 by

the isomorphism P′ that is adjoint map of P. Therefore B can only be ⊙P×P′-factorable and in

this case it is factorized through ℓ1(N).

3.1 Compactness properties of zero ⊙P×Q-preserving bilinear maps

Theorem 2 provides a useful tool to obtain the main properties of zero ⊙P×Q-preserving

bilinear maps. It is already clear that (weakly) compactness of the factorization map T is

necessary and sufficient condition for the (weakly) compactness of the zero ⊙P×Q-preserving

map B by the definition of the norm preserving product. Indeed, for a zero ⊙P×Q-preserving

map B,

B is (weakly) compact ⇐⇒ B(UX × UY) is relatively (weakly) compact

⇐⇒ B(Uℓp(N) × Uℓq(N)) is relatively (weakly) compact

⇐⇒ T(Uℓr(N)) is relatively (weakly) compact

⇐⇒ T is (weakly) compact.

Now, we will give more specific situations.
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Proposition 1. Let
1

p
+

1

q
=

1

r
for 1 ≤ r < p, q < ∞. Suppose that there are isomorphisms P

and Q such that the bilinear operator B : E × F → Y is zero ⊙P×Q-preserving. Then

(i) B(E × F) is a linear space;

(ii) if P and Q are isometries, then B(BE × BF) is convex;

(iii) if r = 1 and Y is reflexive, then B(BE × y) is a relatively compact set for every y ∈ F as

well as B(x × BF) is relatively compact for every x ∈ E;

(iv) if r > 1, then B(BE × BF) is relatively weakly compact;

(v) if 1 ≤ s < r < ∞ and Y = ℓs(N), then B(BE × BF) is relatively compact.

Proof. Consider the factorization for B given by B = T ◦ (P ⊙ Q).

(i) Since ⊙ is an n.p. product and B factors through it by Theorem 2, we have that

B(E × F) = T(ℓp(N) ⊙ ℓq(N)) = T(ℓr(N)), that is, the range of a linear map. So it is a

linear space.

(ii) Clearly, A = P ⊙ Q(BE × BF) = Bℓp(N) ⊙ Bℓq(N) = Bℓr(N) is a convex set, and so T(A) is

also convex.

(iii) Note that there is a sequence b = Q(y) such that A = P ⊙ Q(BE, y) is equivalent to

Bℓp(N) ⊙ b ⊂ ℓ1(N). Recall that 1 < p, q < ∞. Note also that T : ℓ1(N) → Y is weakly compact

by the reflexivity of the range space Y. Since A is a weakly compact set in ℓ1(N) we have that

T(A) is relatively compact by the Dunford-Pettis property of ℓ1(N).

(iv) Since B(BE × BF) = T(P(BE)⊙ Q(BF)), and P(BE)⊙ Q(BF) is equivalent to the unit

ball of the reflexive space ℓr(N), we get the result.

(v) Recall that by Pitt’s Theorem (see [9, Ch. 12]), every bounded linear operator from ℓr(N)

into ℓs(N) is compact whenever 1 ≤ s < r < ∞. The factorization gives directly the result.

3.2 Zero ⊙P×Q-preserving bilinear operators among Hilbert spaces

In this section, assume that E, F and Y are separable Hilbert spaces. Our first result shows a

summability property of zero product preserving bilinear maps, and is a direct consequence of

Grothendieck’s Theorem. It also provides an integral domination for B. The second corollary is

obtained as a result of the Schur’s property of ℓ1(N) (recall that a Banach space has the Schur’s

property if weakly convergent sequences and norm convergent sequences are the same) and it

is again an application of the compactness properties of the bounded subsets of ℓ1(N).

Corollary 2. Let H1, H2 and H3 be separable Hilbert spaces. Let B : H1 × H2 → H3 be a zero

⊙P×Q-preserving bilinear operator. Then

(i) for every x1, . . . , xn ∈ H1, y1, . . . , yn ∈ H2 there is a constant K > 0 such that

n

∑
i=1

∥∥∥B(xi, yi)
∥∥∥ ≤ K sup

z′∈Bℓ∞(N)

n

∑
i=1

∣∣∣
〈

P(xi)⊙ Q(yi), z′
〉∣∣∣,

(ii) and there is a regular Borel measure η over Bℓ∞(N) such that

‖B(x, y)‖ ≤ K
∫

Bℓ∞(N)

|〈P(x)⊙ Q(y), z′〉| dη(z′), x ∈ H1, y ∈ H2.
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Proof. Let us consider the zero ⊙P×Q-preserving bilinear map B : H1 × H2 → H3. Since any

separable Hilbert space is isomorphic to the sequence space ℓ2(N), we can define a bilinear

map B = B(P−1 × Q−1) : ℓ2(N) × ℓ2(N) → H3. The zero ⊙P×Q-preserving property of

B implies the ⊙-preserving property of the map B. Therefore, by Theorem 2 we have the

factorization B := T ◦⊙, where T : ℓ1(N) → H3. One of the results of Grothendieck’s Theorem

states that every linear operator from ℓ1(N) to a Hilbert space is 1-summing. It follows that,

for every x1, . . . , xn ∈ H1, y1, . . . , yn ∈ H2 there is a constant K > 0 such that

n

∑
i=1

∥∥∥B(xi, yi)
∥∥∥ =

n

∑
i=1

∥∥∥B(P(xi), Q(yi))
∥∥∥ ≤ K sup

z′∈Bℓ∞(N)

n

∑
i=1

∣∣∣
〈

P(xi)⊙ Q(yi), z′
〉∣∣∣.

The second inequality of the corollary given above is clearly seen by Pietsch Domination The-

orem (see [9, Theorem 2.12]). This theorem states that every 1-summable operator has such a

regular Borel measure. Thus, we get a regular Borel measure η over Bℓ∞(N) satisfying

‖B(x, y)‖ = ‖B(P(x), Q(y))‖ ≤ K
∫

Bℓ∞(N)

|〈P(x)⊙ Q(y), z′〉| dη(z′)

for x ∈ H1, y ∈ H2.

Corollary 3. Let H1, H2 and H3 be separable Hilbert spaces. Let B : H1 × H2 → H3 be a zero

⊙P×Q-preserving bilinear operator. Then

(i) for every couple of sequences (xi)
∞
i=1 in H1 and (yi)

∞
i=1 in H2 such that (P(xi)⊙ Q(yi))

∞
i=1

is weakly convergent, we have that (B(xi, yi))
∞
i=1 converges in the norm;

(ii) for S1 ⊆ H1 and S2 ⊆ H2 such that P(S1)⊙ Q(S2) ⊆ ℓ1(N) is relatively weakly compact,

we have that B(S1 × S2) is relatively compact.

We can obtain some (weaker) summability results if we consider the range space Y with

some cotype-related properties. It is known that a Banach space has the Orlicz property, if it

is of cotype 2 (see [8, 8.9]). Recall that a Banach space is said to have the Orlicz property if the

identity map in it is (2, 1)-summing. It follows that for any zero ⊙P×Q-preserving bilinear map

B : E × F → Y whose range space Y has the Orlicz property, we get a domination as follows:

for f1, . . . , fn ∈ E and g1, . . . , gn ∈ F,

( n

∑
i=1

∥∥B( fi, gi)‖
2
Y

)1/2
≤ k sup

ε i∈{−1,1}

∥∥
n

∑
i=1

ε i (P( fi)⊙ Q(gi))
∥∥
ℓr(N)

.

Let us finish the paper with an application by using convolution maps defined on sequence

spaces and function spaces.

3.3 Application: convolution maps

Consider any bilinear map B : L2[0, 2π] × L2[0, 2π] → Y such that B( f , g) = 0 when-

ever f , g ∈ L2[0, 2π] are such that f ⊙̂×̂g = f̂ ⊙ ĝ = 0, where ̂ denotes the Fourier trans-

form. Plancherel’s well-known theorem states that the Banach space L2[0, 2π] is isometri-

cally isomorphic to ℓ2(Z) by the Fourier transform. Therefore, the bilinear map B is zero
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⊙̂×̂-preserving. The class of these bilinear maps was investigated by Erdoğan E. et al in [10]

by the term ∗-continuous map and they gave a factorization for B such that

B = T ◦ ˇ ◦ ⊙ ◦ (̂ × )̂ = T ◦ ∗,

where ˇ is the inverse Fourier transform.

Now, we will give a more specific example. H and H2 stand for the holomorphic functions

on the unit disc D and Hardy space of the functions, respectively. Recall that Hardy space H2

consists of the functions whose all Fourier coefficients are zero with negative index, besides,

it is closed subspace of L2[0, 2π] which is isomorphically isomorphic to the sequence space

ℓ2(N) by Fourier transform. It is possible to represent any holomorphic function f ∈ H as a

Taylor polynomial f (z) = ∑
∞
n=0 anzn. This representation is given by the Fourier coefficients

for the elements of H2 whenever f ∈ H2.

Arregui and Blasco defined the u-convolution of the holomorphic functions f and g in

H given by f (z) = ∑
∞
n=0 anzn and g(z) = ∑

∞
n=0 bnzn as f ∗u g(z) = ∑

∞
n=0 u(an, bn)zn, where

u : C ×C → C is a bilinear continuous map (see [3, Definition 1.1.]). If we consider the bilinear

map u defined as u(an, bn) = an ⊙ bn, then we get f ∗u g(z) = ∑
∞
n=0(an ⊙ bn)zn. Therefore, it is

seen that u-convolution defined on H2 ×H2 to H2 is a zero ⊙̂× -̂preserving, since f ⊙̂×̂g =

f̂ (n)⊙ ĝ(n) = 0 implies f ∗u g = 0 for all f , g ∈ H2. By Theorem 2, it follows that there is a

linear map T : ℓ1(N) → H2 such that f ∗u g = T( f̂ (n)⊙ ĝ(n)) = ∑
∞
n=0 xnzn, where (xn)∞

n=1 is

the sequence in ℓ1(N) obtained by the pointwise product f̂ (n)⊙ ĝ(n). Also, by Corollary 1 it

is obtained that u-convolution is a symmetric map.
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Ердоган Е. Бiлiнiйнi оператори, що зберiгають нульовий добуток, на просторах послiдовностей //

Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 55–68.

Розглянемо пару просторiв послiдовностей i функцiю добутку (канонiчне бiлiнiйне вiд-

ображення, асоцiйоване з поточковим множенням), що дiє на ньому. Ми аналiзуємо клас бi-

лiнiйних операторiв, що “зберiгають нульовий добуток”, асоцiйований з цим добутком, ви-

значених таким чином, що вони дорiвнюють нулю на парах, в яких добуток дорiвнює нулю.

Бiлiнiйнi оператори, що належать цьому класу, вже дослiджувалися в контекстi банахових

алгебр, вони можуть бути охарактеризованi в термiнах факторизацiї ℓr(N) просторiв. Вико-

ристовуючи це, ми демонструємо основнi властивостi цих вiдображень, такi як компактнiсть i

сумовнiсть.

Ключовi слова i фрази: простори послiдовностей, бiлiнiйнi оператори, факторизацiя, зберi-

гаюче нульовий добуток вiдображення, добуток.
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LEGENDRIAN NORMALLY FLAT SUBMANIFOLS OF S-SPACE FORMS

In the present study, we consider a Legendrian normally flat submanifold M of (2n + s)-dimen-

sional S-space form M̃2n+s(c) of constant ϕ-sectional curvature c. We have shown that if M is

pseudo-parallel then M is semi-parallel or totally geodesic.

We also prove that if M is Ricci generalized pseudo-parallel, then either it is minimal or L = 1
n−1 ,

when c 6= −3s.

Key words and phrases: S-space form, Legendrian submanifold, normally flat submanifold, pseu-
do-parallel submanifold, Ricci generalized pseudo-parallel submanifold.
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INTRODUCTION

An n-dimensional submanifold M in an m-dimensional Riemannian manifold M̃ is pseudo-

parallel [1, 2], if its second fundamental form σ satisfies the following condition

R̃ . σ = L Q(g, σ), (1)

where R̃ is the curvature operator with respect to the Van der Waerden-Bortolotti connection

∇̃ of M̃, L is some smooth function on M and Q(g, σ) is a (0, 4) tensor on M determined by

Q(g, σ)(Z, W; X, Y) = ((X ∧g Y) . σ)(Z, W). Recall that the (0, k + 2)-tensor Q(B, T) associated

with any (0, k)-tensor field T, k ≥ 1, and (0, 2)-tensor field B, is defined by

Q(B, T)(X1 , X2, . . . , Xk; X, Y) = ((X ∧B Y) . T)(X1 , X2, . . . , Xk)

= −T((X ∧B Y)X1, X2, . . . , Xk)− . . . − T(X1, X2, . . . , Xk−1, (X ∧B Y)Xk),
(2)

where X ∧B Y is defined by

(X ∧B Y)Z = B(Y, Z)X − B(X, Z)Y. (3)

In particular, if L = 0, M is called a semi-parallel submanifold. Pseudo-parallel submanifolds

were introduced in [1, 2] as naturel extension of semi-parallel submanifolds and as the extrin-

sic analogues of pseudo-symmetric Riemannian manifolds in the sense of Deszcz [7], which

generalize semi-symmetric Riemannian manifolds. On the other hand, Murathan et al. [11]

defined submanifolds satisfying the condition

R̃ . σ = L Q(S, σ), (4)

УДК 514.76
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where S is the Ricci tensor of M. The kind of submanifolds are called Ricci generalized pseudo-

parallel. Recently, many authors studied pseudo-parallel and Ricci generalized pseudo-parallel

submanifolds on various spaces, where the ambient manifold M̃ has constant sectional curva-

ture, we refer for example to [2, 5, 10–12, 14]. An integral submanifold of maximal dimension

Mn of an S-manifold M̃2n+s is called Legendrian and it plays an important role in contact ge-

ometry. The study of Legendrian submanifolds of Sasakian manifolds from the Riemannian

geometry point of view was initiated in 1970’s. Legendrian submanifolds like their analogues

in symplectic geometry, i.e. Lagrangian submanifolds. In [12], authors showed that a pseudo-

parallel integral minimal submanifold Mn of an S-space form M̃2n+s(c) is totally geodesic if

Ln − 1
4(n(c + 3s) + c − s) ≥ 0.

In this work, we mainly prove that if a Legendrian normally flat submanifold M of an

S-space form M̃2n+s(c) is pseudo-parallel (resp. Ricci generalized pseudo-parallel) then it is

semi-parallel or totally geodesic (resp. minimal or L = 1
n−1).

1 PRELIMINARIES

We remember some necessary useful notions and results for our next considerations. Let

M̃n be an n-dimensional Riemannian manifold and Mm an m-dimensional submanifold of M̃n.

Let g be the metric tensor field on M̃n as well as the metric induced on Mm. We denote by ∇̃ the

covariant differentiation in M̃n and by ∇ the covariant differentiation in Mm. Let TM̃ (resp.

TM) be the Lie algebra of vector fields on M̃n (resp. on Mm) and T⊥M the set of all vector

fields normal to Mm. The Gauss-Weingarten formulas are given by

∇̃XY = ∇XY + σ(X, Y) , ∇̃XV = −AV X +∇⊥
XV,

X, Y ∈ TM, V ∈ T⊥M, where ∇⊥ is the connection in the normal bundle, σ is the second

fundamental form of Mm and AV is the Weingarten endomorphism associated with V. AV

and σ are related by g(AV X, Y) = g(σ(X, Y), V) = g(X, AVY).

The submanifold Mm is said to be totally geodesic in M̃n if its second fundamental form is

identically zero and it is said to be minimal if H ≡ 0, where H is the mean curvature vector

defined by H = 1
m trace(σ) [13].

We denote by R̃ and R the curvature tensors associated with ∇̃, ∇ and ∇⊥ respectively.

The basic equations of Gauss and Ricci are

g(R̃(X, Y)Z, W) = g(R(X, Y)Z, W) + g(σ(X, Z), σ(Y, W)) − g(σ(X, W), σ(Y, Z)),

g(R̃(X, Y)N, V) = g(R
⊥
(X, Y)N, V) − g([AN , AV ]X, Y),

respectively, X, Y, Z, W ∈ TM, N, V ∈ T⊥M.

The covariant derivative ∇̃σ of the second fundamental form σ is given by

∇̃Xσ(Y, Z) = ∇⊥
X (σ(Y, Z)) − σ(∇XY, Z)− σ(Y,∇XZ).

The operators R̃(X, Y) from the curvature of ∇̃ and X ∧ Y can be extended as derivations

of tensor fields in the usual way, so

(R̃(X, Y).σ)(Z, W) = R⊥(X, Y)(σ(Z, W)) − σ(R(X, Y)Z, W) − σ(Z, R(X, Y)W). (5)
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Putting B = g, T = σ in (2) and (3), we get

Q(g, σ)(Z, W; X, Y) = ((X ∧ Y) . σ)(Z, W) = −σ((X ∧ Y)Z, W) − σ(Z, (X ∧ Y)W)

= −g(Y, Z)σ(X, W) + g(X, Z)σ(Y, W) − g(Y, W)σ(Z, X) + g(X, W)σ(Z, Y).
(6)

Let M̃2n+s be a (2n + s)-dimensional Riemannian manifold endowed with an ϕ-structure (that

is a tensor field of type (1, 1) and rank 2n satisfying ϕ3 + ϕ = 0). If moreover there exist on

M̃2n+s global vector fields ξ1, . . . , ξs (called structure vector fields), and their duals 1-forms

η1, . . . , ηs such that for all X, Y ∈ TM̃ and α, β ∈ {1, . . . , s} (see [8])

ηα(ξβ) = δαβ, ϕξα = 0, ηα(ϕX) = 0, ϕ2X = −X +∑
s

α=1
ηα(X)ξα , (7)

then there exists on M̃ a Riemannian metric g satisfying

g(X, Y) = g(ϕX, ϕY) +∑
s

α=1
ηα(X)ηα(Y), (8)

and

ηα(X) = g(X, ξα), g(ϕX, Y) = −g(X, ϕY), (9)

for all α ∈ {1, . . . , s}, M̃ is then said to be a metric ϕ-manifold. The ϕ-structure is normal if

Nϕ + 2 ∑
s
α=1 ξα ⊗ dηα = 0, where Nϕ is the Nijenhuis torsion of ϕ.

Let Φ be the fundamental 2-form on M defined for all vector fields X, Y on M̃ by Φ(X, Y) =

g(X, ϕY). A normal metric ϕ-structure with closed fundamental 2-form will be called K-

structure and M̃2n+s called K-manifold. Finally, if dη1 = . . . = dηs = Φ, the K-structure is

called S-structure and M̃ is called S-manifold.

The Riemannian connection ∇̃ of an S-manifold satisfies [3]

∇̃Xξα = −ϕX, α ∈ {1, . . . , s},

(∇̃X ϕ)Y = ∑
s

α=1
(g(ϕX, ϕY)ξα + ηα(Y)ϕ2X), X, Y ∈ TM̃,

where ∇̃ is the Levi-Civita connection of g.

A plane section π is called an ϕ-section if it is determined by a unit vector X, normal to the

structure vector fields and ϕX. The sectional curvature of π is called an ϕ-sectional curvature.

An S-manifold is said to be an S-space form if it has constant ϕ-sectional curvature c and then,

it is denoted by M̃2n+s(c) (n > 1) and its curvature tensor has the form [9]

R̃(X, Y)Z =
c + 3s

4

{
g(ϕX, ϕZ)ϕ2Y − g(ϕY, ϕZ)ϕ2X

}

+
c − s

4

{
g(ϕY, Z)ϕX − g(ϕX, Z)ϕY + 2g(X, ϕY)ϕZ

}

+
s

∑
α,β=1

{
ηα(X)ηβ(Z)ϕ2Y − ηα(Y)ηβ(Z)ϕ2X

+ g(ϕY, ϕZ)ηα(X)ξβ − g(ϕX, ϕZ)ηα(Y)ξβ

}
,

(10)

for all X, Y, Z ∈ TM̃.

When s = 1, an S-space form M̃(c) reduces to a Sasakian space form M̃(c) and s = 0

becomes a complex space form.
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2 PSEUDO-PARALLEL LEGENDRIAN SUBMANIFOLDS OF AN S -SPACE FORM

Let Mn be an n-dimensional submanifold of an S-space form M̃2n+s(c). If ηα(X) = 0,

α ∈ {1, . . . , s}, for every tangent vector X to M, then we say M is a Legendrian submanifold.

Recall that a submanifold M of M̃ is an anti-invariant submanifold if ϕ(TM) ⊆ T⊥M. So, a

Legendrian submanifold is identical with an anti-invariant submanifold normal to the struc-

ture vector fields ξ1, . . . , ξs. Actually, a Legendrian submanifold is special an integral subman-

ifold. Therefore, from (8) and (9) we obtain

g(ϕX, ϕY) = g(X, Y), ηα(X) = g(X, ξα) = 0,

for any X, Y ∈ TM and α ∈ {1, . . . , s}. Then we have the following known Lemma (see [4]).

Lemma 1. Let Mn be a Legendrian submanifold of an S-manifold, then

Aξα
= 0,

AϕXY = AϕYX, (11)

for all α ∈ {1, . . . , s} and X, Y ∈ TM.

The previous Lemma implies immediately the following result.

Lemma 2. For a Legendrian submanifold Mn of an S-manifold M̃2n+s, the following equations

g(σ(X, Y), ϕZ) = g(σ(X, Z), ϕY), (12)

AϕXY = −ϕσ(X, Y) = AϕYX (13)

hold for all X, Y, Z ∈ TM.

Moreover, from (7) and (13) we obtain

ϕAϕXY = σ(X, Y) = ϕAϕYX. (14)

Using (14), (9) and the Gauss equation, we have

R̃(X, Y) = R(X, Y) − [AϕX, AϕY]. (15)

We recall that the submanifold M is said to have flat normal connection (or trivial normal con-

nection) if R⊥ = 0. If M has normal connection flat then we call it to be normally flat.

Then, making use of (14), (5) and (6), if M is normally flat, the pseudo-parallelity condi-

tion (1) turns into

−AϕWR(X, Y)Z − AϕZR(X, Y)W = L
{
− g(Y, Z)AϕXW + g(X, Z)AϕYW

− g(Y, W)AϕX Z + g(X, W)AϕY Z
}

.
(16)

So, a Legendrian normally flat submanifold Mn of an S-space form M̃2n+s(c) is pseudo-pa-

rallel if and only if the equation (16) holds.

In particular, if L = 0 in (16) the M is said to be semi-parallel.

As a parallel submanifold, ∇̃σ = 0 (in particular, totally geodesic submanifold σ = 0) is

semi-parallel it is obvious that also is a pseudo-parallel submanifold.

The following two propositions are the analogous results to [5, Prop. 3.1, Prop. 3.2] in case

of pseudo-parallel Legendrian submanifold of an S-space form, respectively.
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Proposition 1. Let Mn be a pseudo-parallel Legendrian submanifold of an S-space form

M̃2n+s(c). If there is another smooth function L′ satisfying (1), then L = L′ at least on M − K,

where K = {p ∈ M/σp = 0}.

Proof. If L and L′ are two functions that satisfy (1), we get (L − L′) Q(g, σ) = 0. Choose an

orthonormal basis {e1, . . . , en} of Tp M, p ∈ M. We have

(L − L′) Q(g, σ)(ek, el; ei, ej) = (L − L′)[(ei ∧ ej).σ](ek, el)

= (L − L′)
{
− g(ej, ek)σ(ei, el) + g(ei, ek)σ(ej, el)

− g(ej, el)σ(ek, ei) + g(ei, el)σ(ek, ej)
}

= (L − L′)
{
− δjkσ(ei, el) + δikσ(ej, el)

− δjlσ(ek, ei) + δilσ(ek, ej)
}
= 0.

For i = k 6= j = l we get

(L − L′){σ(ej, ej)− σ(ei, ei)} = 0.

For i = k = l 6= j we get

(L − L′)σ(ei, ej) = 0.

If L(p) 6= L′(p), p ∈ M, then

σ(ei, ej) = 0, σ(ei, ei) = σ(ej, ej), ∀i, j ∈ {1, . . . , n}.

Moreover, since i 6= j and from (12)

g(σ(ei , ei), ϕej) = g(σ(ei, ej), ϕei) = 0,

g(σ(ei, ei), ϕei) = g(σ(ej , ej), ϕei) = g(σ(ei, ej), ϕej) = 0,

g(σ(ei , ei), ξα) = g(ϕAϕei
ei, ξα) = 0, ∀α ∈ {1, . . . , s}.

So, we obtain g(σ(ei, ei), N) = 0 ∀i ∈ {1, . . . , n}, ∀N ∈ T⊥M and since {ϕe1, . . . , ϕen, ξ1, . . . , ξs}

is a basis of T⊥M for a Legendrian submanifold M, then σ = 0. Consequently

{p ∈ M, L(p) 6= L′(p)} ⊆ K.

This proves the proposition.

Proposition 2. Let Mn be a pseudo-parallel Legendrian normally flat submanifold of an

S-space form M̃2n+s(c), then for any vector fields X, Y ∈ TM we have

R(X, Y)ϕH = L{g(ϕH, X)Y − g(ϕH, Y)X},

where H is a mean curvature vector.

Proof. Let {e1, . . . , en} be an orthonormal basis of TM and Z unit vector field of TpM for p ∈ M.

∀U ∈ TM, (16) can be rewritten as

g(R(X, Y)Z, AϕW U) + g(R(X, Y)W, AϕZU) = L
{

g(Y, Z)g(AϕXW, U)

− g(X, Z)g(AϕYW, U) + g(Y, W)g(AϕX Z, U)− g(X, W)g(AϕY Z, U)
}

.

(17)
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If we put W = U = ei in (17), we obtain

g(R(X, Y)Z, Aϕei
ei) + g(R(X, Y)ei , AϕZei) = L

{
g(Y, Z)g(AϕX ei, ei)− g(X, Z)g(AϕY ei, ei)

+ g(Y, ei)g(AϕXZ, ei)− g(X, ei)g(AϕYZ, ei)
}

.

Assuming that {λ1, . . . , λn} are the eigenvalues of AϕZ corresponding to frame {e1, . . . , en}.

Using (11) in the above equation, we have

−g(R(X, Y)Aϕei
ei, Z) + λig(R(X, Y)ei , ei) = L

{
g(Y, Z)g(Aϕei

ei, X)− g(X, Z)g(Aϕei
ei, Y)

+ g(Y, ei)g(AϕZei, X)− g(X, ei)g(AϕZei, Y)
}

= L
{

g(Y, Z)g(Aϕei
ei, X)− g(X, Z)g(Aϕei

ei, Y)

+ λig(Y, ei)g(ei, X)− λig(X, ei)g(ei, Y)
}

.

So that

−g(R(X, Y)Aϕei
ei, Z) = L

{
g(Y, Z)g(Aϕei

ei, X)− g(X, Z)g(Aϕei
ei, Y)

}
.

From (13), we get

g(R(X, Y)ϕH, Z) = −
1

n

n

∑
i=1

g(R(X, Y)Aϕei
ei, Z) = L

{
g(Y, Z)g(ϕH, X) − g(X, Z)g(ϕH, Y)

}
.

3 MAIN RESULTS

Theorem 1. Let Mn be a Legendrian normally flat submanifold of an S-space form M̃2n+s(c)

with c ≤ s, then Mn is pseudo-parallel if and only if it is semi-parallel or totally geodesic.

Proof. Since Mn is a Legendrian submanifold and from (10) we have

R̃(X, Y)Z =
c + 3s

4

{
g(Y, Z)X − g(X, Z)Y

}
, (18)

for any X, Y, Z ∈ TM, so that

R̃(X, Y)ϕH =
c + 3s

4

{
g(Y, ϕH)X − g(X, ϕH)Y

}
,

where H is the mean curvature vector. As R⊥ = 0 and from (18), the Ricci equation reduces to

[AϕX, AϕY] = 0, so from (15) we get R̃(X, Y)ϕH = R(X, Y)ϕH, thus

R(X, Y)ϕH =
c + 3s

4

{
g(Y, ϕH)X − g(X, ϕH)Y

}
.

Using the above equation and Proposition 2, we obtain

(c + 3s

4
+ L

){
g(Y, ϕH)X − g(X, ϕH)Y

}
= 0, (19)

this implies that L = − c+3s
4 or H = 0.

When L = − c+3s
4 , if c = −3s, i.e. L = 0, that is, M is semi-parallel. If c 6= −3s, so L 6= 0,

then from (16), (10) and (11) we have

−g(Y, Z)AϕXW + g(X, Z)AϕYW − g(Y, W)AϕX Z + g(X, W)AϕY Z = 0. (20)
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Thus by using (20) and Proposition 1, we have σ = 0, i.e. M is totally geodesic.

Now, assuming that L 6= − c+3s
4 , then from (19), H = 0. By substituting (18) into (16) we

obtain

(
L −

c + 3s

4

){
− g(Y, Z)AϕXW + g(X, Z)AϕYW − g(Y, W)AϕX Z + g(X, W)AϕY Z

}
= 0.

Putting X = W = ei and summing over i = 1, . . . , n, as H = 0 we get L = c+3s
4 or AϕYZ = 0

(i.e. M is totally geodesic), for all Y, Z ∈ TM.

On the other hand, if we suppose that L = c+3s
4 . Notice that in [12] the authors gave a

necessary condition for a minimal pseudo-parallel integral submanifold Mn (of an S-space

form M̃2n+s(c)) to be totally geodesic is Ln − 1
4 [n(c + 3s) + c − s] ≥ 0. Hence, in this case M

is totally geodesic. Conversely, if M is semi-parallel or totally geodesic obviously it is trivial

pseudo-parallel.

From (19), we easily prove the following result.

Corollary 1. Let Mn (n > 1) be a Legendrian normally flat submanifold of an S-space form

M̃2n+s(c), with c 6= −3s. If Mn is semi-parallel then it is minimal.

In [12], the authors have shown that for a minimal Legendrian submanifold Mn of an

S-space form M̃2n+s(c), if it is semi-parallel and satisfies n(c + 3s) + c − s ≤ 0, then it is

totally geodesic. Therefore, by Corollary 1 we have the following assertion.

Corollary 2. Let Mn (n > 1) be a Legendrian normally flat submanifold of an S-space form

M̃2n+s(c), with c < −3s. If Mn is semi-parallel then it is totally geodesic.

Theorem 2 ([4]). Let Mm (m ≤ n) be a minimal anti-invariant submanifold of an S-space form

M̃2n+s(c) normal to the structure vector fields. Then the following assertions are equivalent.

1. Mm is totally geodesic.

2. Mm is of constant curvature k = c+3s
4 .

3. The Ricci tensor S = 1
4(m − 1)(c + 3s)g.

4. The scalar curvature ρ = 1
4 m(m − 1)(c + 3s).

By the hypothesis of flat normal connection, Mn is of constant curvature k = c+3s
4 , in view

of Corollary 1 we get

Corollary 3. Let Mn be a Legendrian normally flat submanifold of an S-space form M̃2n+s(c)

with c 6= −3s. If Mn is semi-parallel, then the following statements are equivalent.

1. Mn is totally geodesic.

2. The Ricci tensor S = 1
4(n − 1)(c + 3s)g.

3. The scalar curvature ρ = 1
4 n(n − 1)(c + 3s).
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It is well known that the equation of Ricci shows that the triviality of the normal connection

of M into space form M̃n+d(c) (and more generally, for submanifolds in a locally conformally

flat space) is equivalent to the fact that all second fundamental tensors are mutually commute,

or that all second fundamental tensors are mutually diagonalizable (see [6]).

So, for any p ∈ M there exists a local orthogonal frame {ei} of Mn such that all the second

fundamental form tensors are mutually diagonalizable, then

AN(ei) = λN
i ei

for any unit normal vector field N and λN
i are the principle curvatures of M with respect to N.

Next, we assume that Mn is a Legendrian normally flat submanifold of an S-space form

M̃2n+s(c), with c 6= −3s. In this case, from (10) and (15) we have

R(X, Y)Z = R̃(X, Y)Z =
c + 3s

4

{
g(Y, Z)X − g(X, Z)Y

}
(21)

for any vector X, Y, Z ∈ TM. For an orthonormal frame {e1, . . . , en} of M, the Ricci tensor S of

M is defined by S(X, Y) = ∑
n
i=1 g(R(ei , X)Y, ei). So, from (21) we have

S(X, Y) =
c + 3s

4
(n − 1)g(X, Y). (22)

Putting B = S, T = σ in (2) and (3), we get

Q(S, σ)(Z, W; X, Y) =− S(Y, Z)σ(X, W) + S(X, Z)σ(Y, W)

− S(Y, W)σ(Z, X) + S(X, W)σ(Z, Y).
(23)

From (14), (5), (11) and (23), the condition (4) turns into

−AϕWR(X, Y)Z − AϕZR(X, Y)W = L
{
− S(Y, Z)AϕXW + S(X, Z)AϕYW

− S(Y, W)AϕX Z + S(X, W)AϕY Z
}

.
(24)

So, a Legendrian normally flat submanifold Mn of an S-space form M̃2n+s(c) is Ricci general-

ized pseudo-parallel if and only if the equation (24) holds.

Theorem 3. Let M̃2n+s(c), c 6= −3s, be an S-space form of constant ϕ-sectional curvature c

and Mn be a Legendrian normally flat submanifold of M̃2n+s(c). If Mn is Ricci generalized

pseudo-parallel, then either Mn is minimal or L = 1
n−1 .

Proof. Let M be a Ricci generalized pseudo-parallel, since M is a Legendrian normally flat

submanifold, we choose an orthonormal basis of T⊥
p M of the form {en+1 = ϕe1, . . . , e2n =

ϕen, e2n+1 = ξ1, . . . , e2n+s = ξs} and for any i, j ∈ {1, . . . , n}, α ∈ {1, . . . , s} denote λ
n+j
i by the

principle curvatures with respect to the normal vector field ϕej, i.e.

Aϕej
(ei) = λ

n+j
i ei . (25)

In this case the mean curvature vector can be written as

Hn+j =
1

n

n

∑
i=1

λ
n+j
i .
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In view of (24), setting X = ei, Y = ej, Z = ek, W = el we obtain

−Aϕel
R(ei, ej)ek − Aϕek

R(ei, ej)el = L
{
− S(ej, ek)Aϕei

el + S(ei, ek)Aϕel j
el

− S(ej, el)Aϕei
ek + S(ei, el)Aϕej

ek

}
.

(26)

Substituting (22), (25) into (26) and for any em ∈ TM, we get

−λn+l
m Rijkm − λn+k

m Rijlm =
c + 3s

4
(n − 1)L

{
− λn+i

l δjkδlm + λ
n+j
l δikδlm

− λn+i
k δjlδkm + λ

n+j
k δilδkm

}
,

(27)

where g(ei, ej) = δij and 1 ≤ i, j, k, l, m ≤ n. Since,

Rijkm =
c + 3s

4

{
δjkδim − δikδjm

}
, Rijlm =

c + 3s

4

{
δjlδim − δilδjm

}
, (28)

by the use of (28), equation (27) turns into

−λn+l
m (δjkδim − δikδjm)− λn+k

m (δjlδim − δilδjm)

= (n − 1)L
{
− λn+i

l δjkδlm + λ
n+j
l δikδlm − λn+i

k δjlδkm + λ
n+j
k δilδkm

}
.

Hence, if we put k = i, m = j, we get

−λn+l
j (δij − δiiδjj)− λ

n+j
j δij(δjlδij − δilδjj)

= (n − 1)L
{
− λn+l

l δilδijδjl + λn+l
l δjlδii − λn+i

i δjlδij + λn+i
i δijδil

}
,

(29)

because it follows from (11) that

λ
n+j
i = g(Aϕej

ei, ei) = g(Aϕei
ei, ej) = λn+i

i δij .

Summing over i = 1, . . . , n and j = 1, . . . , n in (29) respectively, we have

Hn+l =
n − 1

n
Lλn+l

l . (30)

On the other hand, by substituting (21) and (22) in (24), we obtain

[(n − 1)L − 1]{−g(Y, Z)AϕXW + g(X, Z)AϕYW − g(Y, W)AϕX Z + g(X, W)AϕY Z} = 0. (31)

By setting X = ei, Y = ej, Z = ek, W = el and substituting (25) into (31), for any em ∈ TM we

get

[(n − 1)L − 1]{λ
n+j
l δikδlm − λn+i

l δjkδlm + λ
n+j
k δilδkm − λn+i

k δjlδkm} = 0.

In the same way, we put k = i, m = j in the above equation

[(n − 1)L − 1]{λn+l
l δiiδjl − λn+l

l δilδijδjl + λn+i
i δijδil − λn+i

i δjlδij} = 0. (32)

Furthermore, by summing over i = 1, . . . , n and j = 1, . . . , n in (32), we obtain

[(n − 1)L − 1](n − 1)λn+l
l = 0.

As n > 1 we have

[(n − 1)L − 1]λn+l
l = 0. (33)

Comparing (30) and (33), we deduce that if L = 0 then Hn+l = 0 for any 1 ≤ l ≤ n, i.e. M is

minimal. If L 6= 0, then [(n−1)L−1]n
(n−1)L

Hn+l = 0, which implies Hn+l = 0 or L = 1
n−1 .
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In the article, using the modified Levy method, a Green’s function for a class of ultraparabolic
equations of high order with an arbitrary number of parabolic degeneration groups is constructed.
The modified Levy method is developed for high-order Kolmogorov equations with coefficients
depending on all variables, while the frozen point, which is a parametrix, is chosen so that an
exponential estimate of the fundamental solution and its derivatives is conveniently used.
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INTRODUCTION

A fundamental solution of the inverse Cauchy problem for degenerate parabolic equations
of second-order variables with smooth coefficients was constructed first by M. Weber [10]. Un-
der the same conditions on the coefficients, a fundamental solution of the Cauchy problem
was constructed in [5], in the case of Holder coefficients for second-order equations with two
degenerate groups. The Levy method was modified in [7], and in Banach spaces in [8], for the
second order Kolmogorov systems with one degeneracy group [4]. The Kolmogorov equation
of high order has features that make it easy to use the Levy method for constructing a fun-
damental solution. The parametric method was applied to a degenerate parabolic equation
of high order with one group of parabolic degeneracy variables in [2, 3, 9] and with two de-
generate groups in [1] and with four degenerate groups for Kolmogorov type systems of the
second order in [6]. We modified the Levy method with respect to the properties of a fun-
damental solution of high-order Kolmogorov-type equations with coefficients dependent only
on t, in particular a selected point which is a parameter so that an exponential estimate of the
fundamental solution and its derivatives is conveniently used.

1 DESIGNATION, TASK STATEMENT AND MAIN RESULTS

Let us denote by nj ∈ N, j = 1, p, n1 ≥ n2 ≥ · · · ≥ np, n0 =
p

∑
j=1

nj, x =
(

x1, . . . , xp

)

,

xj = (xj1, . . . , xjnj
), xj ∈ Rnj , x ∈ Rn0 , ξ =

(

ξ1, . . . , ξp

)

, ξ j = (ξ j1, . . . , ξ jnj
), ξ j ∈ Rnj , ξ ∈ Rn0 ,
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x(j) =
(

x1, . . . , xj

)

∈ R

j

∑
k=1

nk
, ξ(j) =

(

ξ1, . . . , ξ j

)

∈ R

j

∑
k=1

nk
, j = 2, p. Γ(α) is Euler’s gamma

function and B(a, b) is Euler’s beta function.

xj − ξ j +
j−1

∑
k=1

xk
(t − τ)j−k

(j − k)!
=

(

xj1 − ξ j1 +
j−1

∑
k=1

xk1
(t − τ)j−k

(j − k)!
, .., xjnj

− ξ jnj
+

j−1

∑
k=1

xknj

(t − τ)j−k

(j − k)!

)

,

ρ1 (t, x1, τ, ξ1) =
(

|x1 − ξ1| (t − τ)−
1
2b

)q
, q =

2b

2b − 1
, b ∈ N,

ρj

(

t, x(j), τ, ξ(j)
)

=

(∣

∣

∣

∣

∣

xj − ξ j +
j−1

∑
k=1

xk
(t − τ)j−k

(j − k)!

∣

∣

∣

∣

∣

(t − τ)−(j−1+ 1
2b)

)q

, j = 2, p,

ξ(t, τ) =

(

ξ1, ξ2 − ξ1 (t − τ), . . . , ξp +
p−1

∑
k=1

(−1)p−kξk

(t − τ)p−k

(p − k)!

)

.

We investigate the Cauchy problem for the equation

∂tu (t, x)−
p−1

∑
j=1

nj+1

∑
µ=1

xjµ∂xj+1µu (t, x) = ∑
|k|≤2b

ak (t, x)Dk
x1

u (t, x) , (1)

with the initial condition

u (t, x)

∣

∣

∣

∣ t = τ
= u0 (x) , 0 ≤ τ ≤ t ≤ T, (2)

where τ is a fixed number, and operator

∂t − ∑
|k|≤2b

ak (t, x)Dk
x1

, Dk
x1

=
(−1)k∂k1+···+kn1

∂xk1
1 . . . ∂x

kn1
n1

, |k| = k1 + · · ·+ kn1 , (3)

is uniformly parabolic in the sense of Petrovsky in the strip Π[0,T] = (t, x), x ∈ Rn0 , 0 ≤ t ≤ T.
Let us suppose that

1) ak (t, x), ∂xj
ak (t, x), j = 2, p, are continuous and bounded in Π[0,T],

2) there are constants α ∈ (0, 1], r ∈ (0, 1], such that for any x ∈ Rn0 , ξ ∈ Rn0 and t ∈ [0, T]

|ak (t, x)− ak (t, ξ)| ≤ c1

(

|x1 − ξ1|
α +

p

∑
j=2

∣

∣xj − ξ j

∣

∣

)

,

∣

∣

∣
∂xj

ak (t, x)− ∂xj
ak (t, ξ)

∣

∣

∣
≤ c1|x − ξ|r, j = 2, p.

Theorem 1. If conditions 1)–2) are satisfied, then equation (1) has a fundamental solution of
the Cauchy problem (1)–(2) Z(t, x; τ, ξ) at t > τ and the following estimations hold:

∣

∣

∣
∂xj

Z(t, x; τ, ξ)
∣

∣

∣
≤ A(t − τ)

−
p

∑
s=1

2b(s−1)+1
2b (ns+|ms|)

Φ (t, x; τ, ξ) ,

ms = 0, at s 6= j, mj = 1, j = 2, p;

∣

∣∂m1
x1

Z(t, x; τ, ξ)
∣

∣ ≤ Am1(t − τ)
−

n1+|m1|
2b −

p

∑
s=2

2b(s−1)+1
2b ns

Φ (t, x; τ, ξ) ,
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|m1| ≤ 2b, x ∈ Rn0 , ξ ∈ Rn0 , 0 ≤ τ < t ≤ T, where

Φ (t, x; τ, ξ) =
∞

∑
i=1

AsΓ

(

1 +
sα∗

2b

)

Γ

(

α∗

2b

)

Γ−1
(

1 +
α∗ (1 + s)

2b

)

× exp

{

−c0ρ1(t, x1, τ, ξ1)− 2−2spc0

p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

}

,

and positive constants A, Am1 , c0 depend on n0, 2b, c1, α, r, and the constant of parabolicity of
the operator (3) is sup

(t,x)∈Π[0,T]

|ak(t, x)| and α∗ = min(α, r).

Proof. To prove the theorem, we write equation (1) in the form

∂tu (t, x)−
p−1

∑
j=1

nj+1

∑
µ=1

xjµ∂xj+1µu (t, x) = ∑
|k|=2b

ak (t, ξ (t, τ))Dk
x1

u (t, x)

+ ∑
|k|=2b

[ak (t, x)− ak (t, ξ (t, τ))]Dk
x1

u (t, x) + ∑
|k|<2b

ak (t, x)Dk
x1

u (t, x) .
(4)

Let us denote by Z0(t, x; τ, ξ; ξ (t, τ)) the fundamental solution of equation

∂tu (t, x)−
p−1

∑
j=1

nj+1

∑
µ=1

xjµ∂xj+1µu (t, x) = ∑
|k|=2b

ak (t, ξ (t, τ))Dk
x1

u (t, x) . (5)

Fundamental solution Z0(t, x, ; τ, ξ; ξ (t, τ)) of equation (5) is constructed in [5], where ξ is
fixed. For derivatives of Z0(t, x; τ, ξ; ξ (t, τ)) the following inequalities are performed

|∂m
x Z0(t, x; τ, ξ; ξ (t, τ))| ≤ Cm(t − τ)

−
p

∑
s=1

2b(s−1)+1
2b (ns+|ms|)

× exp

{

−c0

(

p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

+ ρ1 (t, x1, τ, ξ1)

)}

,
(6)

where |m| =
p

∑
j=1

∣

∣mj

∣

∣,
∣

∣mj

∣

∣ =
nj

∑
k=1

mjk, t > τ, Cm > 0.

Fundamental solution Z(t, x; τ, ξ) of equation (1) will be sought in the form

Z (t, x; τ, ξ) = Z0 (t, x; τ, ξ; ξ (t, τ)) +
∫ t

τ
dβ
∫

Rn0
Z0(t, x; β, γ; γ (t, β)) ϕ (β, γ; τ, ξ) dγ, (7)

where ϕ (t, x; τ, ξ) is an unknown absolutely integrable on Rn0 function at t > τ.
We substitute (6) into equation (1) with respect to the function ϕ (t, x; τ, ξ), then

ϕ (t, x; τ, ξ) = K (t, x; τ, ξ) +
∫ t

τ
K (t, x; β, γ)ϕ (β, γ; τ, ξ) dγ, (8)

where

K (t, x; τ, ξ) = ∑
|k|=2

(ak (t, x)− ak (t, ξ (t, τ)))Dk
x1

Z0 (t, x; τ, ξ; ξ (t, τ))

+ ∑
|k|<2b

ak (t, x)Dk
x1

Z0 (t, x; τ, ξ; ξ (t, τ)) .
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The solution of equation (8) can be represented by a Neumann series

ϕ (t, x; τ, ξ) =
∞

∑
n=1

Kn (t, x; τ, ξ) , (9)

where

K (t, x; τ, ξ) = K1 (t, x; τ, ξ) ; Kn (t, x; τ, ξ) =
∫ t

τ
dβ

∫

Rn0

K(t, x; β, γ)Kn−1 (β, γ; τ, ξ) dγ. (10)

Let us show the convergence of series (9) and the required estimation of the function for
the Levy method ϕ (t, x; τ, ξ) and its increments.

Using the following lemma, which generalizes Lemma 2 and Lemma 1 in [3] for equation
(1), we can obtain estimates for Kn (t, x; τ, ξ) and K (t, x; τ, ξ).

Lemma 1. For any points (t, x) , (β, ξ) , (τ, y) , 0 ≤ τ < β < t, x ∈ Rn0 , ξ ∈ Rn0 , y ∈ Rn0 ,
b ∈ N, 2b > 2 the following inequality holds

ρ1 (t, x1, β, ξ1) +
p

∑
j=2

ρj

(

t, x(j), β, ξ(j)
)

+ ρ1 (β, ξ1, τ, y1) +
p

∑
j=2

ρj

(

β, ξ(j), τ, y(j)
)

≥ 2−2p

(

p

∑
j=2

ρj

(

t, x(j), τ, y(j)
)

+ ρ1 (t, x1, τ, y1)

)

.

(11)

The proof of Lemma 1 is based on the inequalities

ρp

(

t,x(p), β, ξ(p)
)

+ ρp

(

β, ξ(p), τ, y(p)
)

≥ 2−2
(∣

∣

∣

∣

xp − yp +
p−1

∑
j=1

[

xk(t − β)p−k + ξk(β − τ)p−k
] 1

(p − k)!

∣

∣

∣

∣

(t − τ)−p+1− 1
2b

)q

.
(12)

From (12) we can get

(∣

∣

∣

∣

∣

xp − yp +
p−1

∑
k=1

[

xk(t − β)p−k + ξk(β − τ)p−k
]

((p − k)!)−1

∣

∣

∣

∣

∣

(t − τ)−p+1− 1
2b

)q

≥ 2−2

(∣

∣

∣

∣

∣

xp − yp +
p−1

∑
k=1

[

xk (t − β)p−k + ξk (β − τ)p−k
]

((p − k)!)−1

×
x1((β − τ)p−1 + (t − β)p−1)

(p − 1)!

∣

∣

∣

∣

∣

(t − τ)−p+1− 1
2b

)q

−
np

∑
µ=1

([

|x1µ − ξ1µ|(β − τ)p−1
]

((p − k)!)−1(t − τ)−p+1− 1
2b

)q
.

(13)

Applying (12) to the first part of (13) (p − 2) times, we have

(∣

∣

∣

∣

∣

xp − yp +
p−1

∑
k=1

(xk(t − β)p−k + ξk (β − τ)p−k)((p − k)!)−1

∣

∣

∣

∣

∣

(t − τ)−p+1− 1
2b

)q
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≥ 2−2(p−1)ρp

(

t, x(p), τ, y(p)
)

−
np

∑
µ=1

(

∣

∣xjµ − ξ jµ

∣

∣ (β − τ)p−1) ((p − 1)!)−1 (t − τ)−p+1− 1
2b

)q

−
p−1

∑
j=2

nj

∑
µ=2

2−2(j−1)

(∣

∣

∣

∣

∣

x1µ − ξ1µ +
j−1

∑
k=2

xkµ(t − β)j−k((j − k)!)−1

∣

∣

∣

∣

∣

(β − τ)p−j

(p − j)!
(t − τ)−p+1− 1

2b

)q

.

(14)

Taking into account the inequalities (11)–(14), we get

ρp

(

t, x(p), β, ξ(p)
)

+ ρp

(

β, ξ(p), τ, y(p)
)

≥ 2−2pρp

(

t, x(p), τ, y(p)
)

−
p−1

∑
j=2

np

∑
µ=1

2−2(j−1)

(∣

∣

∣

∣

∣

xjµ − ξ jµ +
j−1

∑
k=2

xkµ (t − β)j−k ((j − k)!)−1

∣

∣

∣

∣

∣

(β − τ)p−j ((p − j)!)−1

× (t − τ)−p+j− 1
2b

)q

− 2−2
np

∑
µ=1

(

∣

∣x1µ − ξ1µ

∣

∣ (β − τ)p−1 ((p − 1)!)−1 (t − τ)−p+1− 1
2b

)q
.

(15)

We will collect all of the terms that contain xp−1 − ξp−1

ρp−1

(

β, x(p−1), β, ξ(p−1)
)

− 2−2(p−1)
np

∑
µ=1

(∣

∣

∣

∣

∣

xp−1µ − ξp−1µ +
p−2

∑
k=1

xk(t − β)p−1−k

×
1

((p − 1 − k)!)

∣

∣

∣

∣

(β − τ) (t − β)−p+1− 1
2b

)q
≥

np−1

∑
µ=np+1

(∣

∣

∣

∣

∣

xp−1µ − ξp−1µ

+
p−2

∑
k=1

xkµ
(t − β)

(p − 1 − k)!

p−1−k
∣

∣

∣

∣

∣

(t − β)−p+3− 1
2b

)q

+
np

∑
µ=1

(

1 − 2−2(p−1)
)

×

(∣

∣

∣

∣

∣

xp−1µ − ξp−1µ +
p−2

∑
k=1

xkµ(t − β)p−1−k((p − 1 − k)!)−1

∣

∣

∣

∣

∣

(t − τ)−p+2− 1
2b

)q

.

(16)

Repeating all inequalities (12), (16) for the terms ρj

(

t, x(j), β, ξ(j)
)

+ ρj

(

β, ξ(j), τ, y(j)
)

,

j = 1, p − 1, and adding their together we have

ρ1 (t, x1, β, ξ1) + ρ1 (β, ξ1, τ, y1) +
p

∑
j=2

(

ρj(t, x( j), β, ξ( j)) + ρj

(

β, ξ(j), τ, y(j)
))

≥ 2−2p

(

p

∑
j=2

ρj

(

t, x(j), τ, y(j)
)

+ ρ1 (t, x1, τ, y1)

)

.

Lemma 2. The following estimations are performed for reproducing kernels:

|Km (t, x; τ, ξ)| ≤ Am
m(t − τ)

−
p

∑
j=1

(1+2b(j−1))nj
2b −1+mα

2b

× exp

{

ρ1 (t, x1, β, ξ1)− 2−2pmc
p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

}

,

(17)

at m ≤ m∗ =

[

p

∑
j=1

((1+2b(j−1))nj+2b)
α

]

+ 1;
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|Km+l (t, x; τ, ξ)| ≤ Am+l
m

l−1

∏
k=0

B

(

α

2b
, 1 +

αk

2b

)

(t − τ)
αl
2b

×exp

{

−cρ1 (t, x1, β, ξ1)− 2−2p(m+l)
p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

}

,

(18)

at m + l > m∗.

From (17), (18) it follows the convergence of a series (9) following for ϕ (t, x; τ, ξ)

|ϕ (t, x; τ, ξ)| ≤ A(t − τ)
−

p

∑
j=1

(1+2b(j−1))nj+2b−α

2b

Φ (t, x; τ, ξ) . (19)

Let us prove the existence of derivatives ∂xj
ϕ (t, x; τ, ξ) , j = 2, p, at t > τ.

Under the assumption 1), there are continuous derivatives ∂xj
K (t, x; τ, ξ) , j = 2, p satisfy-

ing the estimations

∣

∣

∣
∂xj

K (t, x; τ, ξ)
∣

∣

∣
≤ A exp

{

−c

(

p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

+ ρ1 (t, x1, τ, ξ1)

)}

× (t − τ)
−

p

∑
s=1

(2b(s−1)+1)ns
2b −

j−(1−α∗)
2b

, t > τ.

(20)

To prove the existence of derivatives ∂xj
K (t, x; τ, ξ) , j = 2, p, we use the following property of

the fundamental solution of equation (5) with ξ (t, τ) = y, where y is a parameter

∂tu (t, x)−
p−1

∑
j=1

nj+1

∑
µ=1

xjµ∂xj+1µu (t, x) = ∑
|k|≤2b

ak (t, ξ (t, τ))Dk
x1

u (t, x) .

Property 1. If ak (t, y) have continuous bounded derivatives by the parameter y up to the order
r, then there are continuous derivatives by y, ∂s

y∂m
x1

Z
0
(t, x; τ, ξ; y) , s ∈ 0, r, and

∣

∣

∣∂m
x1

∂s
y
Z0(t, x; τ, ξ; y)

∣

∣

∣ ≤ Cmexp

{

−c

(

p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

+ ρ1 (t, x1, τ, ξ1)

)}

× (t − τ)
−

p

∑
j=1

(1+2b(j−1))nj
2b − |m|

2b

.

(21)

Let us consider ∂xpµK (t, x; β, γ) , µ = 1, np. Then

∂xpµK (t, x; β, γ) = ∑
|k|=2b

(∂xpµ ak (t, x)− ∂γpµ ak (t, γ (t, β)))

× Dk
x1

Z0 (t, x; β, γ; γ (t, β)) + ∑
|k|=2b

(∂γpµ ak (t, γ (t, β)))Dk
x1

Z0 (t, x; β, γ; γ (t, β))

+ ∑
|k|=2b

(ak (t, x)− ak (t, γ (t, β)))∂xpµ Dk
x1

Z0 (t, x; β, γ; γ (t, β))

+ ∑
|k|<2b

∂xpµ ak (t, x) Dk
x1

Z0 (t, x; β, γ; γ (t, β)) .

(22)
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Let us rewrite (22) by a convenient form for applications

∂xpµK (t, x; β, γ) = ∑
|k|=2b

(∂xpµ ak (t, x)− ∂γpµ ak (t, γ (t, β)))

× Dk
x1

Z0 (t, x; β, γ; γ (t, β))− ∂γpµ



 ∑
|k|=2b

(ak (t, x)− ak (t, γ (t, β))





× Dk
x1

Z0 (t, x; β, γ; γ (t, β)) + ∑
|k|=2b

(ak (t, x)− ak (t, γ (t, β))

× Dk
x1

∂
γpµ

Dk
x1

Z0 (t, x; β, γ; γ (t, β))
∣

∣

γ=γ + ∑
|k|<2b

(ak (t, x))
′

xpµ
Dk

x1
Z0 (t, x; β, γ; γ (t, β))

+ ∑
|k|<2b

ak∂γpµ
Dk

x1
Z0 (t, x; β, γ; γ (t, β))

∣

∣

γ=γ − ∑
|k|<2b

ak (t, x)Dk
x1

∂γpµ Z0 (t, x; β, γ; γ (t, β)) ,

(23)

where µ = 1, np, γ =
(

γ1, . . . , γp−1, γp
)

. Using the images (23), estimates (6) and (21) and

integrating by parts of the terms with ∂γpµ , we can get ∂xpµK2 (t, x; τ, ξ) = lim
h→0

∫ t−h
0 dβ

∫

Rn0 ∂xpµ

K (t, x; β, γ) K (β, γ; τ, ξ) dγ.
From the estimations of reproducing kernel (18), estimations of derivatives of the ker-

nel (20) and Lemma 1, we obtain
∣

∣

∣
∂xpµK2 (t, x; τ, ξ)

∣

∣

∣
≤ A2 exp

{

− c2 (1 − ε)
(

ρ1 (t, x1, τ, ξ1)

+2−2p
p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

+ ρ1(t, x1, τ, ξ1)
)}

(t − τ)
−

p

∑
j=1

(1+2b(j−1))nj
2b −p−(1−α∗)/2b

at t > τ. By

the method of mathematical induction we can prove the existence ∂xpµKm (t, x; τ, ξ) for any m

and evaluation
∣

∣

∣
∂xpµKm(t, x; τ, ξ)

∣

∣

∣
≤ Am(ε) exp {−c2(1 − εm)(ρ1(t, x1, τ, ξ1) + 2−mp

p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

+ ρ1 (t, x1, τ, ξ1)} (t − τ)
−

p

∑
j=1

(1+2b(j−1))nj
2b −p−(1−αm)/2b

, µ = 1, np.

(24)

Taking into account the estimation (24), we can estimate the series
∞

∑
m=1

∂xpµKm (t, x; τ, ξ) by a

converging series:
∣

∣

∣

∣

∣

∞

∑
m=1

∂xpµ Km (t, x; τ, ξ)

∣

∣

∣

∣

∣

≤
l

∑
m=1

Am(t − τ)
−

p

∑
j=1

(1+2b(j−1))nj
2b −p−(1−α∗m)/2b

× exp

{

−c2 (1 − mε)

(

cmρ1 (t, x1, τ, ξ1) + 2−2mp(ρ1 (t, x1, τ, ξ1) +
p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

)}

+
∞

∑
k=1

A0

(

Γ

(

α∗

2b

)

FA0

)k

(t − τ)
α∗k
2b Γ−1

(

1 +
kα∗

2b

)

× exp

{

−c5

(

c4l+k+1ρ1 (t, x1, τ, ξ1) +2−2p(l+k−1)(ρ1 (t, x1, τ, ξ1) +
p

∑
j=2

ρj

(

t, x(j), τ, ξ(j)
)

)}

,

(25)

where l=

[

p

∑
j=1

(1+2b(j−1))nj+2bp+1
α∗

]

+ 1, and A0, F are positive constants,

F =

(

2
∫ ∞

0
exp

{

−
α2

2

}

dα

)n0

.
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The series
∞

∑
m=1

∂xp Km (t, x; τ, ξ) at 0 < δ ≤ t− τ ≤ T is convergent uniformly and absolutely.

Then ∂xp ϕ (t, x; τ, ξ) =
∞

∑
m=1

∂xp K (t, x; τ, ξ) and ∂xp Km (t, x; τ, ξ) are continuous, then in the

domain of convergence and ∂xp ϕ (t, x; τ, ξ) continuous function. Inequality (25) will be written
in the form

∣

∣

∣
∂xp ϕ (t, x; τ, ξ)

∣

∣

∣
≤ A(t − τ)

−
p

∑
j=1

(1+2b(j−1))nj
2b −p−(1−α∗)/2b

Φ (t, x; τ, ξ) .

Let us consider ∂xjµ
K (t, x; β, γ), j = 2, p − 1, µ = 1, nj. For µ = nj−1 + 1, nj formula (23) is

true with the corresponding replacing p by j. For µ = 1, nj−1, ∂xjµ
K (t, x; β, γ) can be written in

the form

∂xjµ
K (t, x; β, γ) = ∑

|k|=2b

[

∂xjµ
ak (t, x)− ∂yjµ

ak (t, y)
∣

∣

∣y=γ(t,β)

]

Dk
x1

Z0 (t, x; β, γ; γ (t, β))

− ∂γjµ



 ∑
|k|=2b

[ak(t, x)− ak (t, γ (t, β))] Dk
x1

Z0 (t, x; β, γ; γ (t, β))





+ ∑
|k|=2b

[ak (t, x)− ak (t, γ (t, β))] ∂γjµ
Dk

x1
Z0 (t, x; β, γ; γ (t, β))

∣

∣

γ=γ

+
p−j

∑
l=1

∑
|k|=2b

[ak (t, x)− ak (t, γ (t, β))] ∂γj+l,µ Dk
x1

Z0 (t, x; β, γ; γ (t, β))
∣

∣

γ=γ

× (−1)l (t − τ)p−l−l

(p − j − l)! ∑
|k|=2b

∂yj+l µ
a

k
(t, y)

∣

∣

∣y=γ(t,β) (−1)l (t − β)p−j−l

(p − j − l)!

× Dk
x1

∂γjµ
Z0 (t, x; β, γ; γ (t, β)) + ∑

|k|<2b

(ak (t, x))
′

xjµ
Dk

x1
Z0 (t, x; β, γ; γ (t, β))

+ ∑
|k|<2b

∂γjµ
ak (t, x)Dk

x1
Z0 (t, x; β, γ; γ (t, β))

+ ∑
|k|<2b

ak (t, x) Dk
x1

∂γ jµ
Z0 (t, x; β, γ; γ (t, β))

∣

∣

γ=γ

+ (−1)l (t − β)p−j−l

(p − j − l)!

p−j

∑
l=1

∑
|k|=2b

ak (t, x)Dk
x1

∂γj+l
Z0 (t, x; β, γ; γ (t, β)) .

(26)

Kernels have the highest singularity at the variable xp. Also, using (26) we have the exis-
tence of ∂xj

ϕ (t, x; τ, ξ) , j = 2, p − 1 and the following estimations

∣

∣

∣∂xj
ϕ (t, x; τ, ξ)

∣

∣

∣ ≤ A(t − τ)
−

p

∑
s=1

(1+2b(j−1))ns−α∗+1
2b −j

Φ (t, x; τ, ξ) , j = 2, p − 1.

Using arguments like in [1] we can get

∆hx1
ϕ (t, x; τ, ξ) = ∆hx1

K (t, x; τ, ξ) +
∫ t

τ
dβ
∫

Rn0
∆hx1

K (t, x; β, γ)K (β, γ; τ, ξ) dγ.
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Applying the technique developed for parabolic systems in [6], and the evaluation of re-
producing kernels, we obtain

∣

∣∆hx1
ϕ (t, x; τ, ξ)

∣

∣ ≤ |hx1 |
α1(t − τ)

−
p

∑
s=1

(1+2b(s−1))ns−(1−α2)
2b −j

Φ (t, x; τ, ξ) ,

α1 > 0, α2 > 0, α1 + α1 = α.

The existence and evaluation of ∂k
x1

Z (t, x; τ, ξ) , |k| ≤ 2b, at t > τ, are established for both
of the cases of parabolic equations and systems in [6]. The theorem is proved.
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Малицька Г.П., Буртняк I.В. Побудова фундаментального розв’язку одного класу вироджених пара-

болiчних рiвнянь високого порядку // Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 79–87.

У статтi модифiкованим методом Левi побудовано функцiю Ґрiна для одного класу уль-
трапараболiчних рiвнянь високого порядку з довiльною кiлькiстю груп виродження парабо-
лiчностi. Модифiкований метод Левi розроблено для рiвнянь Колмогорова високого порядку
з коефiцiєнтами залежними вiд усiх змiнних, при цьому заморожена точка, яка є параметри-
ксом, пiдiбрана так, щоб зручно використовувалася експоненцiальна оцiнка фундаменталь-
ного розв’язку та його похiдних.

Ключовi слова i фрази: виродженi параболiчнi рiвняння, модифiкований метод Левi, рiвня-
ння Колмогорова, фундаментальний розв’язок, параметрикс.
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ISOMORPHIC SPECTRUM AND ISOMORPHIC LENGTH OF A BANACH SPACE

We prove that, given any ordinal δ < ω2, there exists a transfinite δ-sequence of separable Banach

spaces (Xα)α<δ such that Xα embeds isomorphically into Xβ and contains no subspace isomorphic

to Xβ for all α < β < δ. All these spaces are subspaces of the Banach space Ep =
(⊕∞

n=1 ℓp
)

2
, where

1 ≤ p < 2. Moreover, assuming Martin’s axiom, we prove the same for all ordinals δ of continuum

cardinality.
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INTRODUCTION

We use the standard terminology of Banach spaces theory, see [1]. Let X and Y be Banach

spaces. We write X →֒ Y if X embeds isomorphically into Y, and X ≃ Y if X and Y are

isomorphic.

Isomorphic spectrum

By the isomorphic spectrum of an infinite dimensional Banach space X we mean the set

sp (X) of all isomorphic types of infinite dimensional subspaces of X.

Consider the following equivalence relation on the set B of separable infinite dimensional

Banach spaces. We say that Banach spaces X, Y ∈ B are equispectral and write X
sp
∼ Y provided

that X →֒ Y and X →֒ Y (notice that Banach [2, p. 193] used a different terminology for

equispectral Banach spaces X and Y, he said that X and Y have equal linear dimension and used

the notation diml X = diml Y). It is immediate that X
sp
∼ Y if and only if sp (X) = sp (Y). It is

a well known fact that X
sp
∼ Y does not imply that X ≃ Y, however X ≃ Y easily implies that

X
sp
∼ Y. For instance, L1 ⊕ ℓ2

sp
∼ L1, however L1 ⊕ ℓ2 6≃ L1.

Observe that if X ∈ {c0, ℓp : 1 ≤ p < ∞} and Y is any infinite dimensional subspace of X

then X
sp
∼ Y.

Denote by B̃ the set of all equivalence classes in B modulo the relation
sp
∼, and for every

X ∈ B by X̃ we denote the equivalence class containing X.

УДК 517.984
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Given Banach spaces X and Y, we write X ≺ Y to express that X →֒ Y, while Y 6 →֒ X. It is

easy to see that, for every Xi, Yi ∈ B, i = 1, 2 with X1
sp
∼ X2 and Y1

sp
∼ Y2 the relation X1 ≺ Y1 is

equivalent to X2 ≺ Y2. So, the same relation ≺ is well defined on B̃ by setting X ≺ Y provided

X ≺ Y for some (or, equivalently, any) representatives X ∈ X and Y ∈ Y .

Observe that ≺ is a strict partial relation on B̃, and that X ≺ Y is equivalent to the strict

inclusion sp (X) ⊂ sp (Y).

By the solution of the homogeneous Banach space problem obtained by a combination of

results of Gowers [5,6] and Komorowski–Tomczak-Jaegermann [9,10], ℓ2 is the unique element

X of B with sp (X) = {X}. Although the spaces c0 and ℓp with 1 ≤ p < ∞, p 6= 2 have more

than one-element isomorphic spectrum, all of them are equispectral, as mentioned above. So,

c̃0 and ℓ̃p with 1 ≤ p < ∞ are minimal elements of B̃. On the other hand, it is easy to see that

C̃[0, 1] is the unique maximal element of B̃, which is, moreover, the greatest element of B̃.

Set-theoretical preliminaries

We use the standard set-theoretical terminology and notation of [7], where the reader can

also find necessary background. By c we denote the cardinality of continuum. We say that A

meets B provided that A ∩ B 6= ∅.

Let (M,<) be a partially ordered set. Following [11], the length of M is defined to be the

supremum of ordinals α which are isomorphic to a subset of M, and is denoted by L(M). For

instance, L(α) = α for every ordinal α and L(R) = ω1.

Let ωα be any infinite cardinal. We endow the power-set P(ωα) with the partial order

A < B if and only if |A \ B| < ℵα = |B \ A|.

Let us recall the statement of Martin’s axiom (MA). A subset D of a partially ordered set P

is said to be dense if for every p ∈ P there is d ∈ D such that d ≤ p. A subset Q ⊆ P is said to be

consistent provided for every finite subset F ⊆ Q there exists p ∈ P such that p ≤ f for every

f ∈ F. Elements p, q of P are said to be consistent if the two-element subset {p, q} is consistent.

A subset Q ⊆ P consisting of more than two elements is said to be pairwise inconsistent if every

two distinct elements of Q are not consistent. P is said to have the countable chain condition

(CCC in short) if every pairwise inconsistent subset of P is at most countable.

Martin’s axiom. Let P be a partially ordered set possessing the CCC. Let M be a collection

of dense subsets of P of cardinality < c. Then there exists a consistent subset Q ⊆ P which

meets every element of M.

We remark that MA is independent of the usual axioms ZFC. It follows from the Contin-

uum Hypothesis (CH) and sometimes allows to extend results, previously established under

the assumption of CH.

We need the following combinatorial lemma proved in [11].

Lemma 1. (i) For every regular cardinal ωδ one has L(P(ωδ)) ≥ ωδ+2.

(ii) Let ωc be the cardinal of cardinality c. Then (MA) L(P(ω0)) = ωc+1.

Here (MA) in item (ii) means that the proof of (ii) uses Martin’s axiom.
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Isomorphic length of a Banach space

Let X be a separable infinite dimensional Banach space. By the isomorphic length of X we

mean the length of the subset B̃X of the partially ordered set B̃ consisting of all equivalence

classes containing all infinite dimensional subspaces of X: IL(X) = L(B̃X). Since by the above

B̃ℓp
and B̃c0 are singletons, we have that IL(ℓp) = IL(c0) = 1 for every p ∈ [1,+∞). In the next

section, we show that for Ep =
(⊕∞

n=1 ℓp

)
2

with 1 ≤ p < 2 one has IL(Ep) ≥ ω2, and Martin’s

axiom implies that IL(Ep) = ωc+1. Of course, the same could be said about the universal

Banach space C[0, 1], which has the maximal possible length.

1 TRANSFINITE ≺-INCREASING SEQUENCES OF SPACES

Theorem 1. Let 1 ≤ p < 2 and Ep =
(⊕∞

n=1 ℓp
)

2
. Then

1) for every ordinal γ of cardinality ℵ1 there is a transfinite sequence (Xα)α<γ of subspaces

of Ep such that Xα ≺ Xβ for all α < β < γ,

2) (MA) for every ordinal γ of cardinality c there is a transfinite sequence (Xα)α<γ of sub-

spaces of Ep such that Xα ≺ Xβ for all α < β < γ.

Proof. Let (pn)∞
n=1 be any sequence on numbers with p < p1 < p2 < . . . and limn→∞ pn = 2.

Lemma 2. For every finite dimensional Banach space X and every n ∈ N there exists m ∈ N

such that for every into isomorphism T : ℓm
pn

→ X ⊕2

(⊕
j>n ℓpj

)
2

one has ‖T‖‖T−1‖ ≥ n.

Proof of Lemma 2. Recall the standard definition (see, for example, [12, p. 54]): a Banach space Z

is said to have Rademacher type p, 1 ≤ p ≤ 2 (or just type p) if there exists a constant Tp(Z) < ∞

such that for every k ∈ N and for every x1, . . . , xk ∈ Z,

(∫ 1

0

∥∥∥∥∥
k

∑
i=1

ri(t)xi

∥∥∥∥∥

p

Z

dt

)1/p

≤ Tp(Z)

(
k

∑
i=1

||xi||
p
Z

)1/p

, (1)

where {ri} are Rademacher functions.

The Khinchin-Kahane inequality (see e.g. [12, p. 57]) implies that we can replace the value
(∫ 1

0

∥∥∥∑
k
i=1 ri(t)xi

∥∥∥
p

Z
dt
)1/p

with

(∫ 1
0

∥∥∥∑
k
i=1 ri(t)xi

∥∥∥
2

Z
dt

)1/2

in the left-hand side of inequality

(1), it will not change the class of spaces of type p, but may change the constant Tp(Z), let us

denote this new constant Tp,2(Z).

Now we shall check (recall that p ≤ 2) that the fact that spaces {Zn}∞
n=1 have type p with

uniformly bounded constants {Tp,2(Zn)}∞
n=1, then Z :=

(⊕∞
n=1 Zn

)
2

also has type p with con-

stant Tp,2(Z) bounded from above by T := supn Tp,2(Zn).
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So let zi = {zi,n}
∞
n=1 ∈

(⊕∞
n=1 Zn

)
2
, so zi,n ∈ Zn. We have



∫ 1

0

∥∥∥∥∥
k

∑
i=1

ri(t)zi

∥∥∥∥∥

2

Z

dt




1/2

=



∫ 1

0

∞

∑
n=1

∥∥∥∥∥
k

∑
i=1

ri(t)zi,n

∥∥∥∥∥

2

Zn

dt




1/2

≤ T




∞

∑
n=1

(
k

∑
i=1

‖zi,n‖
p
Zn

)2/p



1/2

≤ T




k

∑
i=1

(
∞

∑
n=1

‖zi,n‖
2
Zn

)p/2



1/p

= T

(
k

∑
i=1

‖zi‖
p
Z

)1/p

,

where in the first line we use the definition of Z as a direct sum; in the second line we use the

fact that Zn have type p with constant T; in the third line we use the triangle inequality for the

space ℓ2/p (recall that 2/p ≥ 1), and in the last line we use the definition of Z again.

Now we return to the proof of Lemma 2. Since X is finite-dimensional, it has type pn+1

with sufficiently large constant. We need the well-known fact that ℓp has type p if p ∈ [1, 2]

(see e.g. [12, p. 63]) and an easy-to-see fact (consider the unit vectors) that ℓp does not have a

larger type.

We conclude that X ⊕2

(⊕
j>n ℓpj

)
2

has type pn+1 with some constant C, but ℓpn does not

have type pn+1. Therefore the type constant of ℓm
pn

for type pn+1 and sufficiently large m is

> Cn. It is easy to see that this implies that for every into isomorphism T : ℓm
pn

→ X ⊕2(⊕
j>n ℓpj

)
2

one has ‖T‖‖T−1‖ ≥ n.

We continue the proof of Theorem 1. Using Lemma 2, construct recurrently a sequence

(mn)n∈N of positive integers so that

for every n ∈ N and every into isomorphism

U : ℓmn
pn

→
(n−1⊕

i=1

ℓ
mi
pi

)

2
⊕2

(⊕

j>n

ℓpj

)

2

one has ‖U‖‖U−1‖ ≥ n.

(2)

It is known that for every ε > 0, every m ∈ N and every q ∈ (p, 2] there exists a subspace F

of ℓp which is (1 + ε)-isomorphic to ℓm
q (see [8] for tight estimates of the parameters involved,

the result itself follows from [4]). Using this fact for ε = 1, m = mn and q = pn, for every

n ∈ N we choose a subspace Fn of n-th summand of Ep (which is isometric to ℓp) which is

2-isomorphic to ℓ
mn
pn , say, by means of an isomorphism Jn : Fn → ℓ

mn
pn with ‖Jn‖‖J−1

n ‖ ≤ 2.

Fix any ordinal γ of cardinality ℵ1 (or c, respectively). Using items (i) and (ii) of Lemma 1,

respectively, choose a transfinite sequence (Nα)α<γ of subsets of N so that |Nα \ Nβ| < ℵ0 =

|Nβ \ Nα| for all α < β < γ. For each α < γ set

Xα =
(⊕

n∈Nα

Fn

)

2
.

We consider each Xα as a subspace of Ep. Let us show that (Xα)α<γ has the desired properties.

Fix any α < β < γ. Set N′ = Nα \ Nβ, N′′ = Nα ∩ Nβ, N′′′ = Nβ \ Nα. Then Nα = N′ ⊔ N′′,

Nβ = N′′ ⊔ N′′′, |N′| < ℵ0 = |N′′′|. Hence,
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Xα =
(⊕

n∈N′

Fn

)

2
⊕2

(⊕

n∈N′′

Fn

)

2
, Xβ =

(⊕

n∈N′′

Fn

)

2
⊕2

( ⊕

n∈N′′′

Fn

)

2
.

Since |N′| < ℵ0 = |N′′′|, we have that

dim
(⊕

n∈N′

Fn

)

2
< ∞ = dim

( ⊕

n∈N′′′

Fn

)

2

and hence, Xα embeds isomorphically into Xβ.

Prove that Xβ does not embed isomorphically into Xα. Assume, on the contrary, that there is

an into isomorphism T : Xβ → Xα. Take any n0 ∈ N′′′ and consider the restriction Tn0 = T|Fn0

of T to Fn0 .

Observe that

Xα ⊆
(n0−1⊕

i=1

Fi

)

2
⊕2

(⊕

j>n0

ℓpj

)

2
.

Let

S :
(n−1⊕

i=1

Fi

)

2
⊕2

(⊕

j>n

ℓpj

)

2
→
(n−1⊕

i=1

ℓ
mi
pi

)

2
⊕2

(⊕

j>n

ℓpj

)

2

be an operator which sends
(
( fi)

n0−1
i=1 , g

)
to
(
(Ji fi)

n0−1
i=1 , g

)
. Since Ji are isomorphisms with

‖Ji‖‖J−1
i ‖ ≤ 2, so is S with ‖S‖‖S−1‖ ≤ 2. Hence,

‖T‖‖T−1‖ ≥ ‖T0‖‖T−1
0 ‖ ≥

1

2
‖S ◦ T0‖‖(S ◦ T0)

−1‖
by(2)

≥
1

2
n0.

This is impossible for large enough n0 ∈ N′′′.

The next corollary follows from Theorem 1 and the observation that a separable infinite di-

mensional Banach space X has only continuum many closed subspaces, and hence,

IL(X) ≤ ωc+1.

Corollary 1. (MA) IL(Ep) = IL
(
C[0, 1]

)
= ωc+1.

2 REMARKS AND AN OPEN PROBLEM

It would be interesting to find the isomorphic length of the classical spaces Lp = Lp[0, 1].

Problem 1. Evaluate IL(Lp) for 1 ≤ p < ∞, p 6= 2.

The embeddability of Lr into Lp for 1 ≤ p < r ≤ 2 [4] together with impossibility of the

embedding Lp into Lr for the same values of p, r [2, p. 206] imply the inequality IL(Lp) ≥ ω1

for 1 ≤ p < 2, because every countable ordinal α < ω1 is isomorphic to a subset of any interval

(a, b) in the reverse order. The same inequality IL(Lp) ≥ ω1 for all values 1 ≤ p < ∞, p 6= 2 is

a corollary of the following result.

Theorem 2 (Bourgain, Rosenthal, Schechtman, [3]). Let 1 < p < ∞, p 6= 2. There exists a

family (X
p
α )α<ω1 of complemented subspaces of Lp so that for all α < β < ω1 one has X

p
α ≺ X

p
β .

Moreover, if B is a separable Banach space such that X
p
α →֒ B for all α < ω1 then Lp →֒ B.
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Observe that Theorem 2 gives a strictly ≺-increasing ω1-sequence of subspaces of Lp for

1 < p < 2 directly. The same holds also for p = 1 due to the fact ( [4]) that Lr (1 < r < 2)

embeds isometrically into L1. On the other hand, the argument based on embeddability/non-

embeddability of Lr into Lp does not provide an uncountable sequence. However, both argu-

ments provide the same estimate for IL(Lp) if 1 < p < 2.

ACKNOWLEDGEMENTS

The authors are grateful to Piotr Koszmider for valuable remarks.

REFERENCES

[1] Albiac F., Kalton N.J. Topics in Banach Space Theory. Graduate Texts in Math. Springer, New York, 2006.
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1932.

[3] Bourgain J., Rosenthal H.P, Schechtman G. An ordinal Lp-index for Banach spaces, with applications to comple-

mented subspaces of Lp. Ann. of Math. (2) 1981 114 (2), 193–228. doi:10.2307/1971293

[4] Bretagnolle J., Dacunha-Castelle D., Krivine J.-L. Lois stables et espaces Lp. Ann. Inst. Henri Poincaré, Sec. B.
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пiдпросторiв, iзоморфних до Xβ для всiх α < β < δ. Всi цi простори є пiдпросторами бана-

хового простору Ep =
(⊕∞

n=1 ℓp
)

2
, де 1 ≤ p < 2. Бiльш того, у припущеннi аксiоми Мартiна

доведено дане твердження для всiх ординалiв δ потужностi континуум.
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RELATED FIXED POINT RESULTS VIA C∗-CLASS FUNCTIONS ON

C∗-ALGEBRA-VALUED Gb-METRIC SPACES

We initiate the concept of C∗-algebra-valued Gb-metric spaces. We study some basic properties

of such spaces and then prove some fixed point theorems for Banach and Kannan types via C∗-class

functions. Also, some nontrivial examples are presented to ensure the effectiveness and applicabil-

ity of the obtained results.

Key words and phrases: fixed point, C∗-class function, C∗-algebra-valued Gb-metric space.

1 Department of Mathematics, Islamic Azad University, Hidaj, Iran
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1 INTRODUCTION

One of the main directions to obtain possible generalizations of fixed point results is the

introduction of new types of spaces. For instance, Ma Z., Jiang, L. and Sun, H. in [21] initiated

the notion of C∗-algebra-valued metric spaces, where the set of nonnegative reals was replaced

by the set of positive elements of a unital C∗-algebra. Going in the same direction, many papers

appeared. See, for example, [16, 17, 20, 22, 23, 34, 36].

In [19], the concept of a C∗-algebra-valued modular space has been introduced. It general-

ized the concept of a modular space. Now, let T : Xρ → Xρ be a self-mapping on a complete

C∗-algebra-valued modular space such that there are c ∈ A and λ, σ ∈ R+ with ‖c‖ < 1 and

λ > σ so that

ρ(λ(Tµ − Tν)) � c∗ρ(σ(µ − ν))c, ∀µ, ν ∈ Xρ.

Then T admits a unique fixed point in Xρ ([19]).

Bakhtin [10] considered the class of b-metric spaces. Later, many works such as [5–7, 11,

12, 30] have been provided. In [9], the concept of complex valued metric spaces was initiated.

Rao et al. [32] initiated the concept of complex valued b-metric spaces. Mustafa and Sims

[24] considered the class of G-metric spaces, where the considered metric depends on three

variables. For other related papers, see [1, 2, 8, 18, 27, 29, 31, 35].

The notion of Gb-metric spaces was presented by Aghajani et al. [3] (see also [25]). Later,

Ege [14] introduced the notion of complex valued Gb-metric spaces and proved the related

Banach and Kannan type fixed point theorems. In [15], Ege proved a common fixed point

theorem via α-series. For other results on Gb-metric spaces, see [26, 28, 33].
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2010 Mathematics Subject Classification: 47H10, 54H25, 46J10.
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Very recently, Ansari et al. [4] defined the concept of complex valued C-class functions.

Also, Moeini et al. [22] presented the notion of C∗-class functions.

In this presented work, we introduce the C∗-algebra-valued Gb-metric spaces which gener-

alize the complex valued Gb-metric spaces. By using C∗-class functions, we establish Banach

and Kannan type fixed point theorems in C∗-algebra-valued Gb-metric spaces. To support our

results, some nontrivial examples are also given.

Definition 1 ([3]). Let E be a nonempty set and s ≥ 1. If the function G : E × E × E → R+

verifies:

(Gb1) G(µ, η, ξ) = 0 if µ = η = ξ;

(Gb2) 0 < G(µ, µ, η) for all µ, η ∈ E with µ 6= η;

(Gb3) G(µ, µ, η) ≤ G(µ, η, ξ) for all µ, η, ξ ∈ E with η 6= ξ;

(Gb4) G(µ, η, ξ) = G(p{µ, η, ξ}), where p is a permutation of µ, η, ξ;

(Gb5) G(µ, η, ξ) ≤ s(G(µ, a, a) + G(a, η, ξ)) for all µ, η, ξ, a ∈ E,

then G is said to be a Gb-metric and (E, G) is called a Gb-metric space.

Mention that any G-metric space is a Gb-metric space with s = 1.

Proposition 1 ([3]). Let (E, G) be a Gb-metric space. For any µ, η, ξ, a ∈ E, we have

(i) if G(µ, η, ξ) = 0, then µ = η = ξ;

(ii) G(µ, η, ξ) ≤ s(G(µ, µ, η) + G(µ, µ, ξ));

(iii) G(µ, η, η) ≤ 2sG(η, µ, µ);

(iv) G(µ, η, ξ) ≤ s(G(µ, a, ξ) + G(a, η, ξ)).

Definition 2 ([3]). Let (E, G) be a Gb-metric space and {µn} be a sequence in E.

(i) {µn} is Gb-convergent to µ if for each ε > 0, there is p0 ∈ N so that G(µ, µp, µq) < ε,

p, q ≥ p0.

(ii) {µn} is said to be Gb-Cauchy if for every ε > 0, there is p0 ∈ N so that G(µp, µq, µi) < ε,

p, q, i ≥ p0.

(iii) If each Gb-Cauchy sequence Gb-converges in (E, G), then (E, G) is called Gb-complete.

Proposition 2 ([3]). Let E be a Gb-metric space. We have the following equivalences:

(1) {µn} Gb-converges to µ;

(2) G(µp, µp, µ) → 0 as p → ∞;

(3) G(µp, µ, µ) → 0 as p → ∞.
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A Banach algebra A (over the field of complex numbers C) is called a C∗-algebra if there

exists an involution ∗ in A (i.e., an operator ∗ : A → A verifying a∗∗ = a for every a ∈ A) so

that, for all c, d ∈ A and η, ν ∈ C, we have:

(i) (ηc + νd)∗ = η̄c∗ + ν̄d∗;

(ii) (cd)∗ = d∗c∗;

(iii) ‖c∗c‖ = ‖c‖2.

By (iii), we have ‖c‖ = ‖c∗‖ for each c ∈ A. also, (A, ∗) is said to be a unital ∗-algebra if

the identity element 1A is contained in A. An element c ∈ A is called positive if c∗ = c and

its spectrum σ(c) = {λ ∈ R : λ1A − c is noninvertible} ⊂ R+. Denote by A+ the family of

positive elements in A. Define the partial order ’�’ on A as

d � c iff d − c ∈ A+.

If c ∈ A is positive, we write c � 0A, where 0A is the zero element of A. Each positive element

a of a C∗-algebra A has a unique positive square root. Denote by A a unital C∗-algebra with

identity element 1A. Moreover, A+ = {c ∈ A : c � 0A} and (c∗c)
1
2 = |c|.

Lemma 1 ([13]). Let A be a unital C∗-algebra (1A is its unit).

(1) For each z ∈ A+, z � 1A iff ‖z‖ ≤ 1.

(2) If c ∈ A+ with ‖c‖ <
1
2 , then 1A − c is invertible and ‖c(1A − c)−1‖ < 1.

(3) Let c, d ∈ A so that c, d � 0A and cd = dc. We have cd � 0A.

(4) Put A
′ = {c ∈ A : cd = dc, ∀d ∈ A}. Let c ∈ A

′, d, e ∈ A with d � e � 0A and

1A − c ∈ A
′ is an invertible operator. We have

(1A − c)−1d � (1A − c)−1e.

Note that if 0A � c, d, we have not 0A � cd in a C∗-algebra. Indeed, take the C∗-algebra

M2(C) with c =

(

3 2

2 3

)

, d =

(

1 − 2

−2 4

)

, then cd =

(

−1 2

−4 8

)

. Clearly c, d are in

M2(C)+, while cd is not.

The notion of complex C-class functions has been initiated by Ansari et al. [4].

Definition 3. Define S = {z ∈ C : z � 0}. Let F : S2 → C be a continuous function. Such F is

said to be a complex C-class function if for all p, q ∈ S

(1) F(p, q) � p;

(2) F(p, q) = p implies that either p = 0 or q = 0.

For examples of these functions, see [4].
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2 MAIN RESULTS

First, we initiate the concept of C∗-algebra-valued Gb-metric spaces.

Definition 4. Let A be a unital C∗-algebra and E be a nonempty set. Let s ∈ A be such that

‖s‖ ≥ 1. A mapping G : E × E × E → A+ is said to be a C∗-algebra-valued Gb-metric on E if

(CGb1) G(µ, η, ξ) = 0A if µ = η = ξ;

(CGb2) 0A ≺ G(µ, µ, η) for all µ, η ∈ E with µ 6= η;

(CGb3) G(µ, µ, η) � G(µ, η, ξ) for all µ, η, ξ ∈ E with η 6= ξ;

(CGb4) G(µ, η, ξ) = G(p{µ, η, ξ}), where p is a permutation of µ, η, ξ;

(CGb5) G(µ, η, ξ) � s(G(µ, a, a) + G(a, η, ξ)) for all µ, η, ξ, a ∈ E.

The triplet (E, A, G) is called a C∗-algebra-valued Gb-metric space.

Remark 1. By taking A = R, a C∗-algebra-valued Gb-metric space is a (real) Gb-metric space.

As in Proposition 1, we have the following.

Proposition 3. Let (E, A, G) be a C∗-algebra-valued Gb-metric space. For all µ, η, ξ ∈ E, we

have

(i) G(µ, η, ξ) � s(G(µ, µ, η) + G(µ, µ, ξ));

(ii) G(µ, η, η) � 2sG(η, µ, µ).

Definition 5. Let (E, A, G) be a C∗-algebra-valued Gb-metric space and {µn} be a sequence

in E.

(i) {µn} is Gb-convergent to x ∈ E with respect to the algebra A iff for each a ∈ A with

0A ≺ a, there is k ∈ N so that G(x, µp, µq) ≺ a for all p, q ≥ k.

(ii) {µn} is called Gb-Cauchy with respect to A if for each a ∈ A with 0A ≺ a, there is k ∈ N

so that G(µp, µq, µi) ≺ a, p, q, i ≥ k.

(iii) If each Gb-Cauchy sequence with respect to A Gb-converges with respect to A, then

(E, A, G) is said to be complete.

Proposition 4. Let (E, A, G) be a C∗-algebra-valued Gb-metric space and {µn} be a sequence

in E. Then {µn} is Gb-convergent to µ with respect to A iff ‖G(µ, µn , µm)‖ → 0 as n, m → ∞.

Proof. (⇒) Let {µn} be Gb-convergent to µ with respect to A and let a = ε.1A (where ε > 0).

Then 0A ≺ a ∈ A and there is an integer k so that G(µ, µn, µm) ≺ a for all n, m ≥ k. Thus,

‖G(µ, µn , µm)‖ < ‖a‖ = ε and so ‖G(µ, µn , µm)‖ → 0 as n, m → ∞.

(⇐) Suppose that ‖G(µ, µn , µm)‖ → 0 as n, m → ∞. For a ∈ A with 0A ≺ a, there is δ > 0

so that for z ∈ A,

‖z‖ < δ ⇒ z ≺ a.

For such a δ > 0, there is an integer k so that ‖G(x, µn, µm)‖ < δ, i.e., G(µ, µn, µm) ≺ a for all

n, m ≥ k, i.e., {µn} is Gb-convergent to µ with respect to A.
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From Proposition 3 and Proposition 4, we state the following.

Theorem 1. Let (E, A, G) be a C∗-algebra-valued Gb-metric space. Let {µn} be a sequence in

E and µ ∈ E. We have equivalence of the following:

(1) {µn} is Gb-convergent to µ with respect to A;

(2) ‖G(µp, µp, µ)‖ → 0 when p → ∞;

(3) ‖G(µp, µ, µ)‖ → 0 when p → ∞;

(4) ‖G(µq , µp, µ)‖ → 0 when p, q → ∞.

Proof. (1) ⇒ (2). It follows from Proposition 4.

(2) ⇒ (3). From Proposition 3, one writes

G(µn, µ, µ) � s(G(µn , µn, µ) + G(µn, µn, µ)).

Using (2), we get

‖G(µn , µ, µ)‖ → 0 as n → ∞.

(3) ⇒ (4). Using (CGb4) and Proposition 3,

G(µm, µn, µ) = G(µn, µ, µm) � s(G(µm, µ, µ) + G(µ, µn, µ)) = s(G(µn , µ, µ) + G(µ, µ, µm)).

Then ‖G(µm , µn, µ)‖ → 0 as m, n → ∞.

(4) ⇒ (1). By (CGb3) and (CGb4), we have

G(µ, µn, µn) = G(µn, µ, µn) � s(G(µn, µ, µm) + G(µm, µm, µn))

� sG(µn, µ, µm) + 2s2G(µm, µn, µ)).

Using the equivalence in Proposition 4, ‖G(µm , µn, µ)‖ → 0 as m, n → ∞. Therefore,

‖G(µ, µn , µn)‖ → 0 as n → ∞.

Theorem 2. Let (E, A, G) be a C∗-algebra-valued Gb-metric space and {µn} be a sequence in E.

Then {µn} is Gb-Cauchy with respect to A if and only if ‖G(µn, µm, µp)‖ → 0 as n, m, p → ∞.

Proof. (⇒) Let b = ε · 1A and ε > 0 be a real number. Then 0A ≺ b ∈ A and so there is an

integer k such that G(µn, µm, µl) ≺ b for all n, m, l ≥ k. Thus, ‖G(µn , µm, µl)‖ < ‖b‖ = ε for all

n, m, l ≥ k.

(⇐) Assume that ‖G(µn, µm, µl)‖ → 0 as n, m, l → ∞. For b ∈ A with 0A ≺ a, there is

γ > 0 so that for z ∈ A

‖z‖ < γ implies z ≺ b.

For such a γ, there is an integer k so that ‖G(µn , µm, µl)‖ < γ for all n, m, l ≥ k. That is,

G(µn, µm, µl) ≺ b for all n, m ≥ k. Then {µn} is Gb-Cauchy with respect to A.

Example 1. Let E = R and A = M2(R) the set of all 2 × 2 matrices. Consider the usual

operations: scalar multiplication, addition and matrix multiplication. For A ∈ A, consider
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‖A‖ =
(

∑
2
i,j=1 |aij|

2
)

1
2
. The operator ∗ : A → A given as A∗ = A, is a convolution on A.

Thus A becomes a unital C∗-algebra. For

a =

(

a11 a12

a21 a22

)

, b =

(

b11 b12

b21 b22

)

∈ A = M2(R),

consider a � b iff (aij − bij) ≤ 0, for all i, j = 1, 2.

Define d(x, y) = diag(|x − y|, |x − y|) with ”diag” is a diagonal matrix and x, y ∈ R. Sup-

pose Dm(d)(x, y, z) = max{d(x, y), d(y, z), d(x, z)} for all x, y, z ∈ E. Define G : E × E × E →

A+ by

G(x, y, z) =
(

Dm(d)(x, y, z)
)p

,

where p > 1 is an integer. It can be proved that (E, A, G) is a C∗-algebra-valued Gb-metric

space with s = 2p−1.1A.

To define the set of C∗-class functions (which contains complex valued C-class functions

of [4]), it suffices to use the family of elements of a unital C∗-algebra instead of the set of

complex numbers.

Definition 6 ([22]). Let A be a unital C∗-algebra and F : A+ × A+ → A be a continuous

function. Such F is said to be a C∗-class function if for all c, d ∈ A+:

(1) F(c, d) � c;

(2) F(c, d) = c implies that either c = 0A or d = 0A.

Let C∗ be the set of C∗-class functions.

Remark 2. If we replace A by C in Definition 6, the class C∗ corresponds to the set of complex

C-class functions.

Example 2. Consider A = M2(R) as defined in Example 1.

(1) Given F∗ : A+ × A+ → A as F∗(c, d) = c − d, that is,

F∗

(

c =

(

c11 c12

c21 c22

)

, d =

(

d11 d12

d21 d22

))

=

(

c11 − d11 c12 − d12

c21 − d21 c22 − d22

)

for all cp,q, dp,q ∈ R+, (p, q ∈ {1, 2}). Then F∗ ∈ C∗.

(2) Given F∗ : A+ × A+ → A as

F∗

((

c11 c12

c21 c22

)

,

(

d11 d12

d21 d22

))

= λ

(

c11 c12

c21 c22

)

for all cp,q, dp,q ∈ R+ with (p, q ∈ {1, 2}), where λ ∈ (0, 1). Then F∗ ∈ C∗.

Example 3. Let E = L∞(M) and U = L2(M), where M is a Lebesgue measurable set. Let B(U)

be the family of bounded linear operators on a Hilbert space H. Note that B(U) is a C∗-algebra

(with the usual operator norm). Given F∗ : B(U)+ × B(U)+ → B(U) as

F∗(P, Q) = P − ψ(P),

where ψ : B(U)+ → B(U)+ is continuous so that ψ(P) = 0B(U) iff P = 0B(U). Then F∗ ∈ C∗.
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Let Σ be the set of the functions σ : A+ → A+ so that:

(a) σ is continuous;

(b) σ(t) ≻ 0A iff t ≻ 0A and σ(0A) = 0A.

Our first result is as follows.

Theorem 3. Let (E, A, G) be a complete C∗-algebra-valued Gb-metric space with s = (b.1A) ≻

1A and T : E → E be so that

σ((bε.1A)G(Tµ, Tη, Tξ)) � F∗
(

σ(G(µ, η, ξ)), ϑ(G(µ, η, ξ))
)

, (1)

for all µ, η, ξ ∈ E, where F∗ ∈ C∗, σ, ϑ ∈ Σ and ε ∈ (1, ∞). Then T possesses a unique fixed

point.

Proof. Let T verify (1). Consider µ0 ∈ E and define µn = Tnµ0. By (1), one writes

σ((bε.1A)G(µn, µn+1, µn+1)) � F∗
(

σ(G(µn−1, µn, µn)), ϑ(G(µn−1, µn, µn))
)

.

We have

G(µn, µn+1, µn+1) � (bε.1A)−1G(µn−1, µn, µn), for all n ≥ 1. (2)

The inequality (2) implies that

G(µn, µn+1, µn+1) � (bε.1A)−2G(µn−2, µn−1, µn−1), for all n ≥ 2.

If the same process is continued, we get

G(µn, µn+1, µn+1) � (bε.1A)−nG(µ0, µ1, µ1), for all n ≥ 0. (3)

Using (CGb5) together with (3) (n, m ∈ N with n < m),

G(µn, µm, µm) � (b.1A)[G(µn , µn+1, µn+1) + G(µn+1, µm, µm)]

� (b.1A)[G(µn , µn+1, µn+1)] + (b.1A)2[G(µn+1, µn+2, µn+2) + G(µn+2, µm, µm)]

� (b.1A)[G(µn , µn+1, µn+1)] + (b.1A)2[G(µn+1, µn+2, µn+2)] + . . .

+ (b.1A)m−n[G(µm−1, µm, µm)]

� (b.1A)((b.1A)ε)−nG(µ0, µ1, µ1) + (b.1A)2((b.1A)ε)−n−1G(µ0, µ1, µ1) + . . .

+ (b.1A)m−n((b.1A)ε)−m+1G(µ0, µ1, µ1)

� [(b.1A)((b.1A)ε)−n + (b.1A)2((b.1A)ε)−n−1 + . . . + (b.1A)m−n((b.1A)ε)−m+1]G(µ0, µ1, µ1)

� (b.1A)((b.1A)ε)−n[1A + (((b.1A)ε−1)−1)1 + . . . + (((b.1A)ε−1)−1)m−n−1]G(µ0, µ1, µ1)

= (b.1A)((b.1A)ε)−nG(µ0, µ1, µ1)
m−n

∑
k=1

((sε−1)−1)k−1.

Therefore, we have

‖G(µn , µm, µm)‖ ≤ ‖b‖‖(bε)−n‖‖G(µ0, µ1, µ1)‖
m−n

∑
k=1

‖((bε−1)−1)‖k−1

≤ ‖b‖

(

1

‖bε‖

)n

‖G(µ0, µ1, µ1)‖
‖bε−1‖

‖bε−1‖ − 1
.
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If we take n → ∞, then

‖b‖

(

1

‖bε‖

)n

‖G(µ0, µ1, µ1)‖
‖bε−1‖

‖bε−1‖ − 1
→ 0,

because ε ∈ (1,+∞) and ‖b‖ > 1. We deduce that

lim
n,m→∞

‖G(µn , µm, µm)‖ = 0. (4)

From Proposition 3, we have

G(µn, µm, µl) � G(µn, µm, µm) + G(µm, µm, µl),

for n, m, l ∈ N. Consequently,

‖G(µn, µm, µl)‖ ≤ ‖G(µn, µm, µm)‖+ ‖G(µm , µm, µl)‖.

By (4), we conclude that ‖G(µn , µm, µl)‖ → 0 as n, m, l → ∞. Thus, {µn} is Gb-Cauchy with

respect to A. The completeness of (E, A, G) implies that there is some u ∈ E so that {µn} is

Gb-convergent to u with respect to A.

We claim that Tu = u. Assume on the contrary u 6= Tu. By (1), we have

σ((bε.1A)G(µn+1, Tu, Tu)) � F∗
(

σ(G(µn , u, u)), ϑ(G(µn, u, u))
)

, for all n ≥ 0.

Therefore,

G(µn+1, Tu, Tu) � (bε.1A)−1G(µn, u, u), for all n ≥ 2,

and so

‖G(µn+1, Tu, Tu)‖ ≤
1

‖bε‖
‖G(µn , u, u)‖.

Taking n → ∞, we obtain limn→∞ ‖G(µn+1, Tu, Tu)‖ = 0. Thus, {µn} Gb-converges to Tu. By

uniqueness of limit u = Tu. Let ζ 6= u be another fixed point of T. From (1),

σ((bε.1A)G(u, ζ, ζ)) = σ((bε.1A)G(Tu, Tζ, Tζ)) � F∗
(

σ(G(u, ζ, ζ)), ϑ(G(u, ζ, ζ))
)

,

so

G(u, ζ, ζ) � (bε.1A)−1G(u, ζ, ζ).

Thus,

‖G(u, ζ, ζ)‖ ≤
1

‖bε‖
‖G(u, ζ, ζ)‖.

We conclude that ‖G(u, ζ, ζ)‖ ≤ 0 because 1
‖bε‖

∈ [0, 1
‖b‖

) ⊂ [0, 1). Therefore, u is the unique

fixed point of T.

Taking F∗(s, t) = k∗sk (where k ∈ A with ‖k‖ < 1 and s ∈ A+) in Theorem 3, we have the

following.

Corollary 1. Let (E, A, G) be a complete C∗-algebra-valued Gb-metric space with s = (b.1A) ≻

1A. Let T : E → E be so that

σ((bε.1A)G(Tµ, Tη, Tξ)) � k∗σ(G(µ, η, ξ))k, (5)

for all µ, η, ξ ∈ E, where k ∈ A with ‖k‖ < 1, σ ∈ Σ, ε ∈ (1,+∞). Then T admits a unique

fixed point.
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Example 4. Let E = R. Consider A = M2(R) as defined in Example 1. Let G : E × E × E →

M2(R) be defined as

G(µ, η, ξ) = diag
(1

9
(|µ − η|+ |η − ξ|+ |ξ − µ|)2,

1

9
(|µ − η|+ |η − ξ|+ |ξ − µ|)2

)

=





1
9(|µ − η|+ |η − ξ|+ |ξ − µ|)2 0

0 1
9(|µ − η|+ |η − ξ|+ |ξ − µ|)2





for all µ, η, ξ ∈ E. Then (E, M2(R), G) is a complete C∗-algebra-valued Gb-metric space with

coefficient

s =

(

2 0

0 2

)

= 2

(

1 0

0 1

)

= (2.1A).

Given T : E → E as Tµ = µ
3ε for all µ ∈ E, where ε ∈ (1,+∞). Take σ : A+ → A+ as σ(t) = t.

For all µ, η, ξ ∈ E,

σ((2ε.1A)G(Tµ, Tη, Tξ)) = σ

(

(2ε.1A)G

(

µ

3ε
,

η

3ε
,

ξ

3ε

))

= σ

((

2ε

9ε
.1A

)

G(µ, η, ξ)

)

= σ





(

2ε

9ε 0

0 2ε

9ε

)





1
9(|µ − η|+ |η − ξ|+ |ξ − µ|)2 0

0 1
9(|µ − η|+ |η − ξ|+ |ξ − µ|)2









=

(

2ε

9ε 0

0 2ε

9ε

)





1
9(|µ − η|+ |η − ξ|+ |ξ − µ|)2 0

0 1
9(|µ − η|+ |η − ξ|+ |ξ − µ|)2





� k∗σ(G(µ, η, ξ))k,

where k =





√

2ε

9ε 0

0
√

2ε

9ε



, ‖k‖ < 1, ε ∈ (1,+∞). The inequality (5) holds. From Corollary 1,

µ = 0 is the unique fixed point of T in E.

A related Kannan type fixed point theorem is stated as follows.

Theorem 4. Let (E, A, G) be a complete C∗-algebra-valued Gb-metric space. Let T : E → E

verifies for all µ, η ∈ E,

σ(G(Tµ, Tη, Tη)) � F∗
(

σ(m(µ, η)), ϑ(m(µ, η))
)

, (6)

where F∗ ∈ C∗, σ, ϑ ∈ Σ, and

m(µ, η) = b(G(µ, Tµ, Tµ) + G(η, Tη, Tη)),

where b ∈ A
′
+ and ‖b‖ <

1
2 . Then T possesses a unique fixed point.
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Proof. Assume that b 6= 0A. Then b ∈ A′
+, and so b(G(µ, Tµ, Tµ) + G(η, Tη, Tη)) is also a

positive element. Let µ0 be in E. Take µn+1 = Tµn = Tn+1µ0 for all n ≥ 0. We claim that

{µn} is a Gb-Cauchy sequence with respect to A. In case of µn = µn+1 for some n, µn is a fixed

point of T. Therefore, assume that µn 6= µn+1 for all n ≥ 0. Choose G(µn, µn+1, µn+1) = Gn. It

follows from (6) that

σ(G(µn , µn+1, µn+1)) = σ(G(Tµn−1, Tµn, Tµn))

� F∗
(

σ(b(G(µn−1, Tµn−1, Tµn−1) + G(µn, Tµn, Tµn))),

ϑ(b(G(µn−1, Tµn−1, Tµn−1) + G(µn, Tµn, Tµn)))
)

� F∗
(

σ(b(G(µn−1, µn, µn) + G(µn, µn+1, µn+1))),

ϑ(b(G(µn−1, µn, µn) + G(µn, µn+1, µn+1)))
)

� σ(b(G(µn−1, µn, µn) + G(µn, µn+1, µn+1))).

Hence,

G(µn, µn+1, µn+1) � b(G(µn−1, µn, µn) + G(µn, µn+1, µn+1)),

and thus

G(µn, µn+1, µn+1) � (1A − b)−1bG(µn−1, µn, µn) = tG(µn−1, µn, µn),

where t = (1A − b)−1b. Inductively, we conclude that

G(µn, µn+1, µn+1) � tG(µn−1, µn, µn) � t2G(µn−2, µn−1, µn−1) � . . . � tnG(µ0, µ1, µ1)

= tnG0.

Since |b| < 1
2 , we have ‖t‖ < 1. Hence

lim
n→∞

‖G(µn, µn+1, µn+1)‖ = 0.

and so

lim
n→∞

G(µn, µn+1, µn+1) = 0A.

Now,

σ(G(µn , µm, µm)) = σ(G(Tµn−1, Tµm−1, Tµm−1))

� F∗

(

σ

(

G(µn−1, Tµn−1, Tµn−1) + G(µm−1, Tµm−1, Tµm−1)

2

)

,

ϑ

(

G(µn−1, Tµn−1, Tµn−1) + G(µm−1, Tµm−1, Tµm−1)

2

))

� F∗

(

σ

(

G(µn−1, µn, µn) + G(µm−1, µm, µm)

2

)

,

ϑ

(

G(µn−1, µn, µn) + G(µm−1, µm, µm)

2

))

� σ

(

G(µn−1, µn, µn) + G(µm−1, µm, µm)

2

)

→ σ(0A).
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This shows that {µn} is Gb-Cauchy with respect to A. Since E is complete, there is u ∈ E so

that µn → u. We have

σ(G(Tu, µn+1, µn+1)) = σ(G(Tµn−1, Tµn, Tµn))

� F∗

(

σ

(

G(u, Tu, Tu) + G(µn, Tµn, Tµn)

2

)

,

ϑ

(

G(u, Tu, Tu) + G(µn, Tµn, Tµn)

2

))

� F∗

(

σ

(

G(u, Tu, Tu) + G(µn, µn+1, µn+1)

2

)

,

ϑ

(

G(u, Tu, Tu) + G(µn, µn+1, µn+1)

2

))

.

Letting n → ∞, we get

σ(G(Tu, u, u)) � F∗
(

σ(G(Tu, u, u)), ϑ(G(Tu, u, u))
)

.

That is, σ(G(Tu, u, u))=F∗
(

σ(G(Tu, u, u)), ϑ(G(Tu, u, u))
)

. So,

σ(G(Tu, u, u)) = 0A or ϑ(G(Tu, u, u)) = 0A.

That is, G(Tu, u, u) = 0A, i.e., u = Tu.

Let v be in E so that v = Tv. We have

σ(G(v, u, u)) = σ(G(Tv, Tu, Tu))

� F∗

(

σ

(

G(v, Tv, Tv) + G(u, Tu, Tu)

2

)

, ϑ

(

G(v, Tv, Tv) + G(u, Tu, Tu)

2

))

= F∗

(

σ

(

G(u, u, u) + G(v, v, v)

2

)

, ϑ

(

G(u, u, u) + G(v, v, v)

2

))

= F∗
(

σ(0A), ϑ(0A)
)

� σ(0A) = 0A,

which implies that u = v.

If we consider F∗(s, t) = s − t (for s, t ∈ A+) in Theorem 4, we get the following.

Corollary 2. Let (E, G) be a complete C∗-algebra-valued Gb-metric space. Let T : E → E be so

that

σ(G(Tµ, Tη, Tη)) � σ(m(µ, η))− ϑ(m(µ, η)),

for all µ, η ∈ E, where σ, ϑ ∈ Σ and

m(µ, η) =
G(µ, Tµ, Tµ) + G(η, Tη, Tη)

2
.

Then T admits a unique fixed point.
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Запропоновано концепцiю C∗-алгеброзначних Gb-метричних просторiв. Дослiджено деякi

основнi властивостi таких просторiв i доведено деякi теореми про нерухому точку типу Банаха

i Каннана для функцiй класу C∗. Також наведено деякi нетривiальнi приклади, щоб показати

ефективнiсть i застосовнiсть отриманих результатiв.

Ключовi слова i фрази: нерухома точка, функцiя класу C∗, C∗-алгеброзначний Gb-метричний

простiр.
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A NOTE ON APPROXIMATION OF CONTINUOUS FUNCTIONS ON NORMED

SPACES

Let X be a real separable normed space X admitting a separating polynomial. We prove that each

continuous function from a subset A of X to a real Banach space can be uniformly approximated

by restrictions to A of functions, which are analytic on open subsets of X. Also we prove that each

continuous function to a complex Banach space from a complex separable normed space, admitting

a separating ∗-polynomial, can be uniformly approximated by ∗-analytic functions.

Key words and phrases: normed space, continuous function, analytic function, ∗-analytic function,
uniform approximation, separating polynomial.
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The first known result on uniform approximation of continuous functions was obtained by

Weierstrass in 1885. Namely, he showed that any continuous real-valued function on a com-

pact subset K of a finitely dimensional real Euclidean space X can be uniformly approximated

by restrictions on K of polynomials on X. For a compact subset K of a finitely dimensional

complex Euclidean space X holds a counterpart of Stone-Weierstrass’ theorem, according to

which any continuous complex-valued function on K can be approximated by elements of any

algebra, containing restrictions on K of polynomials on X and their conjugated functions. A

general direction of investigations is to try to extend these results to topological linear spaces.

Most of the obtained results concern separable Banach spaces, although in the paper [4] the

authors obtained partial positive results for separable Fréchet spaces. A negative result be-

longs to Nemirovskii and Semenov, who in [7] built a continuous real-valued function on the

unit ball K of the real space ℓ2, which cannot be uniformly approximated by restrictions onto

K of polynomials on ℓ2. This result showed that in order to uniformly approximate continu-

ous functions on Banach spaces we need a bigger class of functions than polynomials. The

following fundamental result was obtained by Kurzweil [3].

Theorem 1. Let X be any separable real Banach space that admits a separating polynomial, G

be any open subset of X, and F be any continuous map from G to any real Banach space Y.

Then for any ε > 0 there exists an analytic map H from G to Y such that ‖F(x) − H(x)‖ < ε

for all x ∈ G.

Separating polynomials were introduced in [3] and are considered in reviews [2] and [6]. In

order to define them and to obtain a counterpart of Kurzweil’s Theorem for a complex Banach

space X, in paper [5] were introduced notions, which we adapt below for complex normed

spaces X and Y.
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A map Bkm from Xk+m to Y is a map of type (k, m) if Bkm(x1, . . . , xk, xk+1, . . . , xk+m) is a

nonzero map, which is k-linear with respect to xi, 1 ≤ i ≤ k, and m-antilinear with respect to

xk+j, 1 ≤ j ≤ m.

Definition 1. A map Bn : Xn → Y is ∗-n-linear if

Bn(x1, . . . , xk, xk+1, . . . , xk+m) = ∑
k+m=n

ckmBkm(x1, . . . , xk, xk+1, . . . , xk+m),

where for each k and m such that k + m = n, Bkm is a map of type (k, m) and ckm is either 0 or

1, and at least one of ckm is non-zero.

Definition 2. A map Fn : X → Y is called an n-homogeneous ∗-polynomial if there exists a

∗-n-linear map Bn : Xn → Y such that Fn(x) = Bn(x, . . . , x) for all x ∈ X. Remark that F0 is a

constant map.

Definition 3. A map F : X → Y is a ∗-polynomial of degree j, if

F =
j

∑
n=0

Fn,

where Fn is an n-homogeneous continuous ∗-polynomial for each n and Fj 6= 0.

Definition 4. A map H : X → Y is ∗-analytic if every point x ∈ X has a neighborhood V such

that

H(x) =
∞

∑
n=0

Fn(x),

where for each n we have that Fn is an n-homogeneous continuous ∗-polynomial and the series
∞

∑
n=0

Fn(x) converges in V uniformly with respect to the norm of the space Y.

Definition 5. Let X be a complex (resp. real) normed space. A ∗-polynomial (resp. polyno-

mial) P : X → C (resp. to R) is called a separating ∗-polynomial (resp. polynomial) if P(0) = 0

and inf
‖x‖=1

P(x) > 0.

Denote by H̃(X, Y) the normed space of ∗-analytic functions from X to Y.

Theorem 2 ( [5]). Let X be any separable complex Banach space that admits a separating

∗-polynomial, Y be any complex Banach space, and F : X → Y be any continuous map. Then

for any ε > 0 there exists a map H ∈ H̃(X, Y) such that ‖F(x)− H(x)‖ < ε for all x ∈ X.

The aim of the present paper is to generalize Theorems 1 and 2 to normed spaces. To this

end we need the following technical result.

Lemma 1. If a real normed space X admits a separating polynomial q then its completion X̂

admits a separating polynomial too.

Proof. Let q = ∑
i∈I

qi be a sum of homogeneous polynomials qi on the space X. For each i ∈ I

there exists a polylinear form hi : Xni → R such that qi(x) = hi(x, . . . , x) for each x ∈ X.

Since hi is a Lipschitz function on Xni , by [1, Theorem 4.3.17], it admits a continuous extension
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ĥi on the space X̂ni , which is polylinear by the polylinearity of hi. The map q̂i : X̂ → R

defined as q̂i(x) = ĥi(x, . . . , x) for each x ∈ X̂ is an extension of the map qi. Then the map

q̂ = ∑
i∈I

q̂i is a continuous polynomial extension of the map q onto the space X. It is easy

to show that the unit sphere S of the space X is dense in the unit sphere Ŝ of the space X̂.

Therefore inf
x∈Ŝ

q̂(x) = inf
x∈S

q(x) > 0, so q̂ is a separating polynomial for the space X̂.

Theorem 3. Let X be a separable real normed space that admits a separating polynomial, Y be

a real Banach space, A ⊂ X, f : A → Y be a continuous function, and ε > 0. Then there are an

open set Aε ⊃ A of X and an analytic function fε : Aε → Y such that ‖ f (x) − fε(x)‖ < ε for all

x ∈ A.

Proof. Let X̂ be a completion of X. We build a cover of the set A by open in X̂ sets as follows.

For each point x ∈ A pick its neighborhood O(x) open in X̂ such that ‖ f (x′)− f (x)‖ < ε/3

for all x′ ∈ O(x) ∩ A.

Put Âε =
⋃

x∈A
O(x). The topological space Âε is metrizable, and therefore paracompact,

[1, 5.1.3]. Therefore, by [1, 5.1.9] there is a locally finite partition {ϕs : s ∈ S} of the unity,

subordinated to the cover {O(x) : x ∈ A}.

Now we construct an auxiliary function f ′ε : Âε → Y. First, for each index s ∈ S we

define a real number as as follows. If supp ϕs ∩ A 6= ∅, then we pick an arbitrary point

xs ∈ supp ϕs ∩ A, and we put as = f (xs). Otherwise, we put as = 0. Finally, put f ′ε = ∑
s∈S

as ϕs.

Let x ∈ A. Put Sx = {s ∈ S : x ∈ supp ϕs}. Then ∑
s∈Sx

ϕs(x) = 1. Let s ∈ Sx be any index.

Thus there is an element x0 ∈ A such that x ∈ supp ϕs ⊂ O(x0). Hence xs ∈ O(x0) and

‖ f (x) − as‖ = ‖ f (x) − f (xs)‖ 6 ‖ f (x) − f (x0)‖+ ‖ f (x0)− f (xs)‖ < 2ε/3.

Then

∥∥ f (x) − f ′ε(x)
∥∥ =

∥∥∥∥ f (x)− ∑
s∈S

as ϕs(x)

∥∥∥∥ =

∥∥∥∥ ∑
s∈S

f (x)ϕs(x)− ∑
s∈S

as ϕs(x)

∥∥∥∥

=

∥∥∥∥ ∑
s∈Sx

f (x)ϕs(x)− ∑
s∈Sx

as ϕs(x)

∥∥∥∥ 6 ∑
s∈Sx

‖ f (x)ϕs(x)− as ϕs(x)‖

= ∑
s∈Sx

‖ f (x)− as‖ ϕs(x) < ∑
s∈Sx

(2ε/3)ϕs(x) = 2ε/3.

The function f ′ε is continuous on Âε as a sum of a family of continuous functions with a

locally finite family of supports.

By Lemma 1, the space X̂ admits a separating polynomial. Therefore the space X sa-

tisfies the conditions of Theorem 1, so there exists a function f̂ε analytic on Âε such that

‖ f̂ε(x)− f ′ε(x)‖ < ε/3 for all x ∈ Âε. Then for all x ∈ A we have

‖ f (x) − f̂ε(x)‖ 6 ‖ f (x) − f ′ε(x)‖+ ‖ f ′ε (x)− f̂ε(x)‖ < ε.

It remains to put Aε = Âε ∩ X and let fε be the restriction of the map f̂ε to the set Aε.

For a complex normed space X we denote by X̃ itself, considered as a real normed space,

and by H(X̃, Y) the real normed space of analytic functions from X̃ to a Banach space Y.
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Theorem 4. Let X be any separable complex normed space that admits a separating ∗-poly-

nomial, Y be any complex Banach space, and F : X → Y be any continuous map. Then for any

ε > 0 there exists a map H ∈ H̃(X, Y) such that ‖F(x)− H(x)‖ < ε for each x ∈ X.

Proof. The proof is almost identical to the proof of Theorem 4 from [5] with the following

modifications. Instead of the application of Kurzweil’s Theorem we apply Theorem 3. Instead

of [5, Lemma 2] we use the fact (proof of which is similar to that of [5, Lemma 2]) that the

identity map from a complex normed space H̃(X, Y) to the real normed space H(X̃, Y) is an

isomorphism of real normed spaces.
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Митрофанов М.А., Равський О.В. Про апроксисмацiю неперервних функцiї в нормованих просторах

// Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 107–110.

Нехай X є дiйсним сепарабельним нормованим простором, що допускає вiдокремлюваль-

ний полiном. Показано, що непервнi функцiї з пiдмножини A в X в дiйсний банахiв простiр

можуть бути рiвномiрно наближенi аналiтичними на вiдкритих пiдмножинах X. Також пока-

зано, що неперервнi функцiї у комплексний банахiв простiр з комплексного сепарабельного

нормованого простору, що допускає вiдокремлювальний ∗-полiном, можуть бути рiвномiрно

наближенi ∗-аналiтичними функцiями.

Ключовi слова i фрази: нормований простiр, неперервна функцiя, аналiтична функцiя,

∗-аналiтична функцiя, рiвномiрна апроксимацiя, вiдокремлювальний полiном.
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ON THE ESTIMATION OF FUNCTIONS BELONGING TO LIPSCHITZ CLASS BY

BLOCK PULSE FUNCTIONS AND HYBRID LEGENDRE POLYNOMIALS

In this paper, block pulse functions and hybrid Legendre polynomials are introduced. The esti-

mators of a function f having first and second derivative belonging to Lipα[a, b] class, 0 < α ≤ 1,

and a, b are finite real numbers, by block pulse functions and hybrid Legendre polynomials have

been calculated. These calculated estimators are new, sharp and best possible in wavelet analysis.

An example has been given to explain the validity of approximation of functions by using the hybrid

Legendre polynomials approximation method. A real-world problem of radioactive decay is solved

using this hybrid Legendre polynomials approximation method. Moreover, the Hermite differential

equation of order zero is solved by using hybrid Legendre polynomials approximation method to

explain the importance and the application of the technique of this method.

Key words and phrases: block pulse function, Legendre polynomial, hybrid Legendre polynomial.
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INTRODUCTION

In recent years, researchers like Marzban and Razzaghi [8, 10], Hsiao [4] defined and then

used hybrid functions (HFs) for the numerical solutions of differential equations and integral

equations. Working in the same direction, Marzban et al. [11] derived an operational matrix for

a detailed analysis of HFs. In the continuation of their efforts, Merzban [9] studied the optimal

control of linear delay systems applying HFs.

Objectives of this research paper are:

(i) to introduce block pulse functions and hybrid Legendre polynomials;

(ii) to estimate the error bounds of the functions of a certain class by hybrid functions;

(iii) to estimate the approximations of a function f ∈ Lipα[a, b] by the partial sums of the

block function series and hybrid Legendre series.

This research paper is organized as follows. In Section 1, block pulse functions and their

some properties, block pulse functions expansion, hybrid Legendre polynomials, hybrid Leg-

endre polynomials expansion, and Lipα[a, b] class have been explained. In Section 2, the ap-

proximation of a function f ∈ Lipα[0, 1] by block pulse functions expansion, Legendre polyno-

mials expansion and hybrid Legendre polynomials expansion have been estimated and appro-

priate detailed proofs are provided. In Section 3, hybrid Legendre approximation is explained

with the help of an example. Section 4 is introduced to explain the application of this expan-

sion in solving the Hermite differential equation of order zero and in solving some real-world

problems. Eventually, some conclusions are mentioned in Section 5.
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1 DEFINITIONS AND PRELIMINARIES

1.1 Block pulse functions and their expansion

Let n be an arbitrary fixed positive integer. Define functions βi, i = 1, 2, . . . , n, on the inter-

val [0, 1] by (see [7])

βi(t) =

{

1, i−1
n ≤ t < i

n ;

0, otherwise.

These functions are referred as block pulse functions (or BPFs).

Let 〈·, ·〉 denotes the inner product over the field F (R or C). Block pulse functions expan-

sion of an f ∈ L2[0, 1) is given by (see [3])

f (t) =
∞

∑
i=1

fβi
βi(t), fβi

:= n〈 f , βi〉, (1)

where n is an arbitrary fixed positive integer associated with block pulse function βi. Let Sn

denotes the nth partial sum of the series in (1) and it is given by

Sn(t) =
n

∑
i=1

fβi
βi(t).

1.2 Properties of block pulse functions

An n-set of BPFs defined above satisfies the following properties.

1. Disjointness, i.e., βi(t)βj(t) = δijβi(t), where 1 ≤ i, j ≤ n, δij is the Kronecker delta.

2. Orthogonality, i.e.,

〈βi, βj〉 =
{

0, i 6= j;
1
n , i = j,

1 ≤ i, j ≤ n.

3. Completeness, i.e., for every f ∈ L2[0, 1) Parseval’s identity

∫ 1

0
f 2(t)dt =

∞

∑
i=1

| fβi
|2||βi||2

satisfied, where fβi
is defined in (1).

1.3 Legendre and hybrid Legendre polynomials

Legendre differential equation is given by (see [1])

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ n(n + 1)y = 0,

where n is a positive integer. Legendre polynomial Ln(x) is the solution of above differential

equation and it is written in the form (see [2])

Ln(x) =
[ n

2 ]

∑
r=0

(−1)r (2n − 2r)!

2nr!(n − r)!(n − 2r)!
xn−2r,
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where
[n

2

]

=

{ n
2 , if n is even;

n−1
2 , if n is odd.

Rodrigue’ s formula for Ln(x) is given by

Ln(x) =
1

2nn!

dn

dxn
(x2 − 1)n, n = 0, 1, 2, . . . .

Let n and m be the arbitrary fixed positive integers. Hybrid Legendre polynomials, denoted

by hij, i = 1, 2, . . . , n, j = 0, 1, . . . , m − 1, on the interval [0, 1) are defined by

hij(t) =

{

Lj(2nt − 2i + 1), i−1
n ≤ t < i

n ;

0, otherwise,

where i and j are the orders of BPFs and Legendre polynomials respectively.

1.4 Hybrid Legendre polynomials expansion

If f ∈ L2[0, 1), then associated hybrid Legendre polynomial infinite series is (see [6])

f (t) =
∞

∑
i=1

∞

∑
j=0

cijhij(t), cij =
〈 f , hij〉
〈hij, hij〉

. (2)

The (n, m)th partial sums of the series (2) is given by

sn,m(t) =
n

∑
i=1

m−1

∑
j=0

cijhij(t).

1.5 Lipα[a, b] class

A function f belongs to Lipα[a, b] class for 0 < α ≤ 1 if

| f (x + t)− f (x)| = O(|t|α), 0 < α ≤ 1.

If 0 < α < β≤1, then Lipβ[0, 1] ( Lipα[0, 1].

Example. Let α = 1
3 , β = 1

2 and f (x) = x
1
3 , g(x) = x

1
2 , ∀x ∈ [0, 1], then g ∈ Lipβ[0, 1] ⇒

g ∈ Lipα[0, 1]. Here,

|g(x + t)− g(x)| =
∣

∣

∣
(x + t)

1
2 − x

1
2

∣

∣

∣
≤ |(x + t)− x|

1
2 = t

1
2 .

Hence, |g(x + t)− g(x)| = O(t
1
2 ) and g ∈ Lip 1

2
[0, 1]. Also,

|g(x + t)− g(x)| =
∣

∣

∣
(x + t)

1
2 − x

1
2

∣

∣

∣
≤ |(x + t)− x|

1
2 = t

1
2

t
1
3

t
1
3

= t
1
3 t

1
6 ≤ t

1
3 , ∀ t ∈ [0, 1].

Hence, |g(x + t)− g(x)| = O(t
1
3 ) and g ∈ Lip 1

3
[0, 1]. Now,

| f (x + t)− f (x)| =
∣

∣

∣
(x + t)

1
3 − x

1
3

∣

∣

∣
≤ |(x + t)− x|

1
3 = t

1
3 , ∀ t ∈ [0, 1].

Thus, | f (x + t)− f (x)| = O(t
1
3 ) and f ∈ Lip 1

3
[0, 1]. But

| f (x + t)− f (x)| =
∣

∣

∣
(x + t)

1
3 − x

1
3

∣

∣

∣
≤ |(x + t)− x|

1
3 = t

1
3

t
1
2

t
1
2

= t
1
2 t−

1
6 .

Hence,

lim
t→0+

∣

∣

∣

∣

f (x + t)− f (x)

t
1
2

∣

∣

∣

∣

→ +∞.

This shows that f /∈ Lip 1
2
[0, 1]. Therefore Lip 1

2
[0, 1] ( Lip 1

3
[0, 1].
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2 MAIN RESULTS

Theorem 1. Let f be a differentiable function on the interval [0, 1] such that its first derivative

f ′ ∈ Lipα[0, 1] and the block pulse functions expansion of f be f (t) =
∞

∑
i=1

fβi
βi(t), where

fβi
=

〈 f , βi〉
〈βi, βi〉

, and βi is a block pulse function. Then the error of approximation of f by

(Sm f )(t) =
m

∑
i=1

fβi
βi(t) is

E(BP)( f ) = min ‖ f − Sm f‖2 = O

[

1

m

(

1 +
1

mα

)]

,

where 0 < α ≤ 1 and m be an arbitrary fixed positive integer.

Proof. Since

ei = fβi
βi(t)− f (t)χ[ i−1

m , i
m ), ∀

[

i − 1

m
,

i

m

)

, i = 1, 2, . . . , m,

where m is an arbitrary fixed positive integer associated with the BPFs and χ[ i−1
m , i

m)
is a char-

acterstic function defined on the interval
[

i−1
m , i

m

)

. Then

e2
i = f 2

βi
β2

i (t) + f 2(t)χ[ i−1
m , i

m)
− 2 fβi

f (t)χ[ i−1
m , i

m)
.

Now, by Taylor theorem (see [5])

‖ei‖2 = f 2
βi

i
m
∫

i−1
m

β2
i (t)dt +

i
m
∫

i−1
m

f 2(t)dt − 2 fβi

i
m
∫

i−1
m

βi(t) f (t)dt =
f 2
βi

m
+

i
m
∫

i−1
m

f 2(t)dt − 2 fβi

i
m
∫

i−1
m

f (t)dt

=
f 2
βi

m
+

1
m
∫

0

f 2

(

i − 1

m
+ u

)

du − 2 fβi

1
m
∫

0

f

(

i − 1

m
+ u

)

du

=
f 2
βi

m
+

1
m
∫

0

{

f 2

(

i − 1

m

)

+ u2

(

f ′
(

i − 1

m
+ θu

))2
}

du

+ 2

1
m
∫

0

f

(

i − 1

m

)

u f ′
(

i − 1

m
+ θu

)

du − 2 fβi

1
m
∫

0

(

f

(

i − 1

m

)

+ u f ′
(

i − 1

m
+ θu

))

du

=
f 2
βi

m
+

f 2
(

i−1
m

)

m
+

1
m
∫

0

u2

(

f ′
(

i − 1

m
+ θu

))2

du

+ 2 f

(

i − 1

m

)

1
m
∫

0

f ′
(

i − 1

m
+ θu

)

udu − 2 fβi

f
(

i−1
m

)

m
− 2 fβi

1
m
∫

0

u f ′
(

i − 1

m
+ θu

)

du,
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where 0 < θ < 1. Also,

fβi
= m〈 f , βi〉 = m

i
m
∫

i−1
m

f (t)dt = m

1
m
∫

0

f

(

i − 1

m
+ u

)

du

= m

1
m
∫

0

(

f

(

i − 1

m

)

+ u f ′
(

i − 1

m
+ θu

))

du = f

(

i − 1

m

)

+ m

1
m
∫

0

u f ′
(

i − 1

m
+ θu

)

du.

From the above formulas we get

‖ei‖2
2 =

∫ 1
m

0
u2

(

f ′
(

i − 1

m
+ θu

))2

du − m

(

∫ 1
m

0
u f ′

(

i − 1

m
+ θu

))2

du

=
∫ 1

m

0
u2

{(

f ′
(

i − 1

m
+ θu

)

− f ′
(

i − 1

m

)

+ f ′
(

i − 1

m

))}2

du

− m

(

∫ 1
m

0
u

{(

f ′
(

i − 1

m
+ θu

)

− f ′
(

i − 1

m

)

+ f ′
(

i − 1

m

))})2

du

≤
∫ 1

m

0
u2

(

A1uα + f ′
(

i − 1

m

))2

du + m

(

∫ 1
m

0
u

{

A1uα + f ′
(

i − 1

m

)}

du

)2

=
A2

1

m2α+3

(

1

2α + 3
+

1

(α + 2)2

)

+

(

f ′
(

i−1
m

))2

12m3
+

2A1 f ′
(

i−1
m

)

mα+3

(

1

α + 3
+

1

2α + 4

)

,

where A1 is a positive constant.

Hence,

‖e‖2
2 =

m

∑
i=1

‖ei‖2
2 =

A2
1

m2α+2

(

1

2α + 3
+

1

(α + 2)2

)

+

(

f ′
(

i−1
m

))2

12m2
+

2A1 f ′
(

i−1
m

)

mα+2

(

1

α + 3
+

1

2α + 4

)

≤ 2A2
1

m2α+2
+

(

f ′
(

i−1
m

))2

12m2
+

4A1 f ′
(

i−1
m

)

mα+2

= 2

(

A2
1

m2α+2
+

(

f ′
(

i−1
m

))2

24m2
+

2A1 f ′
(

i−1
m

)

mα+2

)

≤ 2

(

A1

mα+1
+

f ′
(

i−1
m

)

m

)2

.

Therefore,

‖e‖2 = O

[

1

m

(

1 +
1

mα

)]

.

So, the proof of Theorem 1 is completely established.

Theorem 2. Let f be a differentiable function defined on the interval [−1, 1] such that its sec-

ond derivative f ′′ ∈ Lipα[−1, 1] and Legendre expansion of function f be

f (t) =
∞

∑
j=0

cjPj(t), (3)

where Pj is a Legendre polynomial and cj =
〈 f , Pj〉
〈Pj, Pj〉

. Then the error of the approximation of f

by (Um f )(t) =
m−1

∑
j=0

cjPj(t), m = 1, 2, . . ., is

E(LP)( f ) = min ‖ f − Um f‖2 ≤ M

(

1 +
1√

2α + 1

)

1

(2m − 3)
3
2

,
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where m ≥ 2 is an integer, M is a positive constant and 0 < α ≤ 1.

Proof. Legendre expansion of a function f (t) is given by (3). Let

Um(t) =
m−1

∑
j=0

cjPj(t)

denotes the mth partial sum of (3). Then for arbitrary m ≥ 2, we have

‖ f − Um‖2
2 =

1
∫

−1

( f − Um)
2dt =

1
∫

−1

(

m−1

∑
j=0

cjPj(t)

)2

dt

=
∞

∑
j=m

c2
j

1
∫

−1

P2
j dt =

∞

∑
j=m

c2
j

(

2

2j + 1

)

,

and for arbitrary j ≥ m, we obtain

cj =

1
∫

−1

f (t)Pj(t)dt

1
∫

−1

P2
j dt

=
2j + 1

2

1
∫

−1

f (t)Pj(t)dt =
2j + 1

2

1
∫

−1

f (t)
P′

j+1 − P′
j−1

2j + 1
dt

=
1

2

1
∫

−1

f (t)
(

P′
j+1 − P′

j−1

)

dt =
1

2

1
∫

−1

f ′(t)
(

Pj−1 − Pj+1

)

dt

=
1

2

1
∫

−1

f ′(t)Pj−1dt −
1
∫

−1

f ′(t)Pj+1dt =
1

2(2j − 1)

1
∫

−1

f ′(t)
(

P′
j − P′

j−2

)

dt

− 1

2(2j + 3)

1
∫

−1

f ′(t)
(

P′
j+2 − P′

j

)

dt

=
1

2(2j − 1)

1
∫

−1

f ′′(t)
(

Pj−2 − Pj

)

dt +
1

2(2j + 3)

1
∫

−1

f ′′(t)
(

Pj+2 − Pj

)

dt =
1

2

1
∫

−1

f ′′(t)Bj(t)dt,

where Bj(t) =
Pj−2 − Pj

2j − 1
+

Pj+2 − Pj

2j + 3
. Hence,

|cj| ≤
1

2

1
∫

−1

∣

∣ f ′′(t)− f ′′(0)
∣

∣

∣

∣Bj(t)
∣

∣ dt +
1

2

1
∫

−1

∣

∣ f ′′(0)
∣

∣

∣

∣Bj(t)
∣

∣ dt

≤ M1

2

1
∫

−1

|t|α
∣

∣Bj(t)
∣

∣ dt +
| f ′′(0)|

2

1
∫

−1

∣

∣Bj(t)
∣

∣ dt,

(4)
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where M1 is a positive constant. Next, applying the Cauchy-Schwarz inequality, we get

( 1
∫

−1

|t|α|Bj|dt

)2

≤
1
∫

−1

|t|2αdt

1
∫

−1

|Bj|2dt = 2

1
∫

0

|t|2αdt

1
∫

−1

|Bj|2dt

=
2

2α + 1

1
∫

−1

(P2
j+2 + P2

j

(2j + 3)2
+

P2
j−2 + P2

j

(2j − 1)2

)

dt

=
2

(2α + 1)(2j + 3)2

(

2

2j + 5
+

2

2j + 1

)

+
2

(2α + 1)(2j − 1)2

(

2

2j − 3
+

2

2j + 1

)

≤ 16

(2α + 1)(2j − 3)3
.

Hence,

1
∫

−1

|t|α|Bj|dt ≤ 4
√

2α + 1(2j − 3)
3
2

. (5)

Also,

( 1
∫

−1

|Bj|dt

)2

≤
( 1
∫

−1

12dt

)2( 1
∫

−1

|Bj|2dt

)

≤ 16

(2j − 3)3
.

Therefore,

1
∫

−1

|Bj|dt ≤ 4

(2j − 3)
3
2

. (6)

By (4)–(6) we have

|cj| ≤
1

2

4M1√
2α + 1

1

(2j − 3)
3
2

+
| f ′′(0)|

2

4

(2j − 3)
3
2

≤ M

(

1√
2α + 1

+ 1

)

1

(2j − 3)
3
2

,

where M = max
{

2M1, 2| f ′′(0)|
}

and

‖ f − Um‖2
2 ≤

∞

∑
j=m

M2

(

1 +
1√

2α + 1

)2 1

(2j − 3)3

2

(2j + 1)

≤ 2M2

(

1 +
1√

2α + 1

)2 ∞

∑
j=m

1

(2j − 3)4

≤ 2M2

(

1 +
1√

2α + 1

)2 1

(2m − 3)3
, m ≥ 2.

Hence,

‖ f − Um‖2 ≤
√

2M

(

1 +
1√

2α + 1

)

1

(2m − 3)
3
2

.

Thus Theorem 2 is completely proved.
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Theorem 3. Let f be a differentiable function on [0, 1] such that f ′′ ∈ Lipα[0, 1] and hybrid

Legendre polynomials expansion of f be

f (t) =
∞

∑
i=1

∞

∑
j=0

cijhij(t), (7)

where cij =
〈 f , hij〉
〈hij, hij〉

and hij is the hybrid Legendre polynomials, and

(Sn,m f )(t) =
n

∑
i=1

m−1

∑
j=0

cijhij(t)

be the (n, m)th partial sum of the series (7). Then the error of approximation f by Sn,m f is

E
(HFs)
n,m f = min ‖ f − Sn,m f‖2 = O

[

(

1

nα+2
+

1

2n2

)

1

(2m − 3)
3
2

]

,

where m ≥ 2, n is a positive integer and 0 < α ≤ 1.

Proof. We see that hybrid Legendre polynomials expansion of f is given by (7). Now, suppose

n and m are the arbitrary fixed positive integers. Then for i = 1, 2, . . . , n and j = 0, 1, . . . , m − 1,

we have

cij =
〈 f , hij〉
〈hij , hij〉

=

i
n
∫

i−1
n

f (t)hij(t)dt

i
n
∫

i−1
n

h2
ij(t)dt

=

i
n
∫

i−1
n

f (t)Pj(2nt − 2i + 1)dt

i
n
∫

i−1
n

P2
j (2nt − 2i + 1)dt

=

1
∫

−1

f

(

u + 2i − 1

2n

)

Pj(u)
du

2n

1
∫

−1

P2
j (u)

du

2n

=
2j + 1

2

1
∫

−1

f

(

u + 2i − 1

2n

)

Pj(u)du

=
2j + 1

2

1
∫

−1

f

(

t + 2i − 1

2n

)

Pj(t)dt =
2j + 1

2

1
∫

−1

f

(

t + 2i − 1

2n

)

(

P′
j+1 − P′

j−1

2j + 1

)

dt

=
1

2

1
∫

−1

f

(

t + 2i − 1

2n

)

(

P′
j+1 − P′

j−1

)

dt =
−1

4n

1
∫

−1

f ′
(

t + 2i − 1

2n

)

(

Pj+1 − Pj−1

)

dt

=
−1

4n

1
∫

−1

f ′
(

t + 2i − 1

2n

)

Pj+1dt +
1

4n

1
∫

−1

f ′
(

t + 2i − 1

2n

)

Pj−1dt = I1 + I2.

(8)
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Now,

I1 =
−1

4n

1
∫

−1

f ′
(

t + 2i − 1

2n

)

Pj+1dt =
−1

4n

1
∫

−1

f ′
(

t + 2i − 1

2n

)

(

P′
j+2 − P′

j

2j + 3

)

dt

=
1

8n2(2j + 3)

1
∫

−1

f ′′
(

t + 2i − 1

2n

)

(

Pj+2 − Pj

)

dt

=
1

8n2

1
∫

−1

f ′′
(

t + 2i − 1

2n

)(

Pj+2 − Pj

2j + 3

)

dt.

(9)

Next,

I2 =
1

4n

1
∫

−1

f ′
(

t + 2i − 1

2n

)

Pj−1dt =
1

8n2

1
∫

−1

f ′′
(

t + 2i − 1

2n

)(

Pj−2 − Pj

2j − 1

)

dt. (10)

By (8)–(10) we have

cij =
1

8n2

1
∫

−1

f ′′
(

t + 2i − 1

2n

)(

Pj+2 − Pj

2j + 3

)

dt +
1

8n2

1
∫

−1

f ′′
(

t + 2i − 1

2n

)(

Pj−2 − Pj

2j − 1

)

dt

=
1

8n2

1
∫

−1

f ′′
(

t + 2i − 1

2n

)(

Pj+2 − Pj

2j + 3
+

Pj−2 − Pj

2j − 1

)

dt =
1

8n2

1
∫

−1

f ′′
(

t + 2i − 1

2n

)

Bjdt,

where Bj =
Pj+2 − Pj

2j + 3
+

Pj−2 − Pj

2j − 1
. Hence,

|cij| ≤
1

8n2

1
∫

−1

∣

∣

∣

∣

f ′′
(

t + 2i − 1

2n

)
∣

∣

∣

∣

|Bj|dt

≤ 1

8n2

1
∫

−1

∣

∣

∣

∣

f ′′
(

t + 2i − 1

2n

)

− f ′′
(

2i − 1

2n

)∣

∣

∣

∣

|Bj|dt +
1

8n2

1
∫

−1

∣

∣

∣

∣

f ′′
(

2i − 1

2n

)∣

∣

∣

∣

|Bj| dt

≤ M1

2α+3nα+2

1
∫

−1

|t|α|Bj|dt +
1

8n2

∣

∣

∣

∣

f ′′
(

2i − 1

2n

)
∣

∣

∣

∣

1
∫

−1

|Bj| dt,

(11)

where M1 is a positive constant.

Now, by (5), (6) and (11) we get

∣

∣cij

∣

∣ ≤ M1

2α+3nα+2

4
√

2α + 1(2j − 3)
3
2

+
1

8n2

∣

∣

∣

∣

f ′′
(

2i − 1

2n

)
∣

∣

∣

∣

4

(2j − 3)
3
2

≤ M1

2α+3nα+2

4
√

2α + 1(2j − 3)
3
2

+
1

8n2
M2

4

(2j − 3)
3
2

≤ B

(

1√
2α + 1 2α+1 nα+2

+
1

2n2

)

1

(2j − 3)
3
2

≤ B

(

1

nα+2
+

1

2n2

)

1

(2j − 3)
3
2

,

(12)
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where B = max
{

M1, M2

}

. Since f ′′ ∈ Lipα[0, 1], 0 < α ≤ 1, it is continuous on [0, 1]. Therefore

it is bounded on [0, 1]. Thus, there exists a constant M2 independent of t such that | f ′′(t)| ≤ M2

∀t ∈ [0, 1]. Also n ∈ N and i = 1, 2, . . . , n, so 0 ≤ i − 1

n
< 1, i.e.

i − 1

n
∈ [0, 1] for each n and

i = 1, 2, . . . , n. Hence

∣

∣

∣

∣

f ′′
(

i − 1

n

)∣

∣

∣

∣

≤ M2.

Let Sn,m f denotes the (n, m)th partial sum of the series (7) as given in theorem 3. Now,

f − Sn,m f =

(

n

∑
i=1

+
∞

∑
i=n+1

)(

m−1

∑
j=0

+
∞

∑
j=m

)

cijhij −
n

∑
i=1

m−1

∑
j=0

cijhij =
n

∑
i=1

∞

∑
j=m

cijhij.

Then

‖ f − Sn,m f‖2
2 =

1
∫

0

(

n

∑
i=1

∞

∑
j=m

cijhij

)2

dt =
n

∑
i=1

∞

∑
j=m

c2
ij

1
∫

0

h2
ijdt

=
n

∑
i=1

∞

∑
j=m

c2
ij

i
m
∫

i−1
m

P2
j (2nt − 2i + 1)dt =

n

∑
i=1

∞

∑
j=m

c2
ij

1

n (2j + 1)
.

(13)

By (12) and (13) we have

‖ f − Sn,m f‖2
2 ≤

n

∑
i=1

∞

∑
j=m

B2

(

1

nα+2
+

1

2n2

)2 1

(2j − 3)3

1

n(2j + 1)

= B2

(

1

nα+2
+

1

2n2

)2 ∞

∑
j=m

1

(2j − 3)3

1

(2j + 1)

≤ B2

(

1

nα+2
+

1

2n2

)2 ∞

∑
j=m

1

(2j − 3)4
≤ B2

(

1

nα+2
+

1

2n2

)2 1

(2m − 3)3
.

Hence,

‖ f − Sn,m f‖2
2 ≤ B

(

1

nα+2
+

1

2n2

)

1

(2m − 3)
3
2

.

Therefore,

E
(HFs)
n,m ( f ) = min ‖ f − Sn,m f‖2 = O

[

(

1

nα+2
+

1

2n2

)

1

(2m − 3)
3
2

]

, m ≥ 2 and 0 < α ≤ 1.

3 NUMERICAL EXAMPLE OF HYBRID LEGENDRE POLYNOMIALS APPROXIMATION

In this section hybrid Legendre polynomials approximation of the function

f (t) =

{

t3 + t2 + 2t + 1, ∀t ∈ [0, 1],

0, otherwise
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for n = 1, 2 and m = 1, 2, 3 has been explained by graphs of concerned function. Sn,m for

n = 1, 2 and m = 1, 2, 3 are calculated and are given as

S1,1(t) =

{

31
12 , 0 ≤ t < 1,

0, otherwise,
S1,2(t) =

{

31
12 +

39
12(2t − 1), 0 ≤ t < 1,

0, otherwise,

S1,3(t) =

{

31
12 +

39
12 (2t − 1) + 5

24 [3(2t − 1)2 − 1], 0 ≤ t < 1,

0, otherwise,

S2,1(t) =















155
96 , 0 ≤ t < 1

2 ,
341
96 , 1

2 ≤ t < 1,

0, otherwise,

S2,2(t) =















155
96 + 109

160 (4t − 1), 0 ≤ t < 1
2 ,

341
96 + 209

160 (4t − 3), 1
2 ≤ t < 1,

0, otherwise,

S2,3(t) =















155
96 + 109

160 (4t − 1) + 7
192 [3(4t − 1)2 − 1], 0 ≤ t < 1

2 ,
341
96 + 209

160 (4t − 3) + 13
192 [3(4t − 3)2 − 1], 1

2 ≤ t < 1,

0, otherwise.

The graphs of Sn,m and f (t) has been plotted for n = 1, 2 and m = 1, 2, 3 in Figures 1–6

respectively. Hybrid Legendre polynomial approximation error for different values of n and

m is shown in Table 1.

n m ‖ f − Sn,m‖2

n= 1

m=1 1.14131

m=2 0.187295

m=3 0.0188982

n=2

m=1 0.603409

m=2 0.0486932

m=3 0.00236228

Table 1. Hybrid Legendre polynomial approximation errors for different values of n and m

Figure 1. Graph of S1,1 and the function f (t) Figure 2. Graph of S1,2 and the function f (t)



122 LAL S., SHARMA V.K.

Figure 3. Graph of S1,3 and the function f (t) Figure 4. Graph of S2,1 and the function f (t)

Figure 5. Graph of S2,2 and the function f (t) Figure 6. Graph of S2,3 and the function f (t)

4 APPLICATION OF HYBRID LEGENDRE POLYNOMIALS EXPANSION

4.1 Application of hybrid Legendre polynomials expansion in real-world problems

We have used the hybrid Legendre polynomial approximation method to solve the differ-

ential equations related to the following real-world problem.

4.1.1 Radioactive decay

Radioactivity [12] is one of the effects of disruption in the nucleus of a radioactive substance.

It is important to remember that radioactivity has also been used in the diagnosis of cancers

through lighting in the nucleus form of the atoms to the recipient.

If m(t) be the mass of a radioactive substance at time t, then (see [12])

dm

dt
= −km(t), m(0) = m0, (14)

where k is a decay constant and m0 is the initial mass. Let us consider k = 2 and m0 = 2, the

above equation reduces to
dm

dt
= −2m(t), m(0) = 2. (15)
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Equation (15 ) is now solved using hybrid Legendre polynomials operational matrix of inte-

gration as in [6] for n = 5 and m = 3 as below.

Let

h(t) = [h10, h11, h12, h20, h21, h22, h30, h31, h32, h40, h41, h42, h50, h51, h52]
T . (16)

Here h(t) be 15 × 1 column vector and hij for i = 1, 2, 3, 4, 5 and j = 0, 1, 2 are calculated as

given in subsection 1.3. The integration of above vector h(t) is given as

∫ t

0
h(x)dx = Ph(t).

Here P is 15× 15 hybrid Legendre polynomials operational matrix of integration and it is given

as

P =



























































1
10

1
10 0 1

5 0 0 1
5 0 0 1

5 0 0 1
5 0 0

− 1
30 0 1

30 0 0 0 0 0 0 0 0 0 0 0 0

0 − 1
50 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
10

1
10 0 1

5 0 0 1
5 0 0 1

5 0 0

0 0 0 − 1
30 0 1

30 0 0 0 0 0 0 0 0 0

0 0 0 0 − 1
50 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
10

1
10 0 1

5 0 0 1
5 0 0

0 0 0 0 0 0 − 1
30 0 1

30 0 0 0 0 0 0

0 0 0 0 0 0 0 − 1
50 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
10

1
10 0 1

5 0 0

0 0 0 0 0 0 0 0 0 − 1
30 0 1

30 0 0 0

0 0 0 0 0 0 0 0 0 0 − 1
50 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
10

1
10 0

0 0 0 0 0 0 0 0 0 0 0 0 − 1
30 0 1

30

0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
50 0



























































. (17)

Let m(t) = NTh(t), where

N(t) = [n10, n11, n12, n20, n21, n22, n30, n31, n32, n40, n41, n42, n50, n51, n52]
T

is an unknown vector. Integrating equation (15) and using initial conditions, we observe

(I + 2PT)N = 2d. (18)

Here I be a identity matrix of order 15 and d = [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]T is a column

vector of order 15 × 1. Equation (18) denotes the set of fifteen algebraic equations which can be

solved for N. Now comparison between exact solution and approximate solution of equation

(15) is given in Table 2.



124 LAL S., SHARMA V.K.

t
Hybrid Legendre polynomials

Exact solution Absolute error
solution for n = 5, m = 3

0.0 1.99912 2.00000 0.00088

0.1 1.63744 1.63746 0.00002

0.2 1.34005 1.34064 0.00059

0.3 1.09761 1.09762 0.00001

0.4 0.89826 0.89866 0.00040

0.5 0.73575 0.73576 0.00001

0.6 0.60212 0.60239 0.00027

0.7 0.49319 0.49319 0.00000

0.8 0.40362 0.40379 0.00017

0.9 0.33059 0.33060 0.00001

Table 2. Comparison between approximate solution and exact solution for k = 2 amd m0 = 2

Also, equation (14) is solved for k = 1 and m0 = 1 and comparison between approximate

solution and exact solution for k = 1 and m0 = 1 is shown in Table 3.

t
Hybrid Legendre polynomials

Exact solution Absolute error
solution for n = 5, m = 3

0.0 0.99994 1.00000 0.00006

0.1 0.90484 0.90484 0.00000

0.2 0.81868 0.81873 0.00005

0.3 0.74082 0.74082 0.00000

0.4 0.67028 0.67032 0.00004

0.5 0.60653 0.60653 0.00000

0.6 0.54878 0.54881 0.00003

0.7 0.49659 0.49659 0.00000

0.8 0.44930 0.44933 0.00003

0.9 0.40657 0.40657 0.00000

Table 3. Comparison between approximate solution and exact solution for k = 1 amd m0 = 1

4.2 Application of hybrid Legendre polynomials expansion in solving Hermite differen-

tial equation of order zero

Consider the Hermite differential equation of order zero (see [13])

y′′ − 2ty′ = 0 (19)

with initial conditions

y(0) = y′(0) = 1. (20)

Now we have solved the equation (19) by hybrid Legendre polynomial operational matrix of

integration for n = 5 and m = 3 given by (17), which is obtained by hybrid Legendre polyno-

mial approximation method as below.

Let

y′′(t) = LTh(t), (21)

where L = [l10, l11, l12, l20, l21, l22, l30, l31, l32, l40, l41, l42, l50, l51, l52]
T is 15 × 1 unknown column

vector and h(t) is also a column vector given by (16). Now expanding f (t) = 1 and g(t) = t by
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hybrid Legendre polynomials for n = 5 and m = 3, we obtain f (t) = rTh(t) and g(t) = sTh(t),

where r = [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0]T and

s =

[

1

10
,

1

10
, 0,

3

10
,

1

10
, 0,

5

10
,

1

10
, 0,

7

10
,

1

10
, 0,

1

10
,

9

10
, 0

]T

are column vectors each of order 15 × 1. Now integrating equation (21) two times and using

initial conditions given by (20), we find

y′(t) = LTPh(t) + rTh(t)

and

y(t) = LTP2h(t) + rTPh(t) + rTh(t).

Approximate sThhT by hybrid Legendre polynomials as

sThhT = hTS, (22)

where S is a square matrix of order 15 and it is given as

S =



























































1
10

1
10 0 0 0 0 0 0 0 0 0 0 0 0 0

1
30

1
10

2
30 0 0 0 0 0 0 0 0 0 0 0 0

0 2
50

1
10 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 3
10

1
10 0 0 0 0 0 0 0 0 0 0

0 0 0 1
30

3
10

2
30 0 0 0 0 0 0 0 0 0

0 0 0 0 2
50

3
10 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 5
10

1
10 0 0 0 0 0 0 0

0 0 0 0 0 0 1
30

5
10

2
30 0 0 0 0 0 0

0 0 0 0 0 0 0 2
50

5
10 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 7
10

1
10 0 0 0 0

0 0 0 0 0 0 0 0 0 1
30

7
10

2
30 0 0 0

0 0 0 0 0 0 0 0 0 0 2
50

7
10 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 9
10

1
10 0

0 0 0 0 0 0 0 0 0 0 0 0 1
30

9
10

2
30

0 0 0 0 0 0 0 0 0 0 0 0 0 2
50

9
10



























































.

From the above we get

(I − 2SPT) = 2Sr.

It is a system of algebraic equations which is solved for L. The exact solution of (19) is given by

y(t) = 1 +
∫ t

0
ex2

dx.

Comparison between approximate solution and exact solution is given in Table 4.
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t
Hybrid Legendre polynomials

Exact solution Absolute error
solution for n = 5, m = 3

0.0 1.000 1.000 0.000

0.1 1.101 1.100 0.001

0.2 1.204 1.203 0.001

0.3 1.311 1.309 0.002

0.4 1.425 1.422 0.003

0.5 1.548 1.545 0.003

0.6 1.686 1.680 0.006

0.7 1.840 1.833 0.007

0.8 2.019 2.009 0.010

0.9 2.229 2.215 0.014

Table 4. Comparison between approximate solution and exact solution for n = 5 and m = 3

Figure 7. Graph of exact solution (dark line) and approximate solution (dashed line)

of radioactive decay problem for k = 2 and m0 = 2

Figure 8. Graph of exact solution (dark line) and approximate solution (dashed line)

of radioactive decay problem for k = 1 and m0 = 1
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Figure 9. Graph of exact solution (dark line) and approximate solution (dashed line)

of Hermite differential equation

5 CONCLUSIONS

1. Estimates of Theorems 1, 2 and 3 are given by

(i) E
(BP)
m ( f ) = O

[

1

m

(

1 +
1

mα

)]

;

(ii) E
(LP)
m ( f ) = O

[(

1 +
1√

2α + 1

)

1

(2m−3)
3
2

]

, m ≥ 2;

(iii) E
(HFs)
n,m ( f ) = O

[

(

1

nα+2
+

1

2n2

)

1

(2m − 3)
3
2

]

, where m ≥ 2, 0 < α ≤ 1 and n is a positive

integer.

Since E
(BP)
m ( f ) → 0, E

(LP)
m ( f ) → 0 and E

(HFs)
n,m f → 0 as m, n → ∞, these approximations are

best possible in wavelet analysis.

2. The solution of differential equations associated with the radioactive decay problem and

the solution of the Hermite differential equation of order zero by hybrid Legendre polynomials

is approximately same as the exact solution. This is the significant achievement of this paper.
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Лал Ш., Шарма В.К. Про оцiнку функцiй iз класу Лiпшiца блочно-iмпульсними функцiями та гi-

бридними полiномами Лежандра // Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 111–128.

У цiй роботi, використовуючи блочно-iмпульснi функцiї та гiбриднi полiноми Лежандра,

знайдено оцiнки функцiї f , яка має першу i другу похiднi, що належать до класу Lipα[a, b], де

0 < α ≤ 1, i a, b — скiнченнi дiйснi числа. Отриманi оцiнки є новими, точними та найкращими

у вейвелет аналiзi. Iз метою пояснення обґрунтованостi апроксимацiї функцiй методом набли-

ження гiбридними полiномами Лежандра наведено приклад розв’язку задачi радiоактивного

розпаду. Бiльше того, для пояснення важливостi та застосування методики цього методу зна-

йдено розв’язок диференцiального рiвняння Ермiта нульового порядку.

Ключовi слова i фрази: блочно-iмпульсна функцiя, полiном Лежандра, гiбридний полiном

Лежандра.
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BEDRATYUK L.1 , LUNO N.2

SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC APPELL

POLYNOMIALS

Let x(n) denotes the Pochhammer symbol (rising factorial) defined by the formulas x(0) = 1 and

x(n) = x(x + 1)(x + 2) · · · (x + n − 1) for n ≥ 1. In this paper, we present a new real-valued Appell-

type polynomial family A
(k)
n (m, x), n, m ∈ N0, k ∈ N, every member of which is expressed by mean

of the generalized hypergeometric function pFq

[

a1, a2, . . . , ap

b1, b2, . . . , bq
z

]

=
∞

∑
k=0

a
(k)
1 a

(k)
2 ...a

(k)
p

b
(k)
1 b

(k)
2 ...b

(k)
q

zk

k! as follows

A
(k)
n (m, x) = xn

k+pFq





a1, a2, . . ., ap,−
n

k
,−

n − 1

k
, . . .,−

n − k + 1

k
b1, b2, . . ., bq

m

xk





and, at the same time, the polynomials from this family are Appell-type polynomials.

The generating exponential function of this type of polynomials is firstly discovered and the

proof that they are of Appell-type ones is given. We present the differential operator formal power

series representation as well as an explicit formula over the standard basis, and establish a new iden-

tity for the generalized hypergeometric function. Besides, we derive the addition, the multiplication

and some other formulas for this polynomial family.

Key words and phrases: Appell sequence, Appell polynomial, generalized hypergeometric poly-
nomial, generalized hypergeometric function.
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1 INTRODUCTION

In [4], P. Appell presented polynomial sequence {An(x)}, n = 0, 1, 2, . . . , such that

deg An(x) = n and satisfying the identity

A′
n(x) = nAn−1(x),

where A0(x) 6= 0, which is called the Appell polynomial sequence.

An arbitrary Appell polynomial sequence possesses an exponential generating function

A(t)ext =
∞

∑
n=0

An(x)
tn

n!
,

here A(t) is a formal power series

A(t) = a0 + a1t + a2
t2

2!
+ · · ·+ an

tn

n!
+ · · · , a0 6= 0. (1)
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The Appell-type polynomials An(x) are expressed in the terms of {an} as follows

An(x) =
n

∑
i=0

(

n

i

)

an−ix
i.

The simplest example of Appell-type polynomials is the monomial sequence {xn}, n =

0, 1, . . . ; other examples are the Bernoulli, the Euler polynomials and the Hermite polynomi-

als. For more examples one can consult [1, 11].

The Appell-type polynomials perform a large variety of features and are widely spread

at the different areas of mathematics, namely, at special functions, general algebra, combi-

natorics and number theory. Recently, the Appell-type polynomials are of big interest. The

modern researches give the alternative definitions of Appell-type polynomials and apply new

approaches based, for instance, on the determinant method or in Pascal matrix method (see,

e.g., [3, 16]). Consequently, many new properties of those polynomials are described and a

great deal of identities involving Appell-type polynomials are obtained (see [2, 6, 7]).

Let us recall that the generalized hypergeometric function is defined as follows

pFq

[

a1, a2, . . . , ap

b1, b2, . . . , bq
z

]

=
∞

∑
k=0

a
(k)
1 a

(k)
2 . . . a

(k)
p

b
(k)
1 b

(k)
2 . . . b

(k)
q

zk

k!
, (2)

where a1, a2, . . . , ap, b1, b2, . . . , bp are complex parameters and none of bi equals to a non-po-

sitive integer or zero, x(n) denotes the Pochhammer symbol (or rising factorial) defined by

x(n) = x(x + 1)(x + 2) · · · (x + n − 1) for n ≥ 1 and x(0) = 1. Further on, we denote the

generalized hypergeometric function by pFq for brevity.

We note that the Gauss hypergeometric function 2F1 and the Kummer hypergeometric func-

tion 1F1 are the partial cases of (2).

Apart from the Appell-type polynomials, there exist some polynomial families, which ad-

mit representation via the partial cases of the generalized hypergeometric function, i.e., the

Jacobi polynomials ([1])

P
(α,β)
n (z) =

(α + 1)(n)

n!
2F1

[

−n, n+α+β+1

α+1

1 − z

2

]

.

At the same time, there exists a number of the Appell-type polynomial families, which

also admit the representation via partial cases of the Gauss hypergeometric function. It is

known [1], that the Laguerre polynomials Ln(x) are presented as follows

Ln(x) = 1F1

[

−n

1
x

]

.

Remarkably, the Hermite polynomials Hn(x) are simply expressed in the terms of those func-

tions ([8])

Hn(x) = xn
2F0





−
n

2
,−

n − 1

2
−

−
2

x2



 , G(x, t) = ext− 1
2 t2

.

The natural way of generalisation of the Hermitte polinomials is to expand the array of

ratios for another denominators, it was made in [10], the authors obtained the Gould-Hopper



SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC APPELL POLYNOMIALS 131

polynomials gm
n (x, h), with G(x, t) = ext+htm

, which could be also expressed in the terms of the

generalized hypergeometric function as follows

gm
n (x, h) = xn

mF0





−
n

m
,−

n − 1

m
, . . .,−

n − m + 1

m
−

(−1)mhmm

xm



 .

The aim of this paper is to find a polynomial family, which would be the Appell-type one

and admit the generalized hypergeometric function representation simultaneously. Still, there

exist the polynomial families, which have the needed representation, e.g., the generalized hyper-

geometric polynomials fn

(

ai; bj; x
)

, studied at [9], such that

fn

(

ai; bj; x
)

= p+2Fq+2





−n, n + 1, a1, a2, . . ., ap

1,
1

2
, b1, b2, . . ., bq

xn



 , n ∈ N0,

and the incomplete hypergeometric polynomials associated with generalized incomplete hyperge-

ometric function, studied at [13], but they both are not the Appel-type polynomials.

The difference between all mentioned classes of polynomials, depending, if they are of

Appell-type or not and if they possess the generalized hypergeometric function representation

or do not, has motivated the title of the paper.

Therefore, let us give the following

Definition 1. Let ∆(k,−n) denotes the array of k ratios −n
k ,−n−1

k , . . . ,−n−k+1
k , n ∈ N0,

k ∈ N. Then we call the polynomial family

A
(k)
n (m, x) = xn

k+pFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

xk

]

, n, m ∈ N0, k ∈ N, (3)

where

k+pFq =
[n/k ]

∑
i=0

∏
p
r=1 (ar)

(i)

∏
q
s=1 (bs)

(i)

k

∏
j=1

(

−
n − j + 1

k

)(i) mi

i!xki
, (4)

the generalized hypergeometric Appell polynomials.

We note that if p = 0, q = 0, k := m, m := (−1)khkk the generalized hypergeometric Appell

polynomials A
(k)
n (m, x) become the Gould-Hopper polynomials gm

n (x, h) and if p = 0, q = 0,

m = −2, k = 2 they become the Hermite polynomials Hn(x) mentioned above.

The main result of this article is the following basic statement.

Theorem 1. The generalized hypergeometric Appell polynomials A
(k)
n (m, x) defined by defi-

nition 1 are the Appell type ones.

2 BASIC DEFINITIONS AND NOTATION

In addition to the rising factorial we use the falling factorial, defined by (x)0 = 1 and

(x)n = x(x − 1)(x − 2) · · · (x − n + 1) for n > 0. In these notations, the following relations

hold (see [1])

(x)n = (−1)n(−x)(n), (5)
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and the Gauss product of indexes formula (see [14]) will be written as follows

(−λ)(mn) = mmn
m

∏
j=1

(

−
λ − j + 1

m

)(n)

, n ∈ N0. (6)

We note that in the case, when either a or b is a non-positive integer, the generalized hyperge-

ometric function reduces to a polynomial

pFq

[

−m, a2, . . ., ap

b1, b2, . . ., bq
z

]

=
∞

∑
n=0

(−1)n
(

m

n

)

∏
p
j=2 aj

(n)

∏
q
s=1 bs

(n)
zn.

As far as we deal with the differentiation, the differentiation formula with respect to z

would be useful: d
dx pFq

[

a1, a2, . . ., ap

b1, b2, . . ., bq
z

]

=
∏

p
j=1 aj

∏
q
s=1 bs

pFq

[

a1 + 1, a2 + 1, . . ., ap + 1

b1 + 1, b2 + 1, . . ., bq + 1
z

]

[12].

3 BASIC PROPERTIES OF THE GENERALIZED HYPERGEOMETRIC APPELL POLYNOMIALS

3.1 Being of Appell type

Proof of Theorem 1. To prove the generalized hypergeometric Appell polynomials A
(k)
n (m, x)

are the Appell-type polynomials, it is sufficient to show that there exists a formal power series

A(t) such that the following relation holds

A(t)ext =
∞

∑
n=0

A
(k)
n (m, x)

tn

n!
.

We set (γ)i =
(

∏
p
r=1 (ar)

(i)
)/(

∏
q
s=1 (bs)

(i)
)

. Then from definition 2 and relations (5) and

(6) it follows that

A
(k)
n (m, x) = xn

p+kFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

xk

]

= xn
[n/k ]

∑
i=0

(γ)i(−1)ki(n)ki

kki

mi

i!xki
.

We choose

A(t) = pFq

[

a1, a2, . . . , ap

b1, b2, . . . , bq
(−1)km

tk

kk

]

. (7)

Using the expansion of ext into the power series and changing the product of the series by

the double series, we transform the generating function as follows

A(t)ext =







∞

∑
n=0

(γ)n

(

(−1)km tk

kk

)n

n!







(

∞

∑
s=0

(xt)s

s!

)

=
∞

∑
n=0

(

∞

∑
s=0

(γ)n(−1)kn mnxs

kkn

ts+kn

s!n!

)

.

Using the infinite sums interchange formula ([5])
∞

∑
n=0

∞

∑
m=0

an,m =
∞

∑
p=0

p

∑
q=0

ap−q,q and taking

into account the multiplicity of i, we have

∞

∑
n=0

∞

∑
s=0

as,n =
∞

∑
n=0

[n/k ]

∑
i=0

an−ki,i,
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then

∞

∑
n=0

(

∞

∑
s=0

(γ)n mn(−1)knxs

kkn

ts+kn

s!n!

)

=
∞

∑
n=0





[n/k ]

∑
i=0

mi(−1)ki(γ)i

kki

xn−kitn

(n − ki)!i!





=
∞

∑
n=0

xn





[n/k ]

∑
i=0

n!

(n − ki)!i!

mi(−1)ki(γ)i

kki

1

xki





tn

n!
=

∞

∑
n=0

xn





[n/k ]

∑
i=0

(γ)i mi(−1)ki(n)ki

kki

1
xki

i!





tn

n!
.

The inner sum is precisely equal to the generalized hypergeometric function in the form of

(3) and, therefore, the relation (4) holds. This means that the generating function admit the

needed representation (3).

It should be noted that there is another way to prove Theorem 1, which is to replace xt by t

and m
/

xk by x in [15, Problem 26, p.173].

As a consequence of Theorem1, we derive a new identity for the generalized hypergeomet-

ric function.

Corollary 1. The following identity holds

nxn−1
p+kFq

[

a1, a2, . . ., ap, ∆(k,−n + 1)

b1, b2, . . ., bq

m

xk

]

= nxn−1
p+kFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

xk

]

− km(γ)1
∆1(k,−n)xn−k−1

p+kFq

[

a1 + 1, a2 + 1, . . ., ap + 1, ∆(k,−n + k)

b1 + 1, b2 + 1, . . ., bq + 1

m

xk

]

,

where ∆1(k,−n) denotes the product
(

− n
k

)

·
(

−n−1
k

)

. . .
(

−n−k+1
k

)

.

Proof. The generalized hypergeometric Appell polynomials are the Appell-type ones, hence,

the identity d
dx

{

A
(k)
n (m, x)

}

= nA
(k)
n−1(m, x) fulfils.

Representing the polynomials A
(k)
n−1(m, x) in the terms of the generalized hypergeometric

function according to Definition 1, we immediately obtain the left side of the corollary equality.

To obtain its right side we differentiate the hypergeometric representation of the polyno-

mials A
(k)
n (m, x) under the Leibnitz rule:

d

dx

{

xn
p+kFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

xk

]}

= nxn−1
p+kFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

xk

]

+ xn d

dx

{

p+kFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

xk

]}

.

Performing the derivative of the hypergeometric function, we obtain

xn d

dx

{

p+kFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

xk

]}

= xn

(

(−1)k(n)k

kk

a1 · · · ap

b1 · · · bq

m(−k)

1!xk+1

+
(−1)2k(n)2k

k2k

a1(a1 + 1) · · · ap(ap + 1)

b1(b1 + 1) · · · bq(bq + 1)

m2(−2k)

2!x2k+1

+
(−1)3k(n)3k

k3k

a1(a1 + 1)(a1 + 2) · · · ap(ap + 1)(ap + 2)

b1(b1 + 1)(b1 + 2) · · · bq(bq + 1)(bq + 2)

m3(−3k)

3!x3k+1
+ · · ·

)
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= xn−k−1mk
(−1)k+1(n)k

kk

a1 · · · ap

b1 · · · bq

(

1 +
(−1)k(n − k)k

kk

(a1 + 1) · · · (ap + 1)

(b1 + 1) · · · (bq + 1)

m · 2

2!xk

+
(−1)2k(n − k)2k

k2k

(a1 + 1)(a1 + 2) · · · (ap + 1)(ap + 2)

(b1 + 1)(b1 + 2) · · · (bq + 1)(bq + 2)

m2 · 3

3!x2k
+ · · ·

)

= −km(γ)1
∆1(k,−n)xn−k−1

p+kFq

[

a1 + 1, a2 + 1, . . ., ap + 1, ∆(k,−n + k)

b1 + 1, b2 + 1, . . ., bq + 1

m

xk

]

,

that ends the proof.

Since an arbitrary polynomial of one variable Pn(x) ∈ C[x] always permits the formal series

representation

Pn(x) =
n

∑
i=0

αix
i,

we are interested in finding those representation for the generalized hypergeometric Appell

polynomials.

Corollary 2. The generalized hypergeometric Appell polynomials A
(k)
n (m, x) possess

(i) the standard basis {xi}n
i=0 representation

A
(k)
n (m, x) =

[n/k ]

∑
i=0

n!(−1)ki(γ)imi

i!kki(n − ki)!
xn−ki, (8)

(ii) the differential operator formal power series representation

A
(k)
n (m, x) =





[n/k ]

∑
i=0

(−1)ki(γ)imi

i!kki
Dki



 xn. (9)

Proof. (i) We use an approach from [6], which is based on the idea of the connection problem.

Given the two polynomial families of Appell type {Pn(x)} and {Qn(x)} with generating

functions A1(t) and A2(t) respectively, the solution of its connection problem could be written

as follows

Qn(x) =
n

∑
m=0

n!

m!
αn−mPm(x),

where A2(t)
A1(t)

=
∞

∑
k=0

αktk.

We are searching for the unknown coefficients αk to decompose the polynomials

Qn(x) = xn, A2(t) = 1

upon the polynomials A
(k)
n (m, x) defined by (3) with generating function A1(t) defined by (7).

Deriving the ratio of generating functions A2(t) and A1(t) we have

A2(t)

A1(t)
=

∞

∑
r=0

(−1)krmr

kkrr!
(γ)rtkr =

∞

∑
r=0

αrktrk,
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and, constructing the corresponding coefficients αn−m, we obtain the needed representation.

(ii) An arbitrary Appell-type polynomial Pn(x) could be also written in the symmetric form

Pn(x) =
n

∑
i=0

(

n

i

)

cix
n−i.

According to [11], the latter expression is equivalent to the following differential operator

representation

Pn(x) =

(

n

∑
i=0

ci

i!
Di

)

xn,

where D := d
/

dx is an ordinary differentiation with respect to x, consequently,

A
(k)
n (m, x) =

[n/k ]

∑
i=0

(

n

ki

)

cix
n−ki =

[n/k ]

∑
i=0

(

n

ki

)

(−1)ki(γ)imi(ki)!

i!kki
xn−ki,

we deduce a differential operator formal power series representation of the generalized hyper-

geometric Appell polynomials of the form (9).

Remark. Comparing the power series (1) and operational formula (9) of the generalized hyper-

geometric Appell polynomials to the corresponding ones of the Gould-Hopper polynomials

A(t) = ehtm
, gm

n (x, h) =
(

ehDm
)

xn,

it is easy to see that the latter have more compact forms.

Symmetry. Substituting the negative value of argument into the formula (8)

A
(k)
n (m,−x) =

[n/k ]

∑
i=0

(−1)n−ki n!(−1)ki(γ)imi

i!kki(n − ki)!
xn−ki,

we conclude that, in the case of even k, the generalized hypergeometric Appell polynomials

are the even ones themselves while n is an even number, and they are the odd ones themselves

while n is an odd number:

A
(2k)
2n (m,−x) = A

(2k)
2n (m, x), A

(2k)
2n+1(m,−x) = −A

(2k)
2n+1(m, x).

Otherwise, for any odd k in the case of odd n, the summands standing on the even places

change their signs into the opposite ones, and the same do the summands standing on the odd

places in the case of even n.

3.2 Adition and multiplication formulas and other properties

Here we shall prove the following result.

Theorem 2. The following formulas hold for the generalized hypergeometric Appell polyno-

mials

(i) addition formula

A
(k)
n (m, x + y) =

n

∑
i=0

(

n

i

)

yn−i A
(k)
i (m, x) =

n

∑
i=0

(

n

i

)

xn−iA
(k)
i (m, y),
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(ii) multiplication formula

A
(k)
n (m, Mx) =

n

∑
i=0

(

n

i

)

(M − 1)n−ixn−iA
(k)
i (m, x),

(iii) indexes interchange formula

n

∑
i=0

(

n

i

)

A
(k1)
i (m, x)A

(k2)
n−i(m, y) =

n

∑
i=0

(

n

i

)

A
(k2)
i (m, x)A

(k1)
n−i (m, y),

(iv) convolution type identity

n

∑
i=0

(−1)i
(

n

i

)

A
(k)
i (m, x)A

(k)
n−i(m, x)

=
(−1)nm n/k n!

kn

[n/k ]

∑
i=0

a
(i)
1 . . . a

(i)
p

i!b
(i)
1 . . . b

(i)
q

a
( n/k−i)
1 . . . a

( n/k−i)
p

(

n
/

k − i
)

!b
( n/k−i)
1 . . . b

(n/k−i)
q

.

Proof. The addition and the multiplication formulas hold for all Appell-type polynomial fam-

ilies ([11]), consequently, they hold for the generalized hypergeometric Appell polynomials as

well. The indexes interchange formulas could be obtained applying methods proposed in [6]

and the convolution type identity is obtained by the direct calculations at x = 0.

It is worth stressing, that the polynomials A
(k)
n (m, Mx) loose the property of being of

Appell-type. Moreover, the generalized hypergeometric polynomials over the polynomials

could be defined in the same manner as the generalized hypergeometric Appell polynomials:

A
(k)
n (m, f (x)) = ( f (x))n

p+kFq

[

a1, a2, . . ., ap, ∆(k,−n)

b1, b2, . . ., bq

m

( f (x))k

]

,

where f (x) = a0xp + a1xp−1 + · · ·+ ap, a0 6= 0, which deliver us the following differentiation

rule
d

dx
A
(k)
n (m, f (x)) = n f ′(x)A

(k)
n−1(m, f (x)).

In particular, in the case when p = a0 = 1, we obtain the Appell differentiation.
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Бедратюк Л., Луньо Н. Деякi властивостi узгальнених гiпергеометричних многочленiв Аппеля //

Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 129–137.

У цiй статтi ми представляємо нове сiмейство многочленiв типу Аппеля {A
(k)
n (m, x)},

n, m ∈ N0, k ∈ N, кожен представник якого визначений над полем дiйсних чисел i може бути

представлений через узагальнену гiпергеометричну функцiю

pFq

[

a1, a2, . . ., ap

b1, b2, . . ., bq
z

]

=
∞

∑
k=0

a
(k)
1 a

(k)
2 . . . a

(k)
p

b
(k)
1 b

(k)
2 . . . b

(k)
q

zk

k!
,

де через x(n) позначено символ Похгаммера (зростаючий факторiал), який визначають за

формулою x(n) = x(x + 1)(x + 2) · · · (x + n − 1) для n ≥ 1 i x(0) = 1, у такий спосiб

A
(k)
n (m, x) = xn

k+pFq





a1, a2, . . ., ap,−
n

k
,−

n − 1

k
, . . .,−

n − k + 1

k
b1, b2, . . ., bq

m

xk



 ,

i одночасно многочлени цього сiмейства є многочленами типу Аппеля.

Для многочленiв цього сiмейства вперше знайдено породжуючу функцiю i доведено, що

вони є многочленами типу Аппеля. Знайдено розклад представникiв цього сiмейства за стан-

дартним базисом в замкнутiй формi та у формi ряду диференцiального оператора, а також

нову тотожнiсть для узагальненої гiпергеометричної функцiї. Крiм цього, для узагальнених

гiпергеометричних многочленiв Аппеля встановлено формули додавання i множення аргу-

мента та деякi iншi.

Ключовi слова i фрази: послiдовнiсть Аппеля, многочлен Аппеля, узагальнений гiпергеоме-

тричний многочлен, узагальнена гiпергеометрична функцiя.
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ASYMPTOTICS OF APPROXIMATION OF FUNCTIONS BY CONJUGATE POISSON

INTEGRALS

Among the actual problems of the theory of approximation of functions one should highlight

a wide range of extremal problems, in particular, studying the approximation of functional classes

by various linear methods of summation of the Fourier series. In this paper, we consider the well-

known Lipschitz class Lip1α, i.e. the class of continuous 2π–periodic functions satisfying the Lips-

chitz condition of order α, 0 < α ≤ 1, and the conjugate Poisson integral acts as the approximating

operator. One of the relevant tasks at present is the possibility of finding constants for asymp-

totic terms of the indicated degree of smallness (the so-called Kolmogorov–Nikol’skii constants) in

asymptotic distributions of approximations by the conjugate Poisson integrals of functions from the

Lipschitz class in the uniform metric. In this paper, complete asymptotic expansions are obtained

for the exact upper bounds of deviations of the conjugate Poisson integrals from functions from the

class Lip1α. These expansions make it possible to write down the Kolmogorov–Nikol’skii constants

of the arbitrary order of smallness.
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Nikol’skii problem.
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1 INTRODUCTION

Let C be the space of 2π-periodic continuous functions equipped with the norm

‖ f‖C = max
t

| f (t)|.
Denote by Wr any set of 2π-periodic functions with absolutely continuous derivatives up

to order (r − 1) such that ess sup
t

∣

∣ f (r)(t)
∣

∣ ≤ 1.

The set of functions that are conjugate to those from the class Wr is denoted by W
r
. That is

W
r
=

{

f̄ : f̄ (x) = − 1

2π

∫ π

−π
f (x + t) cot

t

2
dt = − 1

2π

∫ π

0
ψx(t) cot

t

2
dt,

ψx(t) = f (x + t)− f (x − t), f ∈ Wr

}

.

Any f ∈ C is contained in the class Lip1 α, 0 < α ≤ 1, if

∀ t1, t2 ∈ R | f (t1)− f (t2)| ≤ |t1 − t2|α.

УДК 517.5
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Let us consider a boundary value problem (in the unit circle) for the equation ∆u = 0,

where ∆ is the Laplace operator in polar coordinates. We can rewrite this equation as follows

∂2u

∂ρ2
+

1

ρ

∂u

∂ρ
+

1

ρ2

∂2u

∂x2
= 0, 0 ≤ ρ < 1, −π ≤ x ≤ π. (1)

A solution Pρ( f ; x) of (1) that satisfies the boundary conditions

u(ρ, x)|ρ=1 = f (x), −π ≤ x ≤ π,

where f is a summable 2π-periodic function, is of the form

Pρ( f ; x) =
1

π

∫ π

−π
f (x + t)Kρ(t) dt,

where

Kρ(t) =
1

2
+

∞

∑
k=1

ρk cos kt =
1 − ρ2

2(1 − 2ρ cos t + ρ2)
.

The quantity Pρ( f ; x) is called the Poisson integral of a function f , and, respectively, Kρ(t) is

called the kernel of the Poisson integral.

In the paper, we consider the conjugate Poisson integral, i.e. the quantity of the following

form

Pρ( f ; x) = Pρ( f ; x) = − 1

π

∫ π

−π
f (x + t)Kρ(t) dt, (2)

where

Kρ(t) =
∞

∑
k=1

ρk sin kt =
ρ sin t

1 − 2ρ cos t + ρ2
(3)

is the kernel of the conjugate Poisson integral.

Let N ⊆ C be a certain class of functions. According to Stepanets [12], the problem of

establishment of asymptotic equalities for the quantity

E
(

N; Pρ

)

C
= sup

f∈N

∥

∥ f (·) − Pρ( f ; ·)
∥

∥

C

is called the Kolmogorov–Nikol’skii problem.

If we determine the explicit form of a function ϕ(ρ) such that

E
(

N; Pρ

)

C
= ϕ(ρ) + o(ϕ(ρ)) as ρ → 1−,

then we say that the Kolmogorov–Nikol’skii problem for the Poisson integral Pρ is solved on

the class N in the metric of the space C.

Definition 1. A formal series
∞

∑
n=0

gn(ρ) is called a complete asymptotic expansion of a function

f (ρ) as ρ → 1−, if for an arbitrary natural number m the following equation holds

f (ρ) =
m

∑
n=0

gn(ρ) + o (gm(ρ)) as ρ → 1−,

and ∀ n ∈ N

|gn+1(ρ)| = o(|gn(ρ)|) as ρ → 1 − .

In what follows, this fact we denote by

f (ρ) ∼=
∞

∑
n=0

gn(ρ).
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Approximation properties of the method of approximation by Poisson integrals on classes

of differentiable functions are well studied. The Kolmogorov–Nikol’skii problem for the Pois-

son integral on the classes W1 was solved by Natanson in [10].

Timan [14] obtained the exact values of approximative characteristics E
(

Wr ; Pρ

)

C
. In the

paper [9] Malei determined the complete asymptotic expansion of the upper bounds of devi-

ations of Poisson integrals from functions of the class W1. Later, this expansion was reproved

by Stark [11].

The complete asymptotic expansion of the quantity E
(

Wr ; Pδ

)

C
in powers of 1

δ as δ → ∞

was obtained by Baskakov [2] in the case of r = 1, 2, 3 and by Kharkevych, Kal’chuk [5] for

any natural r. Later, the Kolmogorov–Nikol’skii problem for the Poisson integral on classes

of differentiable functions was solved in works [7, 8, 15, 18–21]. Simultaneously, approxima-

tion properties of the method of approximation by Poisson integrals on classes of conjugate

functions are studied not enough.

Note that the first estimates of E
(

W
1
; Pρ

)

C
were obtained by Nagy [13]. Later, the general

expressions that allow one to get asymptotic expansions of the quantity E
(

W
r
; Pδ

)

C
in powers

of 1
δ as δ → ∞ were determined by Baskakov [1].

The present paper is an extension of the paper [6], where the corresponding results for

the classes Lip1 1 were obtained in terms of (1 − ρ). In what follows, we establish a complete

asymptotic expansion of the quantity

E
(

Lip1 α; Pρ

)

C
= sup

f∈Lip1 α

∥

∥ f̄ (·)− Pρ( f ; ·)
∥

∥

C
, 0 < α ≤ 1.

This expansion allows one to write down the Kolmogorov–Nikol’skii constants of an arbitrary

order.

2 MAIN RESULTS

The following statement is true.

Theorem 1. For 0 < α ≤ 1 the following complete asymptotic expansion holds as ρ → 1−

E(Lip1 α; Pρ)C =
2α−1

sin απ
2

(

ln
1

ρ

)α

− 2α

π

∞

∑
k=0

(−1)k

(

2
π

)2(k+1)−α

2k − α + 2

(

ln
1

ρ

)2k+2

+
2α

πα

∞

∑
k=0

(−1)k
(

ln
1

ρ

)2k+2 ∞

∑
i=1

( π
2 )

α

∫

0

(

(

(2i − 1)π − u
1
α

)−2k−3

−
(

(2i − 1)π + u
1
α

)−2k−3
+
(

2πi + u
1
α

)−2k−3
−
(

2πi − u
1
α

)−2k−3
)

u
1
α du.

(4)

Proof. Note first, that the kernel of the conjugate Poisson integral (3) can be rewritten as

Kρ(t) =
1

2
cot

t

2
− 1

2
cot

t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
.

Whence, in view of 2π-periodicity of functions f , we get

Pρ( f , x)− f̄ (x) =
1

2π

π
∫

−π

f (x + t) cot
t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
dt
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=
1

2π

π
∫

0

( f (x + t)− f (x − t)) cot
t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
dt

=
1

2π

π
2
∫

0

( f (x + t)− f (x − t)) cot
t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
dt

− 1

2π

π
∫

π
2

( f (2π + x − t)− f (x + t)) cot
t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
dt.

For 0 ≤ t ≤ π

cot
t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
≥ 0,

functions f belong the class Lip1 α, therefore it holds

|Pρ( f , x)− f̄ (x)| ≤ 2α

2π

π
2
∫

0

tα cot
t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
dt

+
2α

2π

π
∫

π
2

(π − t)α cot
t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
dt.

(5)

Let [g(t)]2π be an odd 2π-periodic extension of the function g of the form

g(t) = g(α, t) =

{

tα, 0 ≤ t ≤ π
2 ,

(π − t)α, π
2 ≤ t ≤ π.

(6)

The function f ∗(t) := 2α−1 [g(t)]2π belongs to the class Lip1 α, and we can see that the right

hand side of (5) coincides with Pρ( f ∗, 0)− f̄ ∗(0). Indeed, taking into account that f ∗ is odd,

we get

Pρ( f ∗, 0)− f̄ ∗(0) =
1

2π

π
∫

−π

f ∗(t) cot
t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
dt

=
1

π

π
∫

0

f ∗(t) cot
t

2
· (1 − ρ)2

1 − 2ρ cos t + ρ2
dt.

(7)

The right hand side of (7) coincides with the right hand side of (5). Hence

E(Lip1 α; Pρ)C = |Pρ( f ∗, 0)− f̄ ∗(0)|. (8)

Let us rewrite the kernel of the conjugate Poisson integral (3) in the following form

Kρ(t) =
∞

∑
k=1

eln ρk
sin kt =

∞

∑
k=1

e
− ln

(

1
ρ

)

k
sin kt. (9)

It is known, that the Fourier cosine transform of the function e−βt takes the form [3, Ch. VII],

Φc(u) =
1√
2π

{

t + u

β2 + (t + u)2
+

t − u

β2 + (t − u)2

}

. (10)
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Further we shall need the Poisson formula [16, Ch. II]:

√
γ

(

Φc(0)

2
+

∞

∑
n=1

Φc(nγ)

)

=
√

ω

(

f (0)

2
+

∞

∑
n=1

f (nω)

)

, (11)

where ωγ = 2π, ω > 0. Setting ω = 1, γ = 2π in (11) and taking into account (10) with

β = ln 1
ρ , from (9) we obtain

Kρ(t) =
1

2

(

e
− ln( 1

ρ )k sin kt
)∣

∣

∣

k=0
+

∞

∑
k=1

(

e
− ln( 1

ρ )k sin kt
)

=
√

2π

{

1

2
Φc(0) +

∞

∑
k=1

Φc(2πk)

}

=
t

β2 + t2
+

∞

∑
k=1

(

t + 2πk

β2 + (t + 2πk)2
+

t − 2πk

β2 + (t − 2πk)2

)

.

(12)

Therefore, combining (2) and (12), we can write the conjugate Poisson integral in the fol-

lowing equivalent form

Pρ( f ∗, 0) = − 1

π

π
∫

−π

f ∗(t)
t

β2 + t2
dt − 1

π

π
∫

−π

f ∗(t)
∞

∑
k=1

t + 2πk

β2 + (t + 2πk)2
dt

− 1

π

π
∫

−π

f ∗(t)
∞

∑
k=1

t − 2πk

β2 + (t − 2πk)2
dt = I1 − I2 − I3.

(13)

Now we proceed to calculating of the term I2:

I2 =
1

π

π
∫

−π

f ∗(t)
∞

∑
k=1

t + 2πk

β2 + (t + 2πk)2
dt =

1

π

π
∫

−π

f ∗(t)
t + 2π

β2 + (t + 2π)2
dt

+
1

π

π
∫

−π

f ∗(t)
t + 4π

β2 + (t + 4π)2
dt+ · · · = I2,1 + I2,2 + · · · .

(14)

Making appropriate substitutions in I2,1, I2,2, · · · , we get

I2,1 =
1

π

3π
∫

π

f ∗(t)
t

β2 + t2
dt, I2,2 =

1

π

5π
∫

3π

f ∗(t)
t

β2 + t2
dt, · · · .

Hence, from (14), we obtain

I2 =
1

π

+∞
∫

π

f ∗(t)
t

β2 + t2
dt. (15)

One can verify that the term I3 takes the following form

I3 =
1

π

π
∫

−π

f ∗(t)
∞

∑
k=1

t − 2πk

β2 + (t − 2πk)2
dt =

1

π

−π
∫

−∞

f ∗(t)
t

β2 + t2
dt. (16)

Combining (13) with (15) and (16), we obtain

Pρ( f ∗, 0) = − 1

π

+∞
∫

−∞

f ∗(t)
t

β2 + t2
dt. (17)
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It is known [12, p. 93], that a conjugate for f function can be represented in the form

f (x) = − 1

π

+∞
∫

−∞

f (x + t)

t
dt. (18)

Therefore, from (17) and (18), taking into account that the function f ∗ is odd, we get

Pρ( f ∗, 0)− f̄ ∗(0) =
β2

π

+∞
∫

−∞

f ∗(t)
t(β2 + t2)

dt =
β2

π





0
∫

−∞

+

+∞
∫

0





f ∗(t)
t(β2 + t2)

dt

=
2β2

π

+∞
∫

0

f ∗(t)
1

t(β2 + t2)
dt.

(19)

Hence, from (8) and (19), we have

E(Lip1 α; Pρ)C =
2αβ2

π

+∞
∫

0

[g(t)]2π

t(β2 + t2)
dt =

2αβ2

π







π
2
∫

0

+

+∞
∫

π
2







[g(t)]2π

t(β2 + t2)
dt. (20)

From (6) we get

π
2
∫

0

[g(t)]2π

t(β2 + t2)
dt =

π
2
∫

0

tα

t(t2 + β2)
dt =

π
2
∫

0

(

t
β

)α−1

(

t
β

)2
+ 1

βα−2 d

(

t

β

)

= βα−2







+∞
∫

0

−
+∞
∫

π
2β







uα−1

1 + u2
du.

(21)

According to [4, p. 306]
∞
∫

0

uα−1

1 + u2
du =

π

2
cosec

πα

2
. (22)

Let us make transformations in the second integral from the right-hand side of (21), apply-

ing geometric series

∞
∫

π
2β

uα−1

1 + u2
du =

∞
∫

π
2β

1

u3−α
· 1

1 −
(

− 1
u2

) du =

∞
∫

π
2β

∞

∑
k=0

(−1)k 1

u2k+3−α
du

=
∞

∑
k=0

(−1)k

(

2β
π

)2k+2−α

2k + 2 − α
.

(23)

Combining formulas (21), (22) and (23), we obtain

π
2
∫

0

[g(t)]2π

t(β2 + t2)
dt =

(

ln
1

ρ

)α−2




π

2 sin πα
2

−
∞

∑
k=0

(−1)k

2k + 2 − α

(

2 ln 1
ρ

π

)2k+2−α


 . (24)
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Then, we use geometric series for calculating the second integral from the right-hand side

of (20):

+∞
∫

π
2

[g(t)]2π

t(β2 + t2)
dt =

+∞
∫

π
2

[g(t)]2π

t3
(

1 + β2

t2

) dt =
∞

∑
k=0

(−1)k
(

ln
1

ρ

)2k +∞
∫

π
2

[g(t)]2π

t3+2k
dt. (25)

From (24) and (25), we get

E(Lip1 α; Pρ)C =

(

2 ln
1

ρ

)α 1

2 sin απ
2

+
2α

π

∞

∑
k=0

(−1)k
(

ln
1

ρ

)2(k+1)











+∞
∫

π
2

[g(t)]2π

t3+2k
dt −

(

2
π

)2k+2−α

2k + 2 − α











dt.

For the function [g(t)]2π on
[

π
2 ;+∞

)

the following relations hold

[g(t)]2π =























(−t + (2i − 1)π)α, t ∈
[

π
2 + 4(i − 1)π

2 ; π
2 + (4i − 3)π

2

]

,

−(t − (2i − 1)π)α, t ∈
[

π
2 + (4i − 3)π

2 ; π
2 + (4i − 2)π

2

]

,

−(−t + 2πi)α , t ∈
[

π
2 + (4i − 2)π

2 ; π
2 + (4i − 1)π

2

]

,

(t − 2πi)α , t ∈
[

π
2 + (4i − 1)π

2 ; π
2 + 4i π

2

]

,

where i = 1, 2, . . . . Splitting the integral
+∞
∫

π
2

[g(t)]2π

t3+2k dt into the sum of integrals and making

corresponding substitutions in each of them, we get (4).

The theorem is proved.

Results of the theorem give us an opportunity to write down the Kolmogorov–Nikil’skii

constants of an arbitrary order in asymptotic expansions in terms of ln 1
ρ as ρ → 1−.

Let us consider the class of functions Lip1 1. The following statement holds.

Corollary 1. The complete asymptotic expansion holds as ρ → 1−

E(Lip1 1; Pρ)C = ln
1

ρ
− 1

π

(

ln
1

ρ

)2

+
∞

∑
k=1

(−1)k

(2k + 1)(k + 1)

×
(

∞

∑
i=1

(

1

(4i − 1)2k+1
− 1

(4i + 1)2k+1

)

− 1

)

(

2

π
ln

1

ρ

)2k+2

.

(26)

Proof. Putting α = 1 in (20), we obtain

E(Lip1 1; Pρ)C =
2β2

π

+∞
∫

0

[g1(t)]2π

t(β2 + t2)
dt, (27)

where [g1(t)]2π is as it was introduced earlier, an odd 2π-periodic extension of the function g1

of the form

g1(t) =

{

t, 0 ≤ t ≤ π
2 ,

π − t, π
2 ≤ t ≤ π.
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Making transformations that are analogous to that in (21)–(25), from (27) we get

E(Lip1 1; Pρ)C = ln
1

ρ
+

2

π

∞

∑
k=0

(−1)k
(

ln
1

ρ

)2k+2

×







+∞
∫

π
2

[g1(t)]2π

t3+2k
dt − 1

2k + 1

(

2

π

)2k+1






.

(28)

To calculate the integral in the right-hand side of (28), let us write it down as a sum of the

integrals on corresponding intervals. For this reason we use the following form of the function

g1:

[g1(t)]2π =

{

−t + (2i − 1)π, t ∈
[

−π
2 + (2i − 1)π; −π

2 + 2πi
]

,

t − 2πi, t ∈
[

−π
2 + 2πi; −π

2 + (2i + 1)π
]

.

We obtain

+∞
∫

π
2

[g1(t)]2π

t3+2k
dt =

∞

∑
i=1







− π
2 +2πi
∫

− π
2 +(2i−1)π

−t + (2i − 1)π

t3+2k
dt +

− π
2 +(2i+1)π
∫

− π
2 +2πi

t − 2πi

t3+2k
dt






. (29)

Having calculated the integral on the right-hand side of (29) and made corresponding

transformations, we obtain

+∞
∫

π
2

[g1(t)]2π

t3+2k
dt =

(

2

π

)2k+1 1

(2k + 1)(k + 1)

×
(

k +
∞

∑
i=1

(

1

(4i − 1)2k+1
− 1

(4i + 1)2k+1

))

.

(30)

Taking into account (30), from (28) we get (26).

The Corollary 1 is proved.

In the paper we have also obtained another form of the expansion (26), in terms of the gen-

eralized Riemann zeta function (the Hurwitz zeta function) (see definition, e.g., [17, Ch. XIII]).

It is quite relevant because in approximation of functions by the Poisson integrals we obtain

asymptotic expansions with non-explicit form of the coefficients. The Hurwitz zeta function

gives a possibility to get sharp values of the Kolmogorov–Nikil’skii constants.

Corollary 2. The complete asymptotic expansion holds as ρ → 1−

E(Lip1 1; Pρ)C = ln
1

ρ
− 1

π

(

ln
1

ρ

)2

+
∞

∑
k=1

(−1)k

(2k + 1)(k + 1)

×
(

1

42k+1

{

ζ

(

2k + 1;
3

4

)

− ζ

(

2k + 1;
5

4

)}

− 1

)(

2

π
ln

1

ρ

)2k+2

,

(31)

where ζ(z; q) =
∞

∑
n=0

1
(q+n)z , Re z > 1, is the Hurwitz zeta function.
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Proof. Taking into account that

∞

∑
i=1

1

(4i − 1)2k+1
=

1

42k+1

∞

∑
i=0

1

(i + 3
4)

2k+1
=

1

42k+1
ζ

(

2k + 1;
3

4

)

,

∞

∑
i=1

1

(4i + 1)2k+1
=

1

42k+1
ζ

(

2k + 1;
5

4

)

,

from (30) we derive

+∞
∫

π
2

[g1(t)]2π

t3+2k
dt =

(

2

π

)2k+1 1

(2k + 1)(k + 1)

×
(

k +
1

42k+1

(

ζ

(

2k + 1;
3

4

)

− ζ

(

2k + 1;
5

4

)))

.

(32)

The Corollary 2 is proved.

Note that (32) holds for k = 1, 2, . . . . In the case k = 0 the Hurwitz zeta function is not de-

termined. Therefore the corresponding coefficient is individually calculated in the expansion

(31).

Note also that Corollary 1 is a generalization of the B. Nagy result [13]. The estimation

E(Lip1 1; Pρ)C = ln
1

ρ
+ O

(

(

ln
1

ρ

)2
)

, ρ → 1−

follows from Corollary 1 that coincides with the indicated result.
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Кальчук I.В., Харкевич Ю.I., Пожарська К.В. Асимптотика наближення функцiй спряженими

iнтегралами Пуассона // Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 138–147.

Актуальними задачами теорiї наближення функцiй є розв’язання широкого кола екстре-

мальних задач, зокрема, дослiдження питань апроксимацiї функцiональних класiв рiзними

лiнiйними методами пiдсумовування рядiв Фур’є. В данiй роботi розглядається вiдомий клас

Лiпшиця Lip1α, тобто клас неперервних 2π-перiодичних функцiй, що задовольняють умову

Лiпшиця порядку α, 0 < α ≤ 1, а в якостi наближаючого оператора виступає спряжений iнте-

грал Пуассона. Досить актуальною задачею на даний час є можливiсть знаходження констант

при асимптотичних доданках вказаного степеня малостi (так званих констант Колмогорова–

Нiкольського) в асимптотичних розкладах величин наближень спряженими iнтегралами Пу-

ассона функцiй з класу Лiпшиця в рiвномiрнiй метрицi. В роботi отримано повнi асимптоти-

чнi розклади для точних верхнiх меж вiдхилень спряжених iнтегралiв Пуассона вiд функцiй з

класу Lip1α. Данi розклади дають можливiсть записати константи Колмогорова–Нiкольського

довiльного порядку малостi.

Ключовi слова i фрази: iнтеграл Пуассона, асимптотичний розклад, спряжена функцiя, за-

дача Колмогорова-Нiкольського.
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APPROXIMATION OF THE NIKOL’SKII–BESOV FUNCTIONAL CLASSES BY ENTIRE

FUNCTIONS OF A SPECIAL FORM

We establish the exact-order estimates for the approximation of functions from the Nikol’skii–

Besov classes Sr
1,θB(Rd), d ≥ 1, by entire functions of exponential type with some restrictions for

their spectrum. The error of the approximation is estimated in the metric of the Lebesgue space

L∞(Rd).
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1 INTRODUCTION

In the paper, we continue to study the approximative characteristics of the Nikol’skii–Besov

classes Sr
p,θ B(Rd) of functions with a dominant mixed derivative in the Lebesgue spaces (see

[4, 17, 18, 21, 23, 25]). We have established the order estimates of the best approximation of

functions from these classes by entire functions of exponential type with a spectrum focused

on the Lebesgue sets whose measure does not exceed M.

The spaces Sr
p,θB(Rd) were first considered by S. M. Nikol’skii [8] for θ = ∞ (in this case

also one can Sr
p,∞B(Rd) ≡ Sr

pH(Rd)) and T. I. Amanov [1] for 1 ≤ θ < ∞. In the classical form,

the definition of these functional spaces was formulated by S. M. Nikol’skii and T. I. Amanov

through mixed multiple differences and mixed multiple modules of continuity of functions.

Here, the definition of the Nikol’skii–Besov spaces Sr
p,θB(Rd) is presented through so-called

decomposition representation of the norm of elements from these spaces. Note that decom-

position representation and corresponding rationing of the Nikol’skii–Besov spaces were first

obtained by S. M. Nikol’skii and P. I. Lizorkin [5]. As it turned out, this decomposition norm of

functions plays a key role in the studies of different approximative characteristics of the func-

tion classes. This representation is based on the application of the Fourier transform that can

be defined using generalized functions (see, e.g., [2, Ch. 11], [6], [15, Ch. 2]).
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2 DEFINITION OF CLASSES OF FUNCTIONS AND APPROXIMATIVE CHARACTERISTICS

Let R
d be the d-dimensional Euclidean space with the elements x = (x1, . . . , xd) and

(x, y) := x1y1 + · · · + xdyd. Denote by Lq(Rd), 1 ≤ q ≤ ∞, the space of all functions f (x) =

f (x1, . . . , xd) measurable on R
d with the finite norm

‖ f‖q :=

( ∫

Rd

| f (x)|qdx

) 1
q

, 1 ≤ q < ∞, and ‖ f‖∞ := ess sup
x∈Rd

| f (x)|.

Let S = S(Rd) be the Schwarz space of test complex-valued functions ϕ infinitely differen-

tiable on R
d and decreasing at infinity together with their derivatives faster than any power of

the function
(

x2
1 + . . . + x2

d

)− 1
2 , considered in the appropriate topology. Let S′ denote the space

of linear continuous functionals on S. The elements of the space S′ are generalized functions.

If f ∈ S′, then 〈 f , ϕ〉 denotes the value of a functional f on the test function ϕ ∈ S. Denote by

Fϕ and F−1ϕ the Fourier transform and the inverse Fourier transform of functions ϕ from the

spaces S and S′.

For any continuous function ϕ on R
d, the closure of the set of all points x ∈ R

d such that

ϕ(x) 6= 0 is called the support of the function ϕ and denoted by supp ϕ.

The generalized function f vanishes in an open set G when 〈 f , ϕ〉 = 0 for all ϕ ∈ S and

supp ϕ ⊂ G. The union of all neighborhoods, where f is equal to zero, is an open set and

called the null set of the generalized function f . It is denoted by G f . The complement of the

largest open set G f to R
d is called the support of the generalized function f , i.e., supp f equals

to Ḡ f , it is a closed set.

According to the formula

〈 f , ϕ〉 =
∫

Rd

f (x)ϕ(x)dx, ϕ ∈ S, (1)

each function f ∈ Lp(Rd), 1 ≤ p ≤ ∞, defines a linear continuous functional on S and, there-

fore, is an element of S′ in this sense. Hence, the Fourier transform of a function f ∈ Lp(Rd),

1 ≤ p ≤ ∞, can be regarded as the Fourier transform of the generalized function (1).

Further, let Km(t) =
∫

R
km(λ)e−2πiλtdλ, m ∈ Z+, K−1 := 0, where

km(λ) =





1, |λ| < 2m−1,

2
(

1 − |λ|
2m

)
, 2m−1 ≤ |λ| ≤ 2m,

0, |λ| > 2m,

k0(λ) =

{
1 − |λ|, 0 ≤ |λ| ≤ 1,

0, |λ| > 1.

For any vector s = (s1, . . . , sd), sj ∈ Z+, j = 1, d, we define

A∗
s (x) =

d

∏
j=1

(
Ksj

(xj)− Ksj−1(xj)
)
,

A∗
s ( f , x) = f (x) ∗ A∗

s (x) =
∫

Rd

f (y)A∗
s (x − y)dy.

Also, for all s ∈ Z
d
+, consider the sets

Q∗
2s =

{
λ = (λ1, . . . , λd) : η(sj)2

sj−1 ≤ |λj| < 2sj , λj ∈ R, j = 1, d
}

,
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where η(0) = 0 and η(t) = 1, t > 0 (respectively, Q∗
2s for d = 1).

The following statement is true.

Lemma 1 (see example [4]). Let 1 ≤ p ≤ ∞, then for any f ∈ Lp(Rd), we have

f (x) = ∑
s

A∗
s ( f , x)

and suppFAs( f , x) ⊆ Q∗
2s .

Note that A∗
s ( f , x) is the analog of the de la Vallée Poussin block of sum of periodic function

of several variables (see example [14]).

In the accepted notation, the spaces Sr
p,θB(Rd), 1 ≤ p, θ ≤ ∞, r > 0, can be defined as

follows (see, e.g., [4, 16]):

Sr
p,θ B(Rd) :=

{
f ∈ Lp(R

d) : ‖ f‖Sr
p,θ B < ∞

}
,

where for 1 ≤ θ < ∞,

‖ f‖Sr
p,θ B(Rd) ≍

(

∑
s≥0

2(s,r)θ‖A∗
s ( f , ·)‖θ

p

) 1
θ

(2)

and for θ = ∞,

‖ f‖Sr
p,∞ B(Rd) := ‖ f‖Sr

p H(Rd) ≍ sup
s≥0

2(s,r)‖A∗
s ( f , ·)‖p . (3)

Here and below, for positive quantities a and b, the notation a ≍ b means that there exist

positive constants C1 and C2 that do not depend on an essential parameter in the values a and

b (e.g., C1 and C2 in the expressions (2) and (3) do not depend on the function f ) such that

C1a ≤ b (in this case, we write a ≪ b) and C2a ≥ b (in this case, we write a ≫ b). In the present

paper, all constants Ci, i = 1, 2, . . . , depend only on the parameters contained in the definition

of the function class, the metric in which we estimate the error of approximation, and the

dimension of the space R
d. Moreover, for the vectors a = (a1, . . . , ad) and b = (b1, . . . , bd), the

inequalities of the type a ≤ b (a > b) are understood in the coordinate-wise: aj ≤ bj (aj > bj),

j = 1, d. We also use t ≥ 0 (t > 0) if tj ≥ 0 (tj > 0), j = 1, d, and a 6= b if ai 6= bi at least for

one i, i = 1, d.

In what follows, we use the notations Sr
p,θB and Sr

pH (Sr
p,θB and Sr

p H for d = 1) instead

of Sr
p,θ B(Rd) and Sr

pH(Rd) respectively. We also assume that the coordinates of the vector

r = (r1, . . . , rd) are ordered as follows 0 < r1 = r2 = · · · = rν < rν+1 ≤ · · · ≤ rd. The vector

r = (r1, . . . , rd) is associated with the vector γ = (γ1, . . . , γd), γj = rj/r1, j = 1, d, and the

vector γ is, in turn, associated, with the vector γ′, where γ′
j = γj, if j = 1, ν and 1 < γ′

j < γj,

j = ν + 1, d.

In addition, in the case 1 < p < ∞, the norm of functions from the spaces Sr
p,θ B(Rd) can

be defined in another form. Let A ⊂ R
d be a measurable set. Denote by χA a characteristic

function of the set A and for f ∈ Lp(Rd), set δ∗s ( f , x) = F−1(χQ∗
2s
· F f ). The spaces Sr

p,θB,

1 < p < ∞, 1 ≤ θ ≤ ∞, r > 0, can be defined as follows [5]

Sr
p,θB :=

{
f ∈ Lp(R

d) : ‖ f‖Sr
p,θ B < ∞

}
,
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where

‖ f‖Sr
p,θ B ≍

(

∑
s≥0

2(s,r)θ‖δ∗s ( f , ·)‖θ
p

) 1
θ

(4)

for 1 ≤ θ < ∞ and

‖ f‖Sr
p H ≍ sup

s≥0
2(s,r)‖δ∗s ( f , ·)‖p . (5)

The class Sr
p,θB is defined as a set of functions f ∈ Lp(Rd) such that ‖ f‖Sr

p,θ B ≤ 1. We

preserve the same notations for the classes Sr
p,θ B as for the spaces Sr

p,θB.

As can be seen from (2)–(5), for any f ∈ Sr
p,θB, 1 < p < ∞, the following relation holds:

‖δ∗s ( f , ·)‖p ≍ ‖A∗
s ( f , ·)‖p .

Now we consider the approximative characteristics of the classes Sr
p,θB.

Let L ⊂ Z
d
+ be a finite set, M := M(L) =

⋃
s∈L Q∗

2s . For any f ∈ Lq(Rd), 1 ≤ q ≤ ∞, we

put

SM( f , x) := SM(L)( f , x) = ∑
s∈L

δ∗s ( f , x).

Since supp SM( f , x) ⊆ M, then SM( f , x) is an entire function of the space Lq(Rd).

For f ∈ Lq(Rd) and Sr
p,θB(Rd) ⊂ Lq(Rd), consider the following approximative character-

istic

eFM
(

f
)

q
:= inf

L : mesM(L)≤M

∥∥∥ f (·) − SM(L)( f , ·)
∥∥∥

q

and

eFM
(
Sr

p,θB
)

q
:= sup

f∈Sr
p,θB

eFM
(

f
)

q
. (6)

3 APPROXIMATION OF FUNCTIONS FROM CLASSES Sr
1,θB(Rd) BY ENTIRE FUNCTIONS

The following statements are true.

Theorem 1. Let r > 1, 1 ≤ θ ≤ ∞ and d = 1. Then the following relation holds:

eFM
(
Sr

1,θ B(R)
)

∞
≍ M−r+1. (7)

Theorem 2. Let r1 > 1, 1 ≤ θ ≤ ∞. Then for d ≥ 2 the following relation holds:

eFM
(
Sr

1,θ B(Rd)
)

∞
≍
(

M−1 logν−1 M
)r1−1(

logν−1 M
)1− 1

θ . (8)

The results of Theorems 1 and 2 are also new for Nikol’skii classes Sr
1H(Rd), d ≥ 1.

Let us note that in Theorem 1, the estimate eFM
(
Sr

1,θ B(R)
)

∞
does not depend on the param-

eter θ unlike to the corresponding estimate in the case d ≥ 2 (Theorem 2).

Before proving the main results, we formulate auxiliary theorem.

Theorem 3 ([1]). Let 1 ≤ p, θ ≤ ∞, 1 ≤ p ≤ q ≤ ∞ and we have a vector ρ such that

ρj = rj −
(

1
p −

1
q

)
> 0, j = 1, d. If f ∈ Sr

p,θB(Rd), then f ∈ S
ρ
q,θB(Rd) and

‖ f‖S
ρ
q,θ B(Rd) ≪ ‖ f‖Sr

p,θ B(Rd).
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Proof of Theorem 1. Since r > 1, then by virtue of Theorem 3, there exists a number ρ,

ρ = r − 1 > 0, such that for any function f ∈ Sr
1,θ B(R), we have f ∈ S

ρ
∞,θB(R) ⊂ L∞(R).

First, we will get the upper estimate in (7). Recall now the definition of another approxima-

tive characteristic used in the proof of the results. For s ∈ Z
d
+, define the set Q

γ
n as follows

Q
γ
n =

⋃

(s,γ)≤n

Q∗
2s ,

where n ∈ N. The set Q
γ
n is called a stepwise hyperbolic cross and, moreover, mes Q

γ
n ≍

2nnd−1 (see, e.g., [5]), where mes Q
γ
n is the Lebesgue measure of the set Q

γ
n .

For f ∈ Lq(Rd), 1 ≤ q ≤ ∞, we set

SQ
γ
n
( f , x) = ∑

(s,γ)≤n

δ∗s ( f , x), x ∈ R
d

and denote

EQ
γ
n
( f )q = ‖ f (·) − SQ

γ
n
( f , ·)‖q and EQ

γ
n
(Sr

p,θ B)q = sup
f∈Sr

p,θB

EQ
γ
n
( f )q . (9)

We now specificating the definition of the quantity EQ
γ
n
( f )q in the one-dimensional case.

For d = 1, each of the sets Q∗
2s is a union of the half intervals (−2s,−2s−1] and [2s−1, 2s),

s ∈ Z+, with the corresponding modification at s = 0. Then the stepwise hyperbolic cross

degenerates into the interval (−2n, 2n), as the union of sets Q∗
2s for all s ≤ n, s ∈ Z+, namely

Qn := Q
γ
n =

⋃
s≤n Q∗

2s . In addition we have |Qn| ≍ 2n, where |Qn| denotes the length of the

interval.

The definition of (9) for f ∈ Lq(R), 1 ≤ q ≤ ∞, can be rewritten as follows

EQn
( f )q = ‖ f (·) − SQn

( f , ·)‖q , EQn
(Sr

p,θ B)q = sup
f∈Sr

p,θB

EQn
( f )q ,

where

SQn( f , x) = ∑
s≤n

δ∗s ( f , x).

From the definition of the approximative characteristics (6) and (9), it follows that the fol-

lowing relation holds in the case when mes Q
γ
n ≍ mes M

eFM
(
Sr

p,θB
)

q
≪ EQ

γ
n

(
Sr

p,θ B
)

q
. (10)

The following statement is true.

Theorem 4 ([25]). Let r1 > 1, 1 ≤ θ ≤ ∞. Then the following relation holds:

EQ
γ
n

(
Sr

1,θB
)

∞
≍ 2−n(r1−1)n(ν−1)(1− 1

θ ). (11)

In the case d = 1, the estimate (11) can be written as follows

EQn

(
Sr

1,θB
)

∞
≍ 2−n(r−1). (12)

For a given M, we choose a number n ∈ N such that |Qn| ≤ M < |Qn+1|, i.e. M ≍ 2n.

Taking into account (10), from relation (12) we get the upper estimate in (7)

eFM
(
Sr

1,θB
)

∞
≪ EQn

(
Sr

1,θB
)

∞
≍ 2−n(r−1) ≍ M−r+1.
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To obtain the lower estimate in (7), for any n ∈ N, consider the function

f1(x) = C32−nr A∗
n(x), C3 > 0,

that is, the function f1 consists of one “block” A∗
n(x).

We give some auxiliary statements.

Lemma 2 ([25]). Let 1 ≤ p < ∞, then the estimate

‖A∗
s (·)‖p ≍ 2

‖s‖1

(
1− 1

p

)

holds, where ‖s‖1 = s1 + . . . + sd, sj ∈ Z+, j = 1, d.

Lemma 3 ([25]). The following relation

‖A∗
s (·)‖∞ ≍ 2‖s‖1

holds, where ‖s‖1 = s1 + . . . + sd, sj ∈ Z+, j = 1, d.

According to Lemma 2, we have
∥∥A∗

s (·)
∥∥

1
≍ C4. Then for 1 ≤ θ < ∞,

‖ f1‖Sr
1,θ B ≍

(

∑
s

2srθ‖A∗
s ( f1, ·)‖θ

1

) 1
θ

≍
(

2nrθ2−nrθ
) 1

θ
= 1

and

‖ f1‖Sr
1,∞

≍ sup
s

2sr‖A∗
s ( f1, ·)‖1 ≍ 2nr2−nr = 1.

So, the function f1 belongs to the class Sr
1,θ B for all 1 ≤ θ ≤ ∞.

For a given M, choosing a number n ∈ N such that |Q̃n| ≤ 4M < |Q̃n+1|, where Q̃n = Q∗
2n ,

|Q̃n| ≍ 2n, and using Lemma 3, we conclude that

‖ f1(·)− SM( f1, ·)‖∞ ≥
∣∣‖ f1(·)‖∞ − ‖SM( f1, ·)‖∞

∣∣≫ 2−nr(2n − M) ≫ 2−nr 2n ≍ M−r+1.

The lower estimate is established. Theorem 1 is proved. �

Before proving Theorem 2 we note that by Theorem 3 the condition r1 > 1 ensures that

there exists a vector ρ, ρj = rj − 1 > 0, j = 1, d, such that any function f ∈ Sr
1,θ B(Rd) belongs to

the set S
ρ
∞,θB(Rd) and therefore f ∈ L∞(Rd). In addition, we can say that for some 1 < q0 < ∞,

f ∈ S
ρ
q0,θB, where ρj = rj −

(
1 − 1

q0

)
> 0, j = 1, d.

Proof of Theorem 2. The upper estimate in (8) follows from Theorem 4. Since mes Q
γ
n ≪

2nnν−1, then for a given M, we choose a number n ∈ N such that mes Q
γ
n ≤ M < mes Q

γ
n+1,

that is M ≍ 2nnν−1. Using relation (11), we have

eFM
(
Sr

1,θ B
)

∞
≪ 2−n(r1−1)n(ν−1)(1− 1

θ ) ≍
(

M−1 logν−1 M
)r1−1(

logν−1 M
)(1− 1

θ ).

Passing to establishing the estimate from below in (8), we should note that it is sufficient to

obtain it in the case ν = d.

Let

Θ(n) =
{

s = (s1, . . . , sd) ∈ Z
d : s1 + . . . + sd = n

}
and Q̃n =

⋃

s∈Θ(n)

Q∗
2s ,
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and mes Q̃n ≍ 2nnν−1.

Unlike the one-dimensional case, we consider the following functions depending on the

value of the parameter θ

f2(x) = C52−nr1n− d−1
θ ∑

s∈Θ(n)

A∗
s (x), C5 > 0,

when 1 ≤ θ < ∞, and

f3(x) = C62−nr1 ∑
s∈Θ(n)

A∗
s (x), C6 > 0,

when θ = ∞.

Let us show that the functions f2 and f3 belong to the classes Sr
1,θB and Sr

1,∞B respectively.

According to Lemma 2, we have
∥∥A∗

s (·)
∥∥

1
≍ C7. Then

‖ f2‖Sr
1,θ B ≍


 ∑

s∈Θ(n)

2(s,r)θ‖A∗
s ( f2, ·)‖θ

1




1
θ

≍ 2−nr1n− d−1
θ


 ∑

s∈Θ(n)

2(s,r)θ‖A∗
s (·)‖

θ
1




1
θ

≍ 2−nr1n− d−1
θ


 ∑

s∈Θ(n)

2r1(s,1)θ




1
θ

≪ n− d−1
θ


 ∑

s∈Θ(n)

1




1
θ

≪ 1.

For the function f3, the following estimates hold:

‖ f3‖Sr
1,∞

≍ sup
s∈Θ(n)

2(s,r)‖A∗
s ( f3, ·)‖1 ≍ 2−nr1 sup

s∈Θ(n)

2(s,r)‖A∗
s (·)‖1 ≍ 2−nr1 sup

(s,1)=n+1

2(s,r) ≪ 1.

Further, denote by L′ the set of vectors s such that s ∈ Θ(n) and the set M = M(L′) =⋃
s∈L′ Q∗

2s satisfies the relation

mes Q̃n ≤ 4M < mes Q̃n+1, (13)

where M = M(n) = mes M.

Lemma 4 ([25]). The following relation holds:

∥∥∥∥ ∑
(s,1)=n+1

A∗
s (·)

∥∥∥∥
∞

≍ 2nnd−1.

Using the Lemmas 3, 4 and relation (13), taking into account that mes Q̃n ≍ 2nnν−1, we can

write

‖ f2(·)− SM( f2, ·)‖∞ ≥
∣∣‖ f2(·)‖∞ − ‖SM( f2, ·)‖∞

∣∣

≫ 2−nr1n
d−1

θ (2nnd−1 − M) ≫ 2−nr1n
d−1

θ 2nnd−1

= 2−n(r1−1)n(d−1)(1− 1
θ ) ≍

(
M−1 logd−1 M

)r1−1(
logd−1 M

)(1− 1
θ ).

Similarly in the case θ = ∞, we get

‖ f3(·)− SM( f3, ·)‖∞ ≫
(

M−1 logd−1 M
)r1−1

logd−1 M.
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The lower estimates are established. Theorem 2 is proved. �

The exact-order estimates of eFM
(
Sr

p,θB
)

q
are established in [21] for some other relations

between parameters p, q and θ. In this article, we show that there are relations between the

parameters p, q, θ such that the quantities eFM
(
Sr

p,θ B
)

q
and EQ

γ
n

(
Sr

p,θ B
)

q
have different orders.

The quantity (6) is a non-periodic analogue of the best orthogonal approximation and the

quantity (9) corresponds to the approximation of the stepwise hyperbolic Fourier sum. The

main results concerning the approximation of the Nikol’skii–Besov classes of periodic func-

tions with a dominant mixed derivative can be found in monographs V. N. Temlyakov [14],

A. S. Romanyuk [11] and D. Dũng, V. N. Temlyakov and T. Ullrich [3].

Currently, the generalizations of the Nikol’skii–Besov classes with the dominant mixed

smoothness of periodic and non-periodic functions of many variables are currently being in-

tensively studied, in particular, in the articles [7, 9, 10, 12, 13, 19, 26].

In the one-dimensional case, the Nikol’skii–Besov classes with mixed smoothness

Sr
p,θB(Rd) coincide with isotropic and anisotropic Nikol’skii–Besov classes Br

p,θ(R
d) and

Br
p,θ(R

d). The exact-order estimates of some approximate characteristics of these classes are

established in [20, 22, 24].
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1,θ B(Rd), d ≥ 1, за допомогою цiлих функцiй експоненцiального типу з певними обмеження-

ми на їхнiй спектр. Похибка наближення оцiнюється у метрицi простору Лебега L∞(Rd).
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ANTONOVA T.M.

ON CONVERGENCE CRITERIA FOR BRANCHED CONTINUED FRACTION

The starting point of the present paper is a result by E.A. Boltarovych (1989) on convergence

regions, dealing with branched continued fraction

N

∑
i1=1

ai(1)

1 +

N

∑
i2=1

ai(2)

1 +
. . .

+

N

∑
in=1

ai(n)

1 +
. . . ,

where |ai(2n−1)| ≤ α/N, ip = 1, N, p = 1, 2n − 1, n ≥ 1, and for each multiindex i(2n − 1) there

is a single index j2n, 1 ≤ j2n ≤ N, such that |ai(2n−1),j2n
| ≥ R, ip = 1, N, p = 1, 2n − 1, n ≥ 1,

and |ai(2n)| ≤ r/(N − 1), i2n 6= j2n, ip = 1, N, p = 1, 2n, n ≥ 1, where N > 1 and α, r, R are real

numbers that satisfying certain conditions. In the present paper, conditions for these regions are

replaced by ∑
N
i1=1 |ai(1)| ≤ α(1 − ε), ∑

N
i2n+1=1 |ai(2n+1)| ≤ α(1 − ε), ip = 1, N, p = 1, 2n, n ≥ 1, and

for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N, such that |ai(2n−1),j2n
| ≥ R and

∑i2n∈{1,2,...,N}\{j2n}
|ai(2n)| ≤ r, ip = 1, N, p = 1, 2n − 1, n ≥ 1, where ε, α, r and R are real numbers

that satisfying certain conditions, and better convergence speed estimates are obtained.

Key words and phrases: convergence, convergence region, convergence speed estimate, branched
continued fraction.

Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine

E-mail: tamara.m.antonova@lpnu.ua

1 INTRODUCTION

All known general methods of proof of convergence criteria of continued fractions are

based on value-region considerations. The interplay between element regions and value re-

gions leads to convergence region criteria, that is, results of the form: if the elements of con-

tinued fraction lie in some regions then the continued fraction converges. In addition, the

relationship between element regions and value regions provides one with knowledge of the

location of approximants of continued fraction whose elements lie in some convergence re-

gions. Both of these phenomena (i.e., the convergence regions and the information about the

location of approximants) are not to be found for most common infinite processes, such as

series and products [15, pp. 63–78].

It is well know (see, for example, [7]) that branched continued fractions (BCF) are multi-

dimensional generalization of continued fractions. Let N be a fixed natural number. For BCF

with the complex elements

N

∑
i1=1

ai(1)

1 +

N

∑
i2=1

ai(2)

1 +
. . .

+

N

∑
in=1

ai(n)

1 +
. . . , (1)

E.A. Boltarovych [9] proved the following theorem.

УДК 517.5
2010 Mathematics Subject Classification: 40A99, 32A17, 30B70, 40A15.
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Theorem 1. Let N > 1 and let there exist real numbers α, r and R such that 0 ≤ α ≤ 1/4,

0 ≤ r < ∞, R(1 − α) ≥ (1 + α)(r + 2 − 2α),

Q =
α(R + r)(1 + α)2

(R(1 − α)− r(1 + α)− 1 + α2)2
< 1, (2)

and such that BCF (1) with elements ai(n) satisfying

|ai(2n−1)| ≤ α/N, ip = 1, N, p = 1, 2n − 1, n ≥ 1, (3)

and for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N, such that

|ai(2n−1),j2n
| ≥ R, ip = 1, N, p = 1, 2n − 1, n ≥ 1, (4)

|ai(2n)| ≤ r/(N − 1), i2n 6= j2n, ip = 1, N, p = 1, 2n, n ≥ 1. (5)

Then the BCF (1) converges.

This is analog of result by Leighton–Wall [13] on twin convergence regions, dealing with

continued fractions. In the present paper, we shall study what happens to conditions on num-

bers α, r and R, and convergence speed estimates, when the conditions (3)–(5) are replaced

by

N

∑
i1=1

|ai(1)| ≤ α(1 − ε),
N

∑
i2n+1=1

|ai(2n+1)| ≤ α(1 − ε), ip = 1, N, p = 1, 2n, n ≥ 1, (6)

where 0 < ε < 1, and

|ai(2n−1),j2n
| ≥ R, ∑

i2n∈{1,2,...,N}\{j2n}

|ai(2n)| ≤ r, ip = 1, N, p = 1, 2n − 1, n ≥ 1. (7)

The same type of problem of convergence regions for BCF is discussed in [2–6,14]. Application

of the value regions to the study of the convergence of functional BCF may be found in [5,8,10].

Expansions of certain analytic functions in some classes of BCF are given in [1, 8, 11, 12].

We give here a few facts (see [7]) that are used. Let Q
(n)
i(k)

denotes the “tails” of (1), that is

Q
(s)
i(s)

= 1, ip = 1, N, p = 1, s, s ≥ 1, and

Q
(n)
i(k)

= 1 +
ik

∑
ik+1=1

ai(k+1)

1 +

ik+1

∑
ik+2=1

ai(k+2)

1 +
. . .

+

in−1

∑
in=1

ai(n)

1
,

where ip = 1, N, p = 1, k, k = 1, n − 1, n ≥ 2. It is clear that the following recurrence relations

hold

Q
(n)
i(k)

= 1 +
ik

∑
ik+1=1

ai(k+1)

Q
(n)
i(k+1)

, ip = 1, N, p = 1, k, k = 1, n − 1, n ≥ 2.

If fn denotes the n-th approximant of (1), then fn = ∑
N
i1=1(ai(1)/Q

(n)
i(1)

), n ≥ 1, and if all

Q
(n)
i(k)

6= 0, then

fm − fn = (−1)n
N

∑
i1=1

N

∑
i2=1

. . .
N

∑
in+1=1

∏
n+1
k=1 ai(k)

∏
n+1
k=1 Q

(m)
i(k) ∏

n
k=1 Q

(n)
i(k)

, m > n ≥ 1. (8)
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2 CONVERGENCE CRITERIA

We shall prove the auxiliary lemma.

Lemma. Let there exist real numbers α, r and R such that

0 ≤ α < 1, 0 ≤ r < ∞, R(1 − α) ≥ (1 + α)(r + 2 − 2α), (9)

and such that BCF (1) with elements ai(n) satisfying

N

∑
i1=1

|ai(1)| ≤ α,
N

∑
i2n+1=1

|ai(2n+1)| ≤ α, ip = 1, N, p = 1, 2n, n ≥ 1, (10)

and for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N, such that the

inequalities (7) hold. If Q
(n)
i(k)

denotes the “tails” of BCF (1), the following inequalities hold

1 − α ≤ |Q
(n)
i(2k)

| ≤ 1 + α, ip = 1, N, 1 ≤ p ≤ 2k ≤ n, n ≥ 2, (11)

|Q
(n)
i(2k−1)

| ≥
R

1 + α
−

r

1 − α
− 1 ≥ 1, ip = 1, N, 1 ≤ p ≤ 2k − 1 ≤ n − 1, n ≥ 2. (12)

Proof. Let n be an arbitrary natural number. By induction on k for each i(k) we show that the

inequalities (11) and (12) are valid.

If n is even number and k = n/2, then for each i(n) relations (11) are obvious. If n is odd

number and k = (n − 1)/2, then for arbitrary i(n − 1) use of relation (10) leads to

|Q
(n)
i(n−1)

| ≥ 1 −
N

∑
in=1

|ai(n)| ≥ 1 − α and |Q
(n)
i(n−1)

| ≤ 1 +
N

∑
in=1

|ai(n)| ≤ 1 + α.

By induction hypothesis that (11) hold for k = r and for each i(2r), where 2r ≤ n, we prove the

inequalities (12) for k = r and for each i(2r − 1) and the inequalities (11) for 2k = 2r − 2 for

each i(2r − 2). Indeed, use of relations (7), (9), (10) for arbitrary i(2r − 1) leads to

|Q
(n)
i(2r−1)

| =

∣

∣

∣

∣

∣

∣

1 +
ai(2r−1),j2r

Q
(n)
i(2r−1),j2r

+ ∑
i2r∈{1,2,...,N}\{j2r}

ai(2r)

Q
(n)
i(2r)

∣

∣

∣

∣

∣

∣

≥
|ai(2r−1),j2r

|

|Q
(n)
i(2r−1),j2r

|
− ∑

i2r∈{1,2,...,N}\{j2r}

|ai(2r)|

|Q
(n)
i(2r)

|
− 1 ≥

R

1 + α
−

r

1 − α
− 1 ≥ 1

and for arbitrary i(2r − 2)

|Q
(n)
i(2r−2)

| ≥ 1 −
N

∑
i2r−1=1

|ai(2r−1)|

|Q
(n)
i(2r−1)

|
≥ 1 − α and |Q

(n)
i(2r−2)

| ≤ 1 +
N

∑
i2r−1=1

|ai(2r−1)|

|Q
(n)
i(2r−1)

|
≤ 1 + α.

This completes the proof of the lemma.

Our main result is the following theorem.

Theorem 2. Let there exist real numbers α, ε, r and R such that 0 ≤ α < 1, 0 < ε < 1,

0 < r < ∞, R(1− α) ≥ (1+ α)(r + 2− 2α) and such that BCF (1) with elements ai(n) satisfying

the inequalities (6) and for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N,

such that the inequalities (7) hold. Then the following statements hold.
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• (A) The BCF (1) converges to a value f .

• (B) If fn denotes the n-th approximant of the BCF (1) and

q =
α(1 + α)(R(1 − α) + r(1 + α))

(R(1 − α)− r(1 + α)− 1 + α2)2
≤ 1, (13)

then

| f − f2n| ≤
α(1 − ε)n+1qn

R/(1 + α)− r/(1 − α)− 1
, n ≥ 1. (14)

• (C) The values of the BCF (1) and of its approximants are in the region |z| ≤ α(1 − ε).

Proof. At first, we prove (B). Let m > 2n + 1 and n ≥ 1. From the formula (8) one obtains

| fm − f2n| ≤
N

∑
i1=1

N

∑
i2=1

. . .
N

∑
i2n+1=1

|ai(1)|

|Q
(m)
i(1)

|

∏
2n+1
k=2 |ai(k)|

∏
2n+1
k=2 |Q

(m)
i(k)

|∏
2n
k=1 |Q

(2n)
i(k)

|

=
N

∑
i1=1

N

∑
i2=1

. . .
N

∑
i2n+1=1

|ai(1)|

|Q
(m)
i(1)

|

∏
n
k=1 |ai(2k)|

∏
n
k=1 |Q

(2n)
i(2k−1)

Q
(2n)
i(2k)

|

∏
n
k=1 |ai(2k+1)|

∏
n
k=1 |Q

(m)
i(2k)

Q
(m)
i(2k+1)

|
.

Obviously, the conditions of lemma hold. Let k be an arbitrary natural number. Applying

(11) and (12) we have for arbitrary i(2k − 1)

N

∑
i2k=1

|ai(2k)|

|Q
(2n)
i(2k−1)

Q
(2n)
i(2k)

|

N

∑
i2k+1=1

|ai(2k+1)|

|Q
(m)
i(2k)

Q
(m)
i(2k+1)

|

≤
α(1 − ε)

(1 − α)(R/(1 + α)− r/(1 − α)− 1)

N

∑
i2k=1

|ai(2k)|

|Q
(2n)
i(2k−1)

Q
(2n)
i(2k)

|

=
α(1 − ε)

(1 − α)(R/(1 + α)− r/(1 − α)− 1)

×





|ai(2k−1),j2k
|

|Q
(2n)
i(2k−1)

Q
(2n)
i(2k−1),j2k

|
+ ∑

i2k∈{1,2,...,N}\{j2k}

|ai(2k)|

|Q
(2n)
i(2k−1)

Q
(2n)
i(2k)

|



 .

Since

∑
i2k∈{1,...,N}\{j2k}

|ai(2k)|

|Q
(2n)
i(2k−1)

Q
(2n)
i(2k)

|
≤

1

(1 − α)(R/(1 + α)− r/(1 − α)− 1) ∑
i2k∈{1,2,...,N}\{j2k}

|ai(2k)|

≤
r

(1 − α)(R/(1 + α)− r/(1 − α)− 1)
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and

|ai(2k−1),j2k
|

|Q
(2n)
i(2k−1)

Q
(2n)
i(2k−1),j2k

|
=

∣

∣

∣

∣

∣

∣

ai(2k−1),j2k
/Q

(2n)
i(2k−1),j2k

1 + ai(2k−1),j2k
/Q

(2n)
i(2k−1),j2k

+ ∑i2k∈{1,2,...,N}\{j2k}
(ai(2k)/Q

(2n)
i(2k)

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 −
1 + ∑i2k∈{1,2,...,N}\{j2k}

(ai(2k)/Q
(2n)
i(2k)

)

1 + ai(2k−1),j2k
/Q

(2n)
i(2k−1),j2k

+ ∑i2k∈{1,2,...,N}\{j2k}
(ai(2k)/Q

(2n)
i(2k)

)

∣

∣

∣

∣

∣

∣

≤ 1 +

∣

∣

∣

∣

∣

∣

1 + ∑i2k∈{1,2,...,N}\{j2k}
(ai(2k)/Q

(2n)
i(2k)

)

Q
(2n)
i(2k−1)

∣

∣

∣

∣

∣

∣

≤ 1 +
1 + r/(1 − α)

R/(1 + α)− r/(1 − α)− 1
=

R/(1 + α)

R/(1 + α)− r/(1 − α)− 1
,

then
N

∑
i2k=1

|ai(2k)|

|Q
(2n)
i(2k−1)

Q
(2n)
i(2k)

|

N

∑
i2k+1=1

|ai(2k+1)|

|Q
(m)
i(2k)

Q
(m)
i(2k+1)

|
≤

α(1 − ε)(R/(1 + α) + r/(1 − α))

(1 − α)(R/(1 + α)− r/(1 − α)− 1)2
.

Thus, for m > 2n + 1 and n ≥ 1

| fm − f2n| ≤
αn+1(1 − ε)n+1(R/(1 + α) + r/(1 − α))n

(1 − α)n(R/(1 + α)− r/(1 − α)− 1)2n+1
=

α(1 − ε)n+1qn

R/(1 + α)− r/(1 − α)− 1
, (15)

where q is defined by (13). If in (15) we pass to the limit as n → ∞, then from (13) it follows

that BCF (1) converges. On the other hand, if in (15) we pass to the limit as m → ∞, we obtain

the estimate (14). This proves (B).

To prove (A) we consider the following equation

F1(x) = F2(x), (16)

where

F1(x) =
x

1 − x

(

R

1 + x
+

r

1 − x

)

, F2(x) =

(

R

1 + x
−

r

1 − x
− 1

)2

.

It is clear that F1(0) < F2(0), and F1(x) > 0 and F2(x) ≥ 0 for all x ∈ (0; 1). It follows from

F′
1(x) = R(1 + x2)/(1 − x2)2 + r(1 + x)/(1 − x)3 that F′

1(x) > 0 for all x ∈ (0; 1). Let us write

the function F2(x) in the form F2(x) = (x2 − (R + r)x + R − r − 1)2/(1 − x2)2 and consider

the following equation

x2 − (R + r)x + R − r − 1 = 0. (17)

If r > 0, then x∗ = (R + r −
√

(R + r)2 − 4(R − r − 1))/2 is the only root of equation (17) on

(0; 1) and, if r = 0, then x∗ = 1 is the only root of (17). Now from

F′
2(x) = −2

x2 − (R + r)x + R − r − 1

1 − x2

(

R

(1 + x)2
+

r

(1 − x)2

)

we have F′
2(x) < 0 for all x ∈ (0; x∗). It follows that there exists the only root α∗ of equation

(16) on (0; x∗). If 0 < α ≤ α∗, then F1(α) ≤ F2(α), that is, the condition (13) holds. In the case

when α∗ < α < 1 we consider the following BCF

N

∑
i1=1

ai(1)z

1 +

N

∑
i2=1

ai(2)

1 +
. . .

N

∑
i2k−1=1

ai(2k−1)z

1 +

N

∑
i2k=1

ai(2k)

1 +
. . . , (18)
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where z ∈ C. It is clear that the elements of BCF (18) satisfy the conditions of lemma in domain

Dε = {z ∈ C : |z| < 1/(1 − ε)}. It follows from (11) and (12) that, if fn(z) denotes the n-th

approximant of the BCF (18), for all z ∈ Dε

| fn(z)| ≤
N

∑
i1=1

|ai(1)z| ≤ α(1 − ε)|z| < α,

i.e. the sequence { fn(z)} is uniformly bounded in the domain Dε. If z ∈ Dα∗ , where Dα∗ =

{z ∈ C : |z| < α∗/α}, then according to the above BCF (18) converges. Obviously, Dα∗ ⊂ Dε.

Hence, by [16, Theorem 24.2, p. 108] BCF (18) converges uniformly on each compact subset of

the domain Dε, in particular, for z = 1. It follows that BCF (1) converges.

Finally, from

| fn | ≤
N

∑
i1=1

|ai(1)|

|Q
(n)
i(1)

|
≤

N

∑
i1=1

|ai(1)| ≤ α(1 − ε)

follows proof of (C).

Remark. If the conditions (3)–(5) are replaced by the conditions (6) and (7), then the condition

(2) is replaced by the condition (13) and the 0 ≤ α ≤ 1/4 is replaced by the 0 ≤ α < 1. It is

clear that Q > q, and, thus, the estimates (14) are better than similar estimates obtained in the

proof of Theorem 1. In addition, if q < 1, then ε can be zero.

Corollary. Let there exist real numbers β and ε such that 0 ≤ β < 1/N, 0 < ε < 1, and such

that BCF (1) with elements ai(n) satisfying |ai(2n−1)| ≤ β(1 − ε), where ip = 1, N, p = 1, 2n − 1,

n ≥ 1, and for each multiindex i(2n − 1) there is a single index j2n, 1 ≤ j2n ≤ N, such that

|ai(2n−1),j2n
| ≥ (1 + Nβ)(2 − (1 + N)β)/(1 − Nβ), ip = 1, N, p = 1, 2n − 1, n ≥ 1,

|ai(2n)| ≤ β, i2n 6= j2n, ip = 1, N, p = 1, 2n, n ≥ 1.

Then BCF (1) converges, and its values and its approximants are in the region |z| ≤ Nβ(1 − ε).

Proof. We set α = Nβ, r = (N − 1)β, R = (1 + Nβ)(2 − β(1 + N))/(1 − Nβ). Then

R =
1 + Nβ

1 − Nβ
(2 − 2Nβ + (N − 1)β) = (1 + Nβ)

(

2 +
N − 1

1 − Nβ
β

)

= (1 + α)

(

2 +
r

1 − α

)

.

It follows that the conditions of Theorem 2 hold, and, therefore, the corollary is an immediate

consequence of this theorem.

3 EXAMPLE

Let β, r and R be some positive numbers. We consider the periodical BCF

2

∑
i1=1

ai(1)

1 +

2

∑
i2=1

ai(2)

1 +
. . .

+

2

∑
in=1

ai(n)

1 +
. . . , (19)

where ai(1) = β, ai(2n−1) = (−1)i2n−2−1β, ai(2n−1),1 = (−1)i2n−1−1R, ai(2n−1),2 = (−1)i2n−1r,

which form by the following fractional transformation

s(w) =
β

1 +
R

1 + w
−

r

1 − w

+
β

1 −
R

1 + w
+

r

1 − w

.
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It follows that BCF (19) can be converged only to the real root of the following equation

(w − 2β)(1 − w2)2 − w(R − r − w(R + r))2 = 0. (20)

We choose β = α(1 − ε)/2, α = 1/3, ε = 1/4, r = 2/3 and R = 5. Then it is clear that the

conditions of Theorem 2 are satisfied and the inequalities |w| ≤ 2β are valid. Thus, BCF (19)

converges. On the other hand the equation (20) we write in the form

9(4w − 1)(1 − w2)2 − 4w(13 − 17w)2 = 0. (21)

Let F(w) = 9(4w − 1)(1 − w2)2 − 4w(13 − 17w)2. Then F(0) < 0 and F(−1/4) > 0. Thus, on

the interval [−1/4; 0] there is root of the equation (21). The following recurrent formula

fk+2 =
2β(1 − f 2

k )
2

(1 − f 2
k )

2 − (R − r − fk(R + r))2
, k ≥ 1,

with initial conditions f1 = 2β and f2 = 2β/(1 − (R − r)2) can be used to find of the above

mentioned root.
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Антонова Т.М. Про критерiй збiжностi для гiллястого ланцюгового дробу // Карпатськi матем.

публ. — 2020. — Т.12, №1. — C. 157–164.

Основою цiєї роботи є результат Є.А. Болтаровича (1989) про множини збiжностi для гiл-

лястого ланцюгового дробу

N

∑
i1=1

ai(1)

1 +

N

∑
i2=1

ai(2)

1 +
. . .

+

N

∑
in=1

ai(n)

1 +
. . . ,

де |ai(2n−1)| ≤ α/N, ip = 1, N, p = 1, 2n − 1, n ≥ 1, i для кожного мультиiндексу i(2n − 1)

iснує єдиний iндекс j2n, 1 ≤ j2n ≤ N, такий, що |ai(2n−1),j2n
| ≥ R, ip = 1, N, p = 1, 2n − 1,

n ≥ 1, та |ai(2n)| ≤ r/(N − 1), i2n 6= j2n, ip = 1, N, p = 1, 2n, n ≥ 1, де N > 1, α, r та R –

дiйснi числа, що задовольняють певнi умови. У цiй роботi умови для цих множин замiнено на

∑
N
i1=1 |ai(1)| ≤ α(1 − ε), ∑

N
i2n+1=1 |ai(2n+1)| ≤ α(1 − ε), ip = 1, N, p = 1, 2n, n ≥ 1, i для кожного

мультиiндексу i(2n − 1) iснує єдиний iндекс j2n, 1 ≤ j2n ≤ N, такий, що |ai(2n−1),j2n
| ≥ R та

∑i2n∈{1,2,...,N}\{j2n} |ai(2n)| ≤ r, ip = 1, N, p = 1, 2n − 1, n ≥ 1, де ε, α, r та R – дiйснi числа, що за-

довольняють певнi умови, i, отримано кращi оцiнки швидкостi збiжностi для цього гiллястого

ланцюгового дробу.

Ключовi слова i фрази: збiжнiсть, множина збiжностi, оцiнка швидкостi збiжностi, гiллястий

ланцюговий дрiб.
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CHAIKOVS’KYI A.1 , LAGODA O.2

BOUNDED SOLUTIONS OF A DIFFERENCE EQUATION WITH FINITE NUMBER OF

JUMPS OF OPERATOR COEFFICIENT

We study the problem of existence of a unique bounded solution of a difference equation with

variable operator coefficient in a Banach space. There is well known theory of such equations with

constant coefficient. In that case the problem is solved in terms of spectrum of the operator coef-

ficient. For the case of variable operator coefficient correspondent conditions are known too. But

it is too hard to check the conditions for particular equations. So, it is very important to give an

answer for the problem for those particular cases of variable coefficient, when correspondent con-

ditions are easy to check. One of such cases is the case of piecewise constant operator coefficient.

There are well known sufficient conditions of existence and uniqueness of bounded solution for the

case of one jump. In this work, we generalize these results for the case of finite number of jumps of

operator coefficient. Moreover, under additional assumption we obtained necessary and sufficient

conditions of existence and uniqueness of bounded solution.

Key words and phrases: difference equation, bounded solution, Banach space.
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INTRODUCTION

Let (X, ‖ · ‖) be a complex Banach space, L(X) be the space of linear continuous operators

in X, I ∈ L(X) be the identity operator. Let us denote σ(A) the spectrum of an operator

A ∈ L(X). Let us denote S = {z∈ C : |z| = 1} the unit circle in the complex plane.

Let us consider the difference equation

xn+1 = Anxn + yn, n ∈ Z, (1)

where {An | n ∈ Z} ⊂ L(X), {yn | n ∈ Z} ⊂ X are known sequences, {xn | n ∈ Z} ⊂ X is a

desired sequence. In the paper we investigate the question of existence and uniqueness of a

bounded solution for the equation (1).

It is known [3, chapter 7.6] the equation (1) has a unique bounded solution {xn | n ∈ Z}

for any bounded sequence {yn | n ∈ Z} if and only if operators sequence fulfills a condition

of discrete dichotomy (analogue of exponential dichotomy, which is well known in the theory

of differential equations). However, checking of discrete dichotomy conditions is very hard,

so we need simpler conditions of existence and uniqueness of a bounded solution for special

operators sequences.

УДК 517.929.2
2010 Mathematics Subject Classification: 65Q10, 47A56.
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To formulate one of such conditions we need the following spectral decomposition. As-

sume A ∈ L(X) and the condition σ(A) ∩ S = ∅ is true. Then the spectrum of the operator

A is decomposed into two parts, one of them is inside of the unit circle S, the other is outside.

Using the theorem about decomposition [4, p. 445] we can derive:

1) an existence of projectors P−(A), P+(A) ∈ L(X) such that

P−(A) + P+(A) = I;

2) decomposition of the space X to the direct sum

X = X−(A)+̇X+(A), (2)

where X−(A) = P−(A)X, X+(A) = P+(A)X are subspaces in which corresponding operators

A− = P−(A)A, A+ = P+(A)A have spectra

σ(A) ∩ {z∈ C | |z| < 1}, σ(A) ∩ {z∈ C | |z| > 1} (3)

accordingly.

I.V. Gonchar and M.F. Gorodnii investigated the equation (1) in the papers [1,2] for the case

of one jump of an operator coefficient. In the paper [1] the following result was proved.

Theorem 1. Let X be a complex Banach space and G, U be some operators from L(X), which

satisfy the following conditions:

1) σ(G) ∩ S = ∅, σ(U) ∩ S = ∅;

2) X = X−(G)+̇X+(U).

Then the difference equation
{

xn+1 = Gxn + yn, n ≥ 1,

xn+1 = Uxn + yn, n ≤ 0,

has a unique bounded in X solution {xn : n ∈ Z} for any bounded in X sequence {yn : n ∈ Z}.

In the paper the result of the Theorem 1 is generalized to an equation with several jumps

of an operator coefficient.

1 MAIN RESULTS

Let us consider a special case of the equation (1) with an operator coefficient, which changes

finite number of times:






xn+1 = A0xn + yn, n ≤ 0,

xn+1 = Anxn + yn, 1 ≤ n ≤ N − 1,

xn+1 = AN xn + yn, n ≥ N.

(4)

Here N is a fixed natural number.

Assume the conditions σ(A0)∩ S = ∅, σ(AN)∩ S = ∅ are true. Then each of the operators

A0, AN produce spectral decomposition of the form (2). Let us denote

P0− := P−(A0), P0+ := P+(A0), PN− := P−(AN), PN+ := P+(AN),

X0− := X−(A0), X0+ := X+(A0), XN− := X−(AN), XN+ := X+(AN).
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Remark 1. In a degenerate case, when one of the sets in (3) is empty, the corresponding sub-

space contains zero element only, so we can omit it in the direct sum. Further we assume

that all these sets are nonempty. For degenerate cases statements below are true if degenerate

summands are omitted.

Lemma 1. Let σ(A0) ∩ S = ∅. Then for any bounded sequence {yn : n ≤ 0} ⊂ X all bounded

solutions of the equation

xn+1 = A0xn + yn, n ≤ 0,

can be obtained by the formula

xn = An−1
0+ b −

0

∑
k=n

An−k−1
0 P0+yk +

n−1

∑
k=−∞

An−k−1
0 P0−yk, n ≤ 1, (5)

where b ∈ X0+ is an arbitrary element.

Proof. The condition σ(A0+) ⊂ {z∈ C : |z| > 1} implies the existence of the operator

A−1
0+ ∈ L(X) and the estimate

∃C > 0 ∃r ∈ (0, 1) ∀n ≥ 1 ||A−n
0+ || ≤ Crn. (6)

Similarly, the condition σ(A0−) ⊂ {z∈ C : |z| < 1} implies the estimate

∃C > 0 ∃r ∈ (0, 1) ∀n ≥ 1 ||An
0− || ≤ Crn. (7)

So, the defined sequence (5) is bounded for any element b ∈ X0+.

Let us check that the sequence (5) is a solution of the difference equation. We have

A0xn + yn = An
0+b −

0

∑
k=n

An−k
0 P0+yk +

n−1

∑
k=−∞

An−k
0 P0−yk + P0+yn + P0−yn

= A
(n+1)−1
0+ b −

0

∑
k=n+1

A
(n+1)−k−1
0 P0+yk +

(n+1)−1

∑
k=−∞

A
(n+1)−k−1
0 P0−yk = xn+1, n ≤ 0.

On the other hand, if {zn : n ≥ N} is any bounded solution and {xn : n ≥ N} is any

bounded solution of the form (5), the difference {rn = zn − xn : n ≥ N}, is a bounded solution

of the homogeneous equation

rn+1 = A0rn, n ≤ −1.

From this equation we have

r0 = A−n
0 rn, n ≤ −1,

and, using projection operator,

P0−r0 = A−n
0− rn → 0, n → −∞.

So, r0 ∈ X0+ and rn = An
0+r0, n ≤ −1. We obtained that solution {zn : n ≤ 0} has the form

(5). This completes the proof.
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Lemma 2. Let σ(AN) ∩ S = ∅. Then for any bounded sequence {yn : n ≥ N} ⊂ X all the

bounded solutions of the equation

xn+1 = AN xn + yn, n ≥ N,

can be obtained by the formula

xn = An−N
N− b +

n−1

∑
k=N

An−k−1
N PN−yk −

+∞

∑
k=n

An−k−1
N PN+yk, n ≥ N, (8)

where b ∈ XN− is an arbitrary element.

Proof. The conditions σ(AN+) ⊂ {z∈ C : |z| > 1} and σ(AN−) ⊂ {z∈ C : |z| < 1} imply the

existence of the operator A−1
N+ ∈ L(X) and estimates similar to (6) and (7). So, the sequence (8)

is bounded for any element b ∈ XN−.

If we put the sequence (8) to the difference equation, we obtain

AN xn + yn = An−N+1
N− b +

n−1

∑
k=N

An−k
N PN−yk −

+∞

∑
k=n

An−k
N PN+yk + PN−yn + PN+yn

= An+1−N
N− b +

(n+1)−1

∑
k=N

A
(n+1)−k−1
N PN−yk −

+∞

∑
k=n+1

A
(n+1)−k−1
N PN+yk = xn+1, n ≥ N.

Similar to proof of previous lemma, the difference {rn = zn − xn : n ≥ N} between any

bounded solution {zn : n ≥ N} and bounded solution {xn : n ≥ N} of the form (8), is a

bounded solution of the homogeneous equation

rn+1 = ANrn, n ≥ N,

and has a form

rn = An−N
N rN , n ≥ N.

Since

PN+rn = An−N
N+ rN , PN+rN = AN−n

N+ rn → 0, n → +∞,

we have rN ∈ XN− and rn = An−N
N− r0, n ≥ 0. So any bounded solution has the form (8). The

proof is completed.

Lemma 3. Let N ≥ 2 and AN−1 AN−2 · . . . · A1 be injection. The boundary problem

{

xn+1 = Anxn + yn, 1 ≤ n ≤ N − 1,

P0−x1 = v, PN+xN = u,
(9)

has a unique solution {xn : 1 ≤ n ≤ N} ⊂ X for any v ∈ X0−, u ∈ XN+ and any

{yn : 1 ≤ n ≤ N − 1} ⊂ X if and only if

X = W+̇XN−, (10)

where W = {AN−1 AN−2 · . . . · A1x : x ∈ X0+}.
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Proof. If a solution of the problem (9) exists, then the formula

xn = An−1 An−2 · . . . · A1x1 +
n−2

∑
k=1

An−1An−2 · . . . · Ak+1yk + yn−1, 2 ≤ n ≤ N, (11)

is true. One can check this result by induction. We have x2 = A1x1 + y1 and

Anxn + yn = An An−1An−2 · . . . · A1x1

+
n−2

∑
k=1

An An−1 An−2 · . . . · Ak+1yk + Anyn−1 + yn = xn+1, 2 ≤ n ≤ N − 1.

Necessity. Let the boundary problem has a unique solution for any bounded sequence

{yn : 1 ≤ n ≤ N − 1} ⊂ X and boundary conditions v ∈ X0−, u ∈ XN+.

Let us fix an arbitrary element f ∈ X. In case y1 = y2 = . . . = yN−2 = ~0, yN−1 = f ,

u = v =~0 problem (9) has the unique solution. Formula (11) gives us

xN = AN−1 AN−2 · . . . · A1x1 + f

that is, using boundary conditions, we have f = PN−xN + AN−1 AN−2 · . . . · A1(−P0+x1). This

equality implies f is the sum of elements from W and XN−.

To prove uniqueness of the element’s decomposition let us assume by the contrary that

there are nonzero elements u0 ∈ X0+, v0 ∈ XN− such that

~0 = AN−1 AN−2 · . . . · A1u0 + v0. (12)

Boundary problem (9) in case y1 = y2 = . . . = yN−2 = yN−1 = ~0, u = v = ~0 has unique

solution {x1, x2, . . . , xN−1, xN} and

xN = AN−1 AN−2 · . . . · A1x1.

But adding assumption (12) we have

(xN − v0) = AN−1 AN−2 · . . . · A1(x1 + u0),

so, {x1 + u0, x2, . . . , xN−1, xN − v0} is another solution of the boundary problem. A contradic-

tion.

Since f is arbitrary, the required decomposition (10) is proved.

Sufficiency. Let decomposition (10) is true. For arbitrary v ∈ X0−, u ∈ XN+ and

{yn : 1 ≤ n ≤ N − 1} ⊂ X let us denote

f :=
N−2

∑
k=1

AN−1 AN−2 · . . . · Ak+1yk + yN−1 − u + AN−1 AN−2 · . . . · A1v.

Due to the space decomposition we have

∃!(w, b) ∈ W × XN− : f = w + b

or equivalently

∃!(a, b) ∈ X0+ × XN− : f = AN−1 AN−2 · ... · A1a + b.
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Using the definition of f we have

∃!(a, b) ∈ X0+ × XN− :
N−2

∑
k=1

AN−1 AN−2 · ... · Ak+1yk + yN−1

= AN−1 AN−2 · ... · A1(a − v) + (b + u).

(13)

This statement implies that the problem (9) has a solution. Indeed, we can put x1 = v − a.

The first boundary condition is fulfilled. Elements x2, . . . , xN could be obtained from (11). By

comparing (11) for n = N and (13) we obtain xN = b + u and the second boundary condition

is fulfilled too.

Obtained solution is unique since for homogeneous boundary problem we have

xN = AN−1AN−2 · . . . · A1x1

and xN ∈ XN−, x1 ∈ X0+. But using space decomposition (10) we obtain xN = ~0, and

using condition that operator AN−1 AN−2 · . . . · A1 is injective, we have x1 = ~0, so x2 = . . .

= xN−1 =~0. The lemma is proved.

Theorem 2. Let σ(A0) ∩ S = ∅, σ(AN) ∩ S = ∅ and AN−1 AN−2 · . . . · A1 be an injection. Then

the equation (4) has a unique bounded solution {xn : n ∈ Z} ⊂ X for any bounded sequence

{yn : n ∈ Z} ⊂ X if and only if

X = W+̇XN−,

where W = {AN−1 AN−2 · . . . · A1x : x ∈ X0+}.

Proof. Necessity. Let the equation (4) has a unique bounded solution {xn : n ∈ Z} ⊂ X for any

bounded sequence {yn : n ∈ Z} ⊂ X.

Let {bn : 1 ≤ n ≤ N − 1} ⊂ X and u ∈ XN+, v ∈ X0− be arbitrary. We will consider

bounded sequence {yn : n ∈ Z} ⊂ X, where yn = 0, n < 0; y0 = v; yn = bn, 1 ≤ n ≤ N − 1;

yN = −AN+u; yn = 0, n > N. For this sequence there exists a unique bounded solution

{xn : n ∈ Z} ⊂ X.

By Lemma 1 the part of solution {xn : n ≤ 1} has such form that x1 = b+ v where b ∈ X0+.

That implies

P0−x1 = v. (14)

Similarly by Lemma 2 the part of solution {xn : n ≥ N} has such form that xN = b + u,

where b ∈ XN−, so

PN+xN = u. (15)

Due to equalities (14) and (15) the sequence {xn : 1 ≤ n ≤ N} is a solution of the boundary

problem (9).

Suppose by the contrary that boundary problem (9) has another solution {zn : 1 ≤ n ≤ N}.

Let

z0 = A−1
0+(z1 − y1), zn = An

0+z0, n ≤ −1,

zN+1 = ANzN + yN , zn = An−N−1
N− zN+1, n ≥ N + 2.

One can see that sequence {zn : n ∈ Z} is bounded due to spectral properties of A0+ and

AN−. This sequence is a solution of (4). Indeed, for 1 ≤ n ≤ N − 1 equation is true due to

boundary problem and since

z0 = A−1
0+(z1 − y1) ∈ X0+, zN+1 = ANzN + yN = AN−zN + AN+u − AN+u ∈ XN−,
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we have

z1 = A0+z0 + y1 = A0z0 + y1, zn+1 = An+1
0+ z0 = A0 An

0+z0 = A0zn, n ≤ −1,

zN+1 = ANzN + yN , zn+1 = An−N
N− zN+1 = AN An−N−1

N− zN+1 = ANzn, n ≥ N + 1.

This solution is different from {xn : n ∈ Z} (at least for 1 ≤ n ≤ N). A contradiction.

Since boundary problem (9) has unique solution for any input data, Lemma 3 gives us

decomposition (10).

Sufficiency. Assume that decomposition (10) is true. Let {yn : n ∈ Z} ⊂ X be any bounded

sequence. We will construct bounded solution of (4). This solution consists of three parts,

described by Lemmas 1–3 (with intersections in x1 and xN).

By Lemma 1 for bounded sequence {yn : n ≤ 0} ⊂ X we have

xn = An−1
0+ b1 −

0

∑
k=n

An−k−1
0 P0+yk +

n−1

∑
k=−∞

An−k−1
0 P0−yk, n ≤ 1,

where b1 ∈ X0+. In particular, x1 = b1 + v, where v =
0

∑
k=−∞

A−k
0 P0−yk ∈ X0−. So, P0−x1 = v.

Similarly, by Lemma 2 for bounded sequence {yn : n ≥ N} ⊂ X we have

xn = An−N
N− b2 +

n−1

∑
k=N

An−k−1
N PN−yk −

+∞

∑
k=n

An−k−1
N PN+yk, n ≥ N,

where b2 ∈ XN− . In particular, xN = b2 + u, where u =−
+∞

∑
k=N

AN−k−1
N+ yk ∈XN+. So, PN+xN = u.

By Lemma 3 the boundary problem (9) with defined above u and v has the unique solution

{xn : 1 ≤ n ≤ N} ⊂ X. So x1, xN are uniquely defined by sequence {yn : n ∈ Z} ⊂ X.

That implies that b1 = P0+x1, b2 = PN−xN are uniquely defined too. So the whole solution

{xn : n ∈ Z} ⊂ X is uniquely defined.

Constructed solution is a unique bounded solution of (4).

Remark 2. For N = 1 sufficiency of Theorem 2 gives us the statement of Theorem 1.

Example 1. Let X = l2, N = 2,

A0x = (x1/2, x2(2 + 1/2), x3/4, x4(2 + 1/4), x5/6, x6(2 + 1/6), . . .),

A1x = (x1 − x2, x1 + x2, x3 − x4, x3 + x4, x5 − x6, x5 + x6, . . .), A2 = A0.

Then

σ(A0) = σ(A2) = {1/(2n), 2 + 1/(2n) | n ∈ N} ∪ {0, 2},

X2− = {x ∈ l2 | x2 = x4 = x6 = . . . = 0},

X0+ = {x ∈ l2 | x1 = x3 = x5 = . . . = 0},

W = {x ∈ l2 | x1 = −x2, x3 = −x4, x5 = −x6, . . .}.

Since W+̇X2− = X, conditions of Theorem 2 are fulfilled so for any bounded sequence y the

equation (4) has a unique bounded solution.
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Чайковський А.В., Лагода О.А. Обмеженi розв’язки рiзницевого рiвняння зi скiнченною кiлькiстю

стрибкiв операторного коефiцiєнта // Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 165–172.

В роботi вивчається питання iснування єдиного обмеженого розв’язку рiзницевого рiвнян-

ня зi змiнним операторним коефiцiєнтом в банаховому просторi. Iснує добре розвинена тео-

рiя вiдповiдних рiвнянь зi сталим коефiцiєнтом, в рамках якої поставлене питання розв’язане

в термiнах спектру операторного коефiцiєнта. Для випадку змiнного операторного коефiцi-

єнта вiдповiднi умови також вiдомi, проте є дуже складними для перевiрки. Тому важливим є

дати вiдповiдь на поставлене питання для тих частинних випадкiв змiнного коефiцiєнта, коли

вiдповiднi умови легко перевiрити. Одним з таких випадкiв є рiвняння з кусково-сталим опера-

торним коефiцiєнтом. Вiдомi достатнi умови iснування та єдиностi обмеженого розв’язку для

випадку одного стрибка. В цiй роботi цi результати узагальнюються для випадку скiнченного

числа стрибкiв операторного коефiцiєнта. Крiм того, за додаткового припущення отримано

необхiднi та достатнi умови iснування та єдиностi обмеженого розв’язку.

Ключовi слова i фрази: рiзницеве рiвняння, обмежений розв’язок, банахiв простiр.
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In this paper we continue to investigate the properties of the problem with nonlocal conditions,

which are multipoint perturbations of mixed boundary conditions, started in the first part. In par-

ticular, we construct a generalized transform operator, which maps the solutions of the self-adjoint

boundary-value problem with mixed boundary conditions to the solutions of the investigated mul-

tipoint problem. The system of root functions V(L) of operator L for multipoint problem is con-

structed. The conditions under which the system V(L) is complete and minimal, and the conditions

under which it is the Riesz basis are determined. In the case of an elliptic equation the conditions of

existence and uniqueness of the solution for the problem are established.
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1 INTRODUCTION AND MAIN RESULTS

In the papers [1–5] by the methods of the theory of transformation operators (see [12]),

we studied nonself-adjoint problems with a multipoint spectrum and an infinite number of

root functions (see [10]). In the one-dimensional case such problems are generated by regular

but not strongly regular Birkhoff conditions (see [11]). For equations containing involution,

multipoint problems were studied in the works [5–7]. In this paper we continue the study of

the problem for an elliptic equations with constant coefficients with mixed conditions initiated

in [1, 7, 8].

For our investigation we will use the following notations. Let G := {x := (x1, x2) ∈ R
2 :

0 < x1, x2 < 1}, D1, D2 be the operators of differentiation by the variables x1, x2 respectively,

W2n
2 (G) be a Sobolev space with the following scalar product and norm respectively:

(u; v)W2n
2 (G) := (u; v)L2(G) + (D2n

1 u; D2n
1 v)L2(G) + (D2n

2 u; D2n
2 v)L2(G),

‖u‖2
W2n

2 (G)
:= (u; u)W2n

2 (G),

W2n
2 (0, 1) := {y ∈ AC[0, 1] : y(r) ∈ C[0, 1], r = 1, 2, . . . , 2n − 1, y(2n) ∈ L2(0, 1)},

Ls,2(0, 1) := {y(t) ∈ L2(0, 1) : y(t) = (−1)sy(1 − t)}, s ∈ {0, 1},

УДК 517.927.5, 517.984.5
2010 Mathematics Subject Classification: 34G10, 34K10, 34K30, 34L10.
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[L2(0, 1)] be a set of linear and continuous operators given in the space L2(0, 1).

Let us consider the multipoint problem

L(D)u :=
n

∑
p=0

apD
2p
1 D

2n−2p
2 u = f (x), x ∈ G, (1)











































ℓs,1u := D2s−2
1 u|x1=0 + D2s−2

1 u|x1=1 + ℓ1
s u = 0, s = 1, 2, . . . , n,

ℓn+s,1u := D2s−2
1 u|x1=0 − D2s−2

1 u|x1=1 = 0, s = 1, 2, . . . , n,

ℓs,2u := D2s−2
2 u|x2=0 + D2s−2

2 u|x2=1 = 0, s = 1, 2, . . . , n,

ℓn+s,2u := D2s−1
2 u|x2=0 + D2s−1

2 u|x2=1 + ℓ2
s u = 0, s = 1, 2, . . . , n,

ℓ
j
su :=

ks,j

∑
q=0

k j

∑
r=0

bq,r,s,jD
q
j u(x)|xj=xr,j

, s = 1, 2, . . . , n,

(2)

where 0 = x1,j < x2,j < . . . < xk j,j = 1, ap, bq,r,s,j ∈ R, ks,j < 2n, k ∈ N, s = 1, 2, . . . , n,

p = 0, 1, . . . , n, j = 1, 2.

Let L : L2(G) → L2(G) be the operator of the problem (1)–(2), Lu := L(D)u, u ∈ D(L),

D(L) := {u ∈ W2n
2 (G) : ℓs,ju = 0, s = 1, 2, . . . , 2n, j = 1, 2}.

Let us consider the following assumptions and theorems, that are necessary for further

investigation.

Assumption P1 : bq,r,s,j =(−1)q+jbq,k j−r,s,j, xr,j = 1− xk j−r,j, q = 0, 1, . . . , ks,j, r = 0, 1, . . . , kj,

s = 1, 2, . . . , n, j = 1, 2.

Assumption P2 : there exists a positive number C1 such that the inequality

C1|µ|2n ≤
∣

∣

∣

∣

∣

n

∑
p=0

apµ
p
1 µ

n−p
2

∣

∣

∣

∣

∣

holds for µ := (µ1, µ2) ∈ R
2, |µ|2 := |µ1|2 + |µ2|2 → ∞.

Assumption P3 : ks,1 ≤ 2s − 2, ks,2 ≤ 2s − 1, s = 1, 2, . . . , n.

Theorem 1. Let Assumption P1 holds. Then, the operator L has a set of eigenvalues

σ :=
{

λk,m=(−1)n
n

∑
p=0

apµ
p
k,1µ

n−p
m,2 , µk,1=π2k2, µm,2=π2(2m − 1)2, k, m∈N

}

, (3)

and a system V (L) of root functions, which is complete and minimal in the space L2(G).

Let Assumptions P1–P3 hold. Then, the operator L has the system V (L) , which is the Riesz

basis of the space L2(G).

Theorem 2. Let Assumptions P1–P3 hold. Then for an arbitrary function f ∈ L2(G) there exists

a unique solution u ∈ W2n
2 (G) of problem (1)–(2).

Our research is structured as follows. In Section 2 we investigate the properties of the

problem with self-adjoint boundary conditions. In Section 3 we study the spectral properties

for nonlocal problem with nonself-adjoint boundary conditions. In Section 4 we construct

a commutative group of transformation operators. Using spectral properties of multipoint

problem and conditions for completeness the basis properties of the systems of eigenfunctions

are established in Section 5. In Section 6 the main theorems are proved.
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2 THE SELF-AJOINT PROBLEM

Let us consider for equation

−z(2) (t) = µz(t), t ∈ (0, 1) , µ ∈ C, (4)

the problem with boundary conditions

z(r) (0) + z(r)(1) = 0, r = 0, 1. (5)

Let B0 : L2(0, 1) → L2(0, 1) be the operator of problem (4)–(5):

B0z (t) := −z(2) (t) , z(t) ∈ D (B0) ,

D (B0) :=
{

z ∈ W2
2 (0, 1) : z(r)(0) + z(r)(1) = 0, r = 0, 1

}

,

T2 :=
{

τr,m,2(t) ∈ L2(0, 1) : τ0,m,2(t) :=
√

2 sin π(2m − 1)t,

τ1,m,2(t) :=
√

2 cos π(2m − 1)t, m ∈ N, r = 0, 1
}

,

Tj,2 := {τj,m,2(t) ∈ Lj,2(0, 1) : m ∈ N}, j = 0, 1.

Lemma 1. The operator B0 has a point spectrum

σ (B0) := {µm,2 ∈ R : µm,2 = π2(2m − 1)2, m ∈ N}

and system of eigenfunctions T2.

Proof. A direct substitution proves that the elements of system T2 are the eigenfunctions of

operator B0, which correspond to the eigenvalues σ(B0).

Taking into account, that the subsystem of eigenfunctions Tj,2 of the operator B0 is an or-

thonormal base of space Lj,2(0, 1), j = 0, 1, we obtain the statement of lemma.

We consider the spectral problem

L(D)u :=
n

∑
p=0

apD
2p
1 D

2n−2p
2 u = λu(x), x ∈ G, λ ∈ C, (6)























ℓ0,s,1u := D2s−2
1 u|x1=0 + D2s−2

1 u|x1=1 = 0,

ℓ0,n+s,1u := D2s−2
1 u|x1=0 − D2s−2

1 u|x1=1 = 0,

ℓ0,s,2u := D2s−2
2 u|x2=0 + D2s−2

2 u|x2=1 = 0,

ℓ0,n+s,2u := D2s−1
2 u|x2=0 + D2s−1

2 u|x2=1 = 0, s = 1, 2, . . . , n.

(7)

Let L0 : L2(G) → L2(G) be the operator of the problem (6)–(7):

L0u := L(D)u, u ∈ D(L0), D (L0) :=
{

u ∈ W2n
2 (G) : ℓ0,r,ju = 0, r = 1, 2, . . . , 2n, j = 1, 2

}

,

T1 :=
{

τs,k,1(x1) ∈ L2(0, 1) : τs,k,1(x1) :=
√

2 sin π(2k − s)x1, k = 1, 2, . . . , s = 0, 1
}

,

V(L0) :=
{

vr,s,k,m(x, L0)∈ L2(G) : vr,s,k,m(x, L0) :=τr,k,1(x1)τs,m,2(x2), r, s = 0, 1, m, k=1, 2, . . .
}

.



176 BARANETSKIJ YA.O., KALENYUK P.I., KOPACH M.I., SOLOMKO A.V.

Lemma 2. The operator L0 has eigenvalues (3) and a system of eigenfunctions V(L0).

Proof. By direct substitution we obtain that vr,s,k,m(x, L0) ∈ D (L0) and

L0vr,s,k,m(x, L0) = λk,mvr,s,k,m(x, L0),

λk,m = (−1)nπ2n
n

∑
p=0

apk2p(2m − 1)2n−2p, k, m ∈ N.

Therefore, the set of eigenvalues (3) for the operator L0 corresponds the system of eigenfunc-

tions V(L0).

Theorem 3. Let Assumption P2 holds. Then for any function f ∈ L2(G) there exists a unique

solution u ∈ W2n
2 (G) of the problem (6)–(7).

Proof. Let us expand the functions f , u ∈ L2(G) as a series by the system V(L0):

f = ∑
r,s,k,m

fr,s,k,mvr,s,k,m(x, L0),

u = ∑
r,s,k,m

ur,s,k,mvr,s,k,m(x, L0).

Substituting these functions into the equation (1), we obtain

ur,s,k,m = λ−1
k,m fr,s,k,m, r, s ∈ {0, 1}, k, m ∈ N.

Consider the ratio

D
2p
1 D

2n−2p
2 u = (−1)n ∑

r,s,k,m

µ
p
k,1µ

n−p
m,2 λ−1

k,m fr,s,k,mvr,s,k,m(x, L0), p = 0, 1, . . . , n.

Taking into account Assumption P2 for some C2 > 0, we obtain

|µp
k,1µ

n−p
m,2 λ−1

k,m| ≤ C2, p = 0, 1, . . . , n,

‖D
2p
1 D

2n−2p
2 u‖L2(G) ≤ C2‖ f‖L2(G), p = 0, 1, . . . , n,

‖u‖L2(G) ≤ C2‖ f‖L2(G).

Therefore, u ∈ W2n
2 (G). Theorem is proved.

For fixed k ∈ N, s ∈ {0, 1}, we consider the solutions of the problem (6)–(7) as a product

u(x) := z (x2) τs,k,1 (x1) . (8)

To determine the unknown function z(x2) we obtain the following eigenvalues problem

n

∑
p=0

(−1)papµ
p
k,1z(2n−2p)(x2) = λz(x2), x2 ∈ (0, 1), λ ∈ C, (9)

{

l0,s,2z := z(2s−2)(0) + z(2s−2)(1) = 0,

l0,n+s,2z := z(2s−1)(0) + z(2s−1)(1) = 0, s = 1, 2, . . . , n.
(10)
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Let L0,k : L2(0, 1) → L2(0, 1) be the operator of the problem (9)–(10)

L0,kz :=
n

∑
p=0

(−1)papµ
p
k,1z(2n−2p)(x2), z ∈ D (L0,k) ,

D (L0,k) := {z ∈ W2n
2 (0, 1) : l0,r,2z = 0, r = 1, 2, . . . , 2n}.

The roots ̟r,k (λ) of the equation

n

∑
p=0

(−1)pap̟2n−2pµ
p
k,1 = λ,

which is characteristic for equation (9), are chosen so that

Re ̟n,k (λ) ≤ Re ̟n−1,k (λ) ≤ . . . ≤ Re ̟1,k (λ) ≤ 0, ̟n+q,k (λ) = −̟n,k (λ) , q = 1, 2, . . . , n.

Let us determine the functions

{

z0,q,k (x2, λ) := 1
2(exp ̟q,k (λ) x2 + exp ̟q,k (λ) (1 − x2)) ∈ L0,2(0, 1), q = 1, . . . , n,

z0,n+q,k (x2, λ) := 1
2(exp ̟q,k (λ) x2−exp ̟q,k (λ) (1 − x2))∈ L1,2(0, 1), q = 1, . . . , n.

(11)

Substituting the general solution

z(x2) =
2n

∑
r=1

crz0,r,k (x2, λ)

of the equation (9) into boundary conditions (10), we obtain the equation to determine the

eigenvalues for L0,k

∆(λ, k) = det(l0,s,2z0,r,k (x2, λ))2n
r,s=1 = 0.

Taking into account the ratio z0,pn+q,k (x2, λ) ∈ Lp,2(0, 1), l0,pn+j,2 ∈ W∗
p , p ∈ {0, 1}, we obtain

l0,n+j,2z0,q,k (x2, λ) = 0, j, q = 1, 2, . . . , n,

l0,j,2z0,n+q,k (x2, λ) = 0, j, q = 1, 2, . . . , n,

∆(λ, k) = ∆0(λ, k)∆1(λ, k),

∆p(λ, k) = det(l0,pn+j,2z0,pn+q,k (x2, λ))n
j,q=1, p = 0, 1,

∆(λ, k) =
n

∏
q=1

̟q(λ)(1 + e̟q(λ))2 ∏
1≤j<q≤n

(̟j (λ)− ̟q (λ))
2 = 0. (12)

Let ̟1,m,k = ıπ(2m − 1), ı :=
√
−1 are the roots of equation (12) and ̟q,m,k = ̟q(λm,k),

q = 2, 3, . . . , n, m = 1, 2, . . . . By direct calculations we obtain that the operator L0,k has the

system of eigenfunctions

V(L0,k) := {vs,m(x2, L0,k) ∈ L2(0, 1) : vs,m(x2, L0,k) := τs,m,2(x2), s = 0, 1, m = 1, 2, . . .}

and the set of eigenvalues σk :=
{

λk,m ∈ σ : m ∈ N

}

.
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3 THE NONSELF-AJOINT PROBLEM

Let us consider the spectral problem















−z(2) (t) = µz(t), µ ∈ C, t ∈ (0, 1),

l1z := z(0) + z(1) = 0,

l2z := z(1) (0) + z(1)(1) + l1
2z = 0,

(13)

where

l1
2z := b

(

z(1)(0)− z(1)(1)
)

, b ∈ R. (14)

Let B : L2(0, 1) → L2(0, 1) be the operator of the problem (13)–(14) and V(B) the system of

root functions for operator B.

Taking into account the results of the papers [1, 2], we define eigenfunctions and attach

functions of the operators B by formulas

v1,m(t, B) = τ1,m,2(t),

v0,m(t, B) =
(

1 + b(2t − 1)
)

τ0,m,2(t), m = 1, 2, . . . .

Therefore, the operator B has the system V(B) of root functions, which are related by ratio

Bv0,m(t, B) = µm,2v0,m(t, B) + ξmv1,m(t, B),

where ξm = 4bπ(2m − 1), m = 1, 2, . . . .

Taking into account the results of the paper [2], we obtain the following statement.

Lemma 3. The operator B has the point spectrum σ(B0) and the system of root functions V(B),

which is the Riesz basis of the space L2(0, 1).

We consider the solutions of the spectral problem (6), (2) as a product (8). To determine

the unknown function z(x2) we obtain for the equation (9) the eigenvalues problem with the

conditions

{

ls,2z := z(2s−2)(0) + z(2s−2)(1) = 0,

ln+s,2z := z(2s−1)(0) + z(2s−1)(1) + ln+sz = 0, s = 1, 2, . . . , n,
(15)

where

ln+sz :=
ks,2

∑
q=0

k2

∑
r=0

bq,r,s,2z(q)(xr,2), s = 1, 2, . . . , n. (16)

Let Lk be the operator of the problem (9), (15)–(16):

Lkz :=
n

∑
p=0

(−1)papµ
p
k,1z(2n−2p)(x2), z ∈ D (Lk) ,

D (Lk) := {z ∈ W2n
2 (0, 1) : lr,2z = 0, r = 1, 2, . . . , 2n}.
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Lemma 4. Let Assumption P1 holds. Then the eigenvalues of the operators L0,k and Lk coincide.

Proof. Substituting the general solution (11) of the equation (9) into boundary conditions (10),

we obtain the equation to determine the eigenvalues of the operator Lk

∆1(λ, k) = det(ls,2z0,p,k (x2, λ))2n
p,s=1 = 0.

Taking into account the relations

z0,rn+q,k (x2, λ) ∈ Lr,2(0, 1), ℓ0,sn+j,2 ∈ W∗
s , l1

n+j ∈ W∗
0 , s, r ∈ {0, 1}, j ∈ {1, 2, . . . , n},

we obtain

lj,2z0,q,k (x2, λ) = ̟
2j−2
q (λ)(1 + e̟q(λ)),

ln+j,2z0,n+q,k (x2, λ) = ̟q(λ)
2j−1(1 + e̟q(λ)),

lj,2z0,n+q,k (x2, λ) = l0,j,2z0,n+q,k (x2, λ) = 0,

ln+j,2z0,n+q,k(x2, λ) = l0,n+j,2z0,n+q,k (x2, λ) ,

lj,2z0,q,k(x2, λ) = lj,2,2z0,q,k(x2, λ), q = 1, 2, . . . , n,

∆(λ, k) = ∆0(λ, k)∆1(λ, k),

∆s(λ, k) = det(l0,sn+j,2z0,sn+q,k (x2, λ))n
j,q=1, s = 0, 1,

and

∆1(λ, k) =
n

∏
q=1

̟q(λ)(1 + e̟q(λ))2 ∏
1≤j<q≤n

(̟j (λ)− ̟q (λ))
2 = 0.

Therefore ∆1(λ, k) ≡ ∆(λ, k). The lemma is proved.

Let us consider the boundary-value problem for the equation (9)















l1,s,2z := z(2s−2)(0) + z(2s−2)(1) = 0, s = 1, 2, . . . , n,

l1,n+s,2z := z(2s−1)(0) + z(2s−1)(1) = 0, j 6= s, s = 1, 2, . . . , n,

l1,n+j,2z := z(2j−1)(0) + z(2j−1)(1) + ℓ1
n+jz = 0,

(17)

where

l1
n+jz := bj(z

(2j−1)(0)− z(2j−1)(1)) = 0, bj ∈ R. (18)

Let L1,j,k : L2(0, 1) → L2(0, 1) be the operator of the problem (9), (17)–(18)

L1,j,kz :=
n

∑
p=0

(−1)papµ
p
k,1z(2n−2p)(x2), z ∈ D

(

L1,j,k

)

,

D
(

L1,j,k

)

:=
{

z ∈ W2n
2 (0, 1) : l1,r,2z = 0, r = 1, 2, . . . , 2n

}

.

We determine the system of functions

zn+1,m,k(x2) :=
1

2
(1 − 2x2) sin ρm,2x2, (19)

zn+q,m,k(x2) :=
1

2
(1 + e̟q,m,k)−1(e̟q,m,kx2 − e̟q,m,k(1−x2)), q = 2, 3, . . . , n, (20)
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and a square matrix of order n, whose elements are defined as follows. j-th row is determined

by the functions (19), (20) and elements of other rows are determined by numbers

ϑ1,r,m,k = ρ1−2r
m,2 l1,n+r,2zn+1,m,k(x2) = (−1)r−1,

ϑq,r,m,k = ρ1−2r
m,2 l1,n+r,2zn+q,m,k(x2) = ̟2r−1

q,m,k,

where q = 2, 3, . . . , n, r 6= j, r = 1, 2, . . . , n.

We denote the determinant of the resulting matrix by zj,m,k(x2), m = 1, 2, . . . .

Let ∆j,q,m,k := det(ϑs,r,m,k)
r 6=j, s 6=q

r,s=1,n
. Then zj,m,k(x2) =

n

∑
q=1

∆j,q,m,kzn+q,m,k(x2).

Remark 1. For any fixed k ∈ N and m → ∞ we obtain the relations

δ1,r,m,k = ϑ1,r,m,kρ−1
m,2 = ı, δq,r,m,k = ϑq,r,m,kρ−1

m,2 = εq

(

1 + O(m)−1
)

,

where εq are the roots of equation (−1)nε2n = 1, Im εq < 0, q = 2, 3, . . . , n.

Substituting the function zj,m,k(x2) into boundary conditions (17)–(18), we obtain the equal-

ities

l1,s,2zj,m,k = 0, s 6= n + j, s = 1, 2, . . . , 2n, m = 1, 2, . . . ,

l1,n+j,2zj,m,k(x2) := cj,m,k,

cj,m,k = ρ
2j−1
m,2 Zm,k

n

∏
q=1

̟q,m,k, m = 1, 2, . . . ,

where Zm,k is the Vandermonde determinant of order n, which is constructed by numbers

δ2
q,r,m,k, q = 1, 2, . . . , n.

Remark 2. For an arbitrary k ∈ N the number sequence {Zm,k}∞
m=1 as m → ∞ converges to the

Vandermonde determinant Zn
(

ε2
1, . . . , ε2

n

)

, which is constructed by numbers ε2
1, . . . , ε2

n.

In addition, the sequence {δq,r,m,k}∞
m=1 converges to εq, q = 1, 2, . . . , n.

Thus, there are positive numbers C3, C4 such that the following inequality holds

0 < C3 ≤
∣

∣cj,m,k

∣

∣

−1
ρ

2j−1
m,2 ≤ C4 < ∞, j ∈ {1, 2, . . . , n}, m = 1, 2, . . . . (21)

We determine the function z1,j,m,k(x2) such that the following inequality holds

z1,j,m,k(x2) = zn+1,m,k(x2) +
n

∑
q=2

∆−1
j,1,m,k∆j,q,m,kzn+q,m,k (x2) .

Therefore,

z1,j,m,k(x2) = ∆−1
j,1,m,kzj,m,k(x2), (22)

ℓ1,n+jz1,j,m,k(x2) := χj,m,k, χj,m,k = ∆−1
j,1,m,kZm,kρ

2j−1
m,2

n

∏
q=1

̟q,m,k, m = 1, 2, . . . .

By substituting into boundary conditions (17)–(18) we conclude that the operator L1,j,k has

eigenfunctions

v1,m(x2, L1,j,k) := τ1,m,2(x2), m = 1, 2, . . . . (23)
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The root function v0,m

(

x2, L1,j,k

)

of operator L1,j,k is determined by the sum

v0,m(x2, L1,j,k) := τ0,m,2(x2) + ηj,m,kz1,j,m,k(x2), m = 1, 2, . . . . (24)

To determine the unknown parameters ηj,m,k we substitute the expression (24) into boundary

conditions (17)–(18).

Taking into account the formula (22), we obtain

ηj,m,k = −l1
n+jτ0,m,2(l1,n+j,2z1,j,m,k)

−1, m = 1, 2, . . . .

From the definition of the determinant ∆j,1,m,k we have inequality |∆−1
j,1,m,k| ≤ C5.

Therefore, taking into account the inequality |l1
n+jτ0,m,2| ≤ C6bjρ

2j−1
m,2 and the estimates (21),

we obtain the relations

|ηj,m,k| ≤ C7, j ∈ {1, 2, . . . , n}, m ∈ N. (25)

Thus, the operator L1,j,k has the system of root functions (23)–(24).

Let us consider the operator Bj,k : L2(0, 1) → L2(0, 1), which has a point spectrum σ(B0)

and the system of root functions

V(Bj,k) :=
{

vr,m(x2, Bj,k) ∈ L2(0, 1) : v1,m(x2, Bj,k) := τ1,m,2(x2),

v0,m(x2, Bj,k) :=
(

1 + ηj,m,k(2x2 − 1)
)

τ0,m,2(x2), m = 1, 2, . . .
}

.

Lemma 5. The system of functions V(Bj,k) is the Riesz basis in the space L2(0, 1).

Proof. From the inequality (25) we obtain that the system V(Bj,k) is Bessel (see [10]). Therefore,

the operator R(Bj,k)τr,m,2(x2) := vr,m(x2, Bj,k), r = 0, 1, m = 1, 2, . . . , is continuous in L2(0, 1).

In addition, the operator S(Bj,k) := R(Bj,k)− E is continuous in the space L2(0, 1).

Taking into account the definition of functions in V(Bj,k) we obtain

S(Bj,k) : L1,2(0, 1) → 0, S(Bj,k) : L0,2(0, 1) → L1,2(0, 1).

Thus, S2(Bj,k) and R−1(Bj,k) := E − R(Bj,k) ∈ [L2(0, 1)].

Therefore, from the Bari theorem (see [10]) the system V(Bj,k) is the Riesz basis in the space

L2(0, 1).

Lemma 6. Let Assumption P1 holds. Then the operator L1,j,k has the system of root functions

V
(

L1,j,k

)

, which is the Riesz basis in the space L2(0, 1).

Proof. The system of functions V(L1,j,k) is complete and minimal in space L2(0, 1) because the

boundary conditions (17)–(18) are regular by Birkhoff (see [11]).

We show that the systems of functions V(Bj,k) and V(L1,j,k) are quadratically approximate

in space L2(0, 1).

Let us estimate the sum of the series

H(L1,j,k; Bj,k) = ∑
s,m

‖vs,m(x2, L1,j,k)− vs,m(x2, Bj,k)‖2
L2(0,1)

=
∞

∑
m=1

‖v0,m(x2, L1,j,k)− v0,m(x2, Bj,k)‖2
L2(0,1),

H(L1,j,k, Bj,k) ≤ max |ηj,m,k|2|∆−2
j,1,m,k|∑

m

n

∑
q=2

|∆j,q,m,k|2‖z1,q,m,k(x2)‖2
L2(0,1).
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Taking into account the choice of numbers ̟r,m,k, we obtain the estimate

H(L1,j,k, Bj,k) < ∞.

Therefore, the complete and minimal system V(L1,j,k) ∈ L2(0, 1) is quadratically approxi-

mate to Riesz basis V(B1,k).

Thus, applying the Bari theorem (see [10]), we obtain the statement of Lemma 6.

4 TRANSFORMATION OPERATORS

Let us determine

z2,j,m,k(x2) := ηj,m,kz1,j,m,k(x2), m = 1, 2, . . . .

By choosing of arbitrary sequence of real numbers θ = {θm}∞
m=1 we define the operator

Bj,θ : L2(0, 1) → L2(0, 1), which is generated by the differential expression

n

∑
p=0

(−1)papµ
p
k,1z(2n−2p)(x2)

and has the system V(Bj,θ) :=
{

vs,m(x2, Bj,θ) ∈ L2(0, 1) : s = 0, 1, m = 1, 2, . . .
}

of functions

v1,m(x2, Bj,θ) := τ1,m,2(x2),

v0,m(x2, Bj,θ) := τ0,m,2(x2) + θmz2,j,m,k(x2), m = 1, 2, . . . ,
(26)

which are root functions in the sense of equalities

Bj,θv1,m(x2, Bj,θ) = λk,mv1,m(x2, Bj,θ), m = 1, 2, . . . , (27)

Bj,θv0,m(x2, Bj,θ) = λk,mv0,m(x2, Bj,θ) + ξ j,k,mv1,m(x2, Bj,θ), (28)

where ξ j,k,m = (−1)n4nηj,m,kθm

n

∑
p=0

apC
2n−2p
2n µ

p
k,1ρ

2n−2p−1
m,2 , m = 1, 2, . . . , and has the set of

eigenvalues σk.

Let us consider the operators R(Bj,θ), which are defined in the space L2(0, 1) by

R(Bj,θ) := E + S(Bj,θ),

S(Bj,θ)τ1,m,2(x2) := 0, S(Bj,θ)τ0,m,2(x2) := θmz2,j,m,k(x2), m = 1, 2, . . . .

Let Qj(L0,k) be the set of operators Bj,θ, which have purely point spectrum σk and the system

of root functions (26), Γj(L0,k) be the set of operators R(Bj,θ).

For any Bj,θ1
, Bj,θ2

∈ Γj(L0,k), we define on Γj(L0,k) the commutative multiplication opera-

tion

R(Bj,θ1
)R(Bj,θ2

) = E + S(Bj,θ1
) + S(Bj,θ2

) = R(Bj,θ2
)R(Bj,Θ1

)

and the inverse operator R−1(Bj,θ) = E − S(Bj,θ), Bj,θ ∈ Γ1(L0,k).

Therefore, Γj(L0,k) is the Abelian group, which contains a subgroup Γj(L0,k) ∩ [L2(0, 1)].
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Lemma 7. For any sequence {θm}∞
m=1 ⊂ R the system of functions V(Bj,θ) is complete and

minimal in L2(0, 1).

Proof. We prove on the contrary that the system of functions V(Bj,θ) is total (complete) in the

space L2(0, 1).

Let us suppose that there exists a function h = h0 + h1, hs ∈ Ls,2(0, 1) that is orthogonal to

all elements of the system V(Bj,θ). Taking into account, that the system T1,2 is the orthonormal

basis of space L1,2(0, 1), we obtain h1 ≡ 0.

Therefore h ∈ L0,2(0, 1). Assuming the orthogonality of the function h to the elements of

the system V(Bj,θ), we have equality

(

h, v0,m(x2, Bj,θ)
)

L2(0,1)
=

(

h, τ0,m,2

)

L2(0,1)
= 0, m = 1, 2, . . . .

Taking into account that the system T0,2 is the orthonormal basis of L0,2(0, 1), we obtain h ≡ 0.

Let us prove the minimality of the system V(Bj,θ). We determine the set of functions

L2,θ(0, 1) :=
{

h =
1

∑
r=0

∞

∑
m=1

hr,mτr,m,2(x2) ∈ L2(0, 1) :
1

∑
r=0

∞

∑
m=1

h2
r,mθ2

m,0 < ∞
}

,

where θm,0 := 1, in the case θm = 0, θm,0 = θm, if θm 6= 0, m = 1, 2, . . . .

The set L2,θ(0, 1) is a Hilbert space with respect to the scalar product

(h; g)L2,θ (0,1) :=
1

∑
r=0

∞

∑
m=1

θ2
m,0hr,mgr,m.

Let us consider the relations

v0,m(x2, Bj,θ) = R(Bj,θ)τ0,m,2(x2) = (1 − θm)τ0,m,2(x2) + θmv0,m(x2, L1,j,k),

(h; R(Bj,θ)τ0,m,2)
2
L2(0,1) ≤ 4(1 + θ2

m)(h; τ0,m,2)
2
L2(0,1) + 2θ2

m(h; v0,m(x2, L1,j,k))
2
L2(0,1),

(h; v0,m(x2, Bj,θ))L2(0,1) = (R∗(Bj,θ)h; τ0,m,2)L2(0,1),

(h; R(Bj,θ)τ1,m,2)L2(0,1) = (h; τ1,m,2)L2(0,1), m = 1, 2, . . . .

Taking into account these relations and inequality

(h; vs,m(x2, L1,j,k))
2
L2(0,1) ≤ ‖R∗(L1,j,k)‖2

[L2(0,1)](h; τs,m,2)
2
L2(0,1), s = 0, 1, m = 1, 2, . . . ,

we obtain the estimate

‖R∗(Bj,θ)h‖2
L2(0,1) ≤ (4 + ‖R∗(L1,j,k)‖2

[L2(0,1)])‖h‖2
L2,θ (0,1).

Therefore, for conjugate operator R∗(Bj,θ) the following inclusion holds (see [9])

R∗(Bj,θ) ∈ [L2,θ(0, 1); L2(0, 1)]. (29)

So, the inverse operator exists

E − S∗(Bj,θ) ∈ [L2,θ(0, 1); L2(0, 1)],

that is, the system of functions V(L1,j,k) has the unique biorthogonal system W(L1,j,k).
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Lemma 8. The system of functions V(Bj,θ) is the Riesz basis in L2(0, 1) if and only if the se-

quence {θm}∞
m=1 is bounded.

Proof. Necessity. If the system of functions V(Bj,θ) is the Riesz basis, then it is almost normal-

ized. From the opposite, if |θm| → ∞ for m → ∞, then, taking into account (27)–(28), we

obtain

‖v0,m(x2, Bj,θ)‖L2(0,1) = 1 + |θm|‖z2,j,m,k‖L2(0,1) → ∞, m → ∞.

Sufficiency. If the sequence θ is bounded, then the spaces L2,θ(0, 1) and L2(0, 1) coincide. There-

fore, taking into account the inclusion (29), we obtain R(Bj,θ) ∈ [L2(0, 1)].

The set of n real sequences {θj,m}∞
m=1, j = 1, 2, . . . , n, we denote by Θ, and consider

the operator BΘ, eigenvalues of which coincide with the eigenvalues of the operator L0,k and

eigenfunctions are defined by the equalities











v1,m(x2, BΘ) = τ1,m,2(x2),

v0,m(x2, BΘ) = τ0,m,2(x2) +
n

∑
j=1

θj,mz2,j,m,k(x2), m = 1, 2, . . . .
(30)

We define the transformation operator R(BΘ) := E + S(BΘ) : L2(0, 1) → L2(0, 1) which

maps the system of eigenfunctions V(L0,k) of operator L0,k into system of functions V(BΘ) of

operator BΘ

R(BΘ)τs,m,2(x2) := vs,m,k(t, BΘ), s = 0, 1, m = 1, 2, . . . .

From the definition of operator BΘ we obtain

S(BΘ) : L0,2(0, 1) → L1,2(0, 1), L1,2(0, 1) → 0, S2(BΘ) = 0.

Therefore, the bounded operator R−1(BΘ) = E − S(BΘ) exists.

Lemma 9. For any sequences {θj,m}∞
m=1, j = 1, 2, . . . , n, the system of eigenfunctions of oper-

ator BΘ is complete and minimal in the space L2(0, 1).

The system of functions V(BΘ) is the Riesz basis in the space L2(0, 1) if and only if the

sequences {θj,m}∞
m=1, j = 1, 2, . . . , n, are bounded.

Proof of Lemma 9 is similar to the proof of Lemma 7. �

Let Q(Lk) be the set of operators BΘ, eigenfunctions of which is defined by formulas (30),

Γ(Lk) be the set of transformation operators R(BΘ).

Remark 3. On the set Γ(Lk) we can define the multiplication operation and prove that Γ(Lk) is

an Abelian group.

5 THE NONSELF-AJOINT PROBLEM FOR A DIFFERENTIAL EQUATION OF EVEN ORDER

For equation (9) let us consider the eigenvalues problem with nonlocal conditions















l2,s,2z := z(2s−2)(0) + z(2s−2)(1) = 0, s = 1, 2, . . . , n,

l2,n+j,2z := z(2j−1)(0) + z(2j−1)(1) + l2
n+jz = 0,

l2,n+s,2z := z(2j−1)(0) + z(2j−1)(1) = 0, s 6= j, s = 1, 2, . . . , n,

(31)
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where

l2
n+jz :=

ks,2

∑
q=0

k2

∑
r=0

bs,q,j,2z(q)(x2,r). (32)

Let L2,j,k : L2(0, 1) → L2(0, 1) be the operator of the problem (9), (31), (32)

L2,j,kz(x2) :=
n

∑
p=0

(−1)papµ
p
k,1z(2n−2p)(x2), z ∈ D

(

L2,j,k

)

,

D
(

L2,j,k

)

:=
{

z ∈ W2n
2 (0, 1) : ℓ2,r,2z = 0, r = 1, 2, . . . , 2n

}

,

and V
(

L2,j,k

)

be the system of root functions for operator L2,j,k

R(L2,j,k) : L2(0, 1) → L2(0, 1), R(L2,j,k) : V(L0,k) → V(L2,j,k).

Lemma 10. Let Assumption P1 holds. Then the operator L2,j,k has the system of root functions

V
(

L2,j,k

)

, which is complete and minimal in the space L2(0, 1).

If Assumptions P1, P3 hold, then the system of functions V
(

L2,j,k

)

is the Riesz basis in the

space L2(0, 1).

Proof. Substituting function τ1,m,2(x2) into boundary conditions (31), (32) we obtain that the

operator L2,j,k has eigenvalues

v1,m(x2, L2,j,k) := τ1,m,2(x2), m = 1, 2, . . . . (33)

Root function v0,m

(

x2, L2,j,k

)

of operator L2,j,k is defined by the sum

v0,m(x2, L2,j,k) := τ0,m,2(x2) + η1
j,m,kz2,j,m,k(x2), m = 1, 2, . . . . (34)

For determining of unknown parameters η1
j,m,k we substitute the expression (34) into boundary

conditions (31), (32).

Taking into account the ratio (22) we have the equality

η1
j,m,k = −(l2,n+j,2z2,j,m,k)

−1l2
n+jτ0,m,2. (35)

Therefore, the operator L2,j,k has the system of root functions (33)–(35).

Remark 4. On the contrary, as in the proof of Lemma 8, we can prove the completeness of the

system V(L2,j,k) in the space L2(0, 1).

Taking into account that z2,j,m,k(x2) ∈ L1,2(0, 1), we have the inclusion R(L2,j,k) ∈ Γ(L0,k).

Therefore, the system V(L2,j,k) is minimal in the space L2(0, 1).

Let Assumption P3 holds. Then from the inequality (25) we obtain |η1
j,m,k| ≤ C8. Therefore,

taking into account the statement of Lemma 9, we obtain that R(L2,j,k) ∈ Γ(L0,k) ∩ [L2(0, 1)].

Let us show that for the operator R(Lk) Lemma 10 holds. Substituting into boundary con-

ditions (31), (32) we obtain that the operator Lk has the eigenfunctions

v1,m(x2, Lk) := τ1,m,2(x2), m = 1, 2, . . . .

Root function v0,m (x2, Lk) of operator Lk is defined by the sum

v0,m(x2, Lk) := τ0,m,2(x2) +
n

∑
j=1

η1
j,m,kz2,j,m,k(x2), m = 1, 2, . . . ,
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where unknown parameters η1
j,m,k are defined by formula (35).

Therefore, the transformation operator R(Lk) : L2(0, 1) → L2(0, 1)

R(Lk)τs,m,2(x2) := vs,m(x2, Lk), s = 0, 1, m = 1, 2, . . . ,

is the element of the set Γ(Lk). Thus, the system V(Lk) is complete and minimal in the space

L2(0, 1).

Taking into account the ratio R(Lk) =
n

∏
j=1

R(L2,j,k) and the statement of Lemma 9, in the

case of Assumptions P1, P3 we have R(Lk) ∈ [L2(0, 1)].

Thus, the system V(Lk) is the Riesz basis in the space L2(0, 1).

Therefore, for operator Lk Lemma 10 holds.

6 PROOF OF THE MAIN RESULTS

Proof of Theorem 1. Particular cases of the operator L, when bq,r,s,j = 0, we denoted by

Lj, j = 1, 2, respectively.

Let πr,k,1 be the orthoprojector into one-dimensional proper subspace in L2(0, 1). We define

the root functions of operator L2 by

vs,r,k,m

(

x, L2
)

:= vs,m (x2, Lk) τr,k,1 (x1) , s, r ∈ {0, 1}, k, m ∈ N,

and the transformation operator R(L2) : L2(G) → L2(G) by

R(L2) := ∑
r,k,m

R(Lk)× πr,k,1,

vs,r,k,m

(

x, L2
)

:= R(L2)vs,r,k,m (x, L0) , s, r ∈ {0, 1}, k, m ∈ N.

Similarly, when Assumption P2 holds, we can define the biorthogonal system W(L2).

Taking into account Lemma 10, we obtain that for operator L2 Theorem 1 holds. From The-

orem 1 of the paper [1] we obtain that for operator L1 Theorem 1 holds and for transformation

operator R(L1) the ratio R(L1) ∈ [L2(G)] holds.

Let us define the transformation operator R(L) : L2(G) → L2(G), R(L) := R(L1)R(L2),

and the root functions of operator L

vs,r,k,m (x, L) := R(L)vs,r,k,m (x, L0) , s, r ∈ {0, 1}, k, m ∈ N.

By direct verification we obtain that the elements of the system V(L) are roots in sense

(L − λk,m)vr,1,k,m(x, L) = 0,

(L − λk,m)vr,0,k,m(x, L) = ξr,0,k,mvr,1,k,m(x, L),

ξr,0,k,m = 4n(−1)n−1ηr,0,k,mρ2n−1
m,2 , r, s ∈ {0, 1}, k, m ∈ N.

Taking into account Assumption P1, we obtain that the systems V(Lj) have the unique biortho-

gonal systems W(Lj), j = 1, 2, in the space L2(G).

Therefore, the system V(L) is complete and minimal in the space L2(G).

Let Assumptions P1–P3 hold. Then from Theorem 3 of the paper [8] and from Lemma 10

we obtain R(L1) ∈ [W2n
2 (G)]. So, Theorem 1 is proved. �
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Remark 5. There are positive numbers C9, C10 such that for any function

f (x) = ∑
r,q,k,m

fr,q,k,mvr,q,k,m(x, L) (36)

the inequality

C9‖ f‖2
L2(G) ≤ ∑

r,q,k,m

| fr,q,k,m|2 ≤ C10‖ f‖2
L2(G)

holds.

Proof of Theorem 2. It is enough to consider the case qq,r,s,1 = 0. Let the right part of the

equation (1) has the expansion (36).

The solution of the problem (1)–(2) we find in the form of a series

u(x) = ∑
r,q,k,m

ur,q,k,mvr,q,k,m(x, L).

Substituting these expansions into equation (1) we obtain the equalities

ur,0,k,m = λ−1
k,m fr,0,k,m,

ur,1,k,m = λ−1
k,m fr,1,k,m − λ−2

k,mξr,0,k,m fr,0,k,m, r ∈ {0, 1}, k, m ∈ N.

Let us consider the relations

D2n
1 u(x) = ∑

r,q,k,m

λ−1
k,mµn

k,1 fr,q,k,mvr,q,k,m(x, L).

Taking into account Assumption P2, we obtain

‖D2n
1 u‖L2(G) ≤ C11‖ f‖L2(G).

Similarly from Theorem 3 of the paper [1] we obtain the inequality

‖D2n
2 u‖L2(G) ≤ C12‖ f‖L2(G).

Therefore, taking into account Theorem 3, we obtain R(L2) ∈ [W2n
2 (G)].

Thus, for the definition of the transformation operator R(L) we have R(L) ∈ [W2n
2 (G)].

Then

‖u‖W2n
2 (G) ≤ C13‖ f‖L2(G).

Theorem is proved. �

REFERENCES

[1] Baranetskij Ya.O., Ivasiuk I.Ya., Kalenyuk P.I., Solomko A.V. The nonlocal boundary problem with perturbations

of antiperiodicity conditions for the elliptic equation with constant coefficients. Carpathian Math. Publ. 2018, 10 (2),

215–234. doi:10.15330/cmp.10.2.215-234

[2] Baranetskij Y.О., Kalenyuk P.I. Boundary-value problems with Birkhoff regular but not strongly regular conditions

for a second-order differential operator. J. Math. Sci. 2019, 238 (1), 1–21. doi:10.1007/s10958-019-04214-z

[3] Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I. Spectral properties of nonself-adjoint nonlocal boundary-value prob-

lems for the operator of differentiation of even order. Ukr. Math. J. 2018, 70 (6), 851–865. doi:10.1007/s11253-018-

1538-4



188 BARANETSKIJ YA.O., KALENYUK P.I., KOPACH M.I., SOLOMKO A.V.

[4] Baranetskij Ya.O., Kalenyuk P.I. Nonlocal multipoint problem with multiple spectrum for an ordinary (2n)th order

differential equation. J. Math. Sci. 2020, 246 (2), 152–169. doi:10.1007/s10958-020-04727-y

[5] Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I. Nonlocal multipoint problem for an ordinary differential equations of

even order involution. Mat. Stud. 2018, 49 (1), 80–94. doi:10.15330/ms.49.1.80-94

[6] Baranetskij Ya.O., Kalenyuk P.I., Kolyasa L.I., Kopach M.I. The nonlocal problem for the differential-operator equa-

tion of the even order with the involution. Carpathian Math. Publ. 2017, 9 (2), 109–119. doi:10.15330/cmp.9.2.109-

119

[7] Baranetskij Ya.O., Demkiv I.I., Ivasiuk I.Ya., Kopach M.I. The nonlocal problem for the differential equations the

order 2n with an unbounded operator coefficients with the involution. Carpathian Math. Publ. 2018, 10 (1), 14–30.

doi:10.15330/cmp.10.1.14-30

[8] Baranetskij Ya.O., Kalenyuk P.I., Kopach M.I., Solomko A.V. The nonlocal boundary value problem with pertur-

bations of mixed boundary conditions for an elliptic equation with constant coefficients. I. Carpathian Math. Publ.

2019, 11 (2), 228–239. doi:10.15330/cmp.11.2.228-239

[9] Berezanskii M.M. Expansion in eigenfunctions of self-adjoint operators. American Math. Soc., 1968.

[10] Gokhberg I.Ts., Krein M.G. Introduction to the theory of linear non self-adjoint operators. Nauka, Moscow, 1965.

(in Russian)

[11] Naimark M.A. Linear differential operators. Frederick Ungar Publ. Co., New York, 1967.

[12] Katrakhov V.V., Sitnik S.M. The method of transformation operators and the boundary value problems for singular

elliptic equations. Sovremennaya matematika. Fundamentalnye napravleniya 2018, 64 (2), 211–426. (in Rus-

sian)

Received 25.03.2020

Revised 21.05.2020

Баранецький Я.О., Каленюк П.I., Копач М.I., Соломко А.В. Нелокальна крайова задача зi збурення-

ми мiшаних крайових умов для елiптичного рiвняння iз сталими коефiцiєнтами. II // Карпатськi

матем. публ. — 2020. — Т.12, №1. — C. 173–188.

У роботi продовжено розпочатi у першiй частинi дослiдження властивостей задачi з не-

локальними умовами, якi є багатоточковими збуреннями мiшаних крайових умов. Зокрема,

побудовано узагальнений оператор перетворення, який вiдображає розв’язки самоспряженої

крайової задачi iз мiшаними крайовими умовами в розв’язки багатоточкової задачi. Побудо-

вано систему V(L) кореневих функцiй оператора L багатоточкової задачi. Визначено умови,

при яких система V(L) повна та мiнiмальна та умови, за яких вона є базисом Рiсса. Для випадку

елiптичного рiвняння встановлено умови iснування та єдиностi розв’язку задачi.

Ключовi слова i фрази: диференцiальне рiвняння з частинними похiдними, кореневi фун-

кцiї, метод Фур’є, метод операторiв перетворення, базис Рiсса.
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NILPOTENT LIE ALGEBRAS OF DERIVATIONS WITH THE CENTER OF SMALL

CORANK

Let K be a field of characteristic zero, A be an integral domain over K with the field of fractions

R = Frac(A), and DerK A be the Lie algebra of all K-derivations on A. Let W(A) := RDerKA and

L be a nilpotent subalgebra of rank n over R of the Lie algebra W(A). We prove that if the center

Z = Z(L) is of rank ≥ n − 2 over R and F = F(L) is the field of constants for L in R, then the Lie

algebra FL is contained in a locally nilpotent subalgebra of W(A) of rank n over R with a natural

basis over the field R. It is also proved that the Lie algebra FL can be isomorphically embedded

(as an abstract Lie algebra) into the triangular Lie algebra un(F), which was studied early by other

authors.

Key words and phrases: derivation, vector field, Lie algebra, nilpotent algebra, integral domain.
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INTRODUCTION

Let K be a field of characteristic zero, A be an integral domain over K, and R = Frac(A)

be its field of fractions. Recall that a K-derivation D on A is a K-linear operator on the vector

space A satisfying the Leibniz rule D(ab) = D(a)b + aD(b) for any a, b ∈ A. The set DerK A of

all K-derivations on A is a Lie algebra over K with the Lie bracket [D1, D2] = D1D2 − D2D1.

The Lie algebra DerK A can be isomorphically embedded into the Lie algebra DerK R (any

derivation D on A can be uniquely extended on R by the rule D(a/b) = (D(a)b − aD(b))/b2 ,

a, b ∈ A). We denote by W(A) the subalgebra R DerK A of the Lie algebra DerK R (note that

W(A) and DerK R are Lie algebras over the field K but not over R). Nevertheless, W(A) and

DerK R are vector spaces over the field R, so one can define the rank rkR L for any subalgebra

L of the Lie algebra W(A) by the rule rkR L = dimR RL. Every subalgebra L of the Lie algebra

W(A) determines its field of constants in R by

F = F(L) := {r ∈ R | D(r) = 0 for all D ∈ L} .

The product FL = {∑ αiDi | αi ∈ F, Di ∈ L} is a Lie algebra over the field F, this Lie alge-

bra often has simpler structure than L itself (note that such an extension of the ground field

preserves the main properties of L from the viewpoint of Lie theory).

We study nilpotent subalgebras L ⊆ W(A) of rank n ≥ 3 over R with the center Z = Z(L)

of rank ≥ n − 2 over R, i.e. with the center of corank ≤ 2 over R. We prove that FL is contained

УДК 512.5
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in a locally nilpotent subalgebra of W(A) with a natural basis over R, similar to the standard

basis of the triangular Lie algebra Un(F) (Theorem 1). As a consequence, we get an isomorphic

embedding (as Lie algebras) of the Lie algebra FL over F into the triangular Lie algebra un(F)

over F (Theorem 2). These results generalize main results of the papers [8] and [9]. Note that

the problem of classifying finite dimensional Lie algebras from Theorem 1 up to isomorphism

is wild (i.e., it contains the hopeless problem of classifying pairs of square matrices up to

similarity, see [3]). Triangular Lie algebras were studied in [1] and [2], they are locally nilpotent

but not nilpotent.

We use standard notations. The ground field K is arbitrary of characteristic zero. If F

is a subfield of a field R and r1, . . . , rk ∈ R, then F 〈r1, . . . , rk〉 is the set of all linear com-

binations of ri with coefficients in F, it is a subspace in the F-space R, for an infinite set

{r1, . . . , rk, . . .} we use the notation F
〈
{ri}

∞
i=1

〉
. The triangular subalgebra un(K) of the Lie

algebra Wn(K) := DerK K[x1, . . . , xn] consists of all the derivations on K[x1, . . . , xn] of the

form

D = f1(x2, . . . , xn)
∂

∂x1
+ · · ·+ fn−1(xn)

∂

∂xn−1
+ fn

∂

∂x1
,

where fi ∈ K[xi+1, . . . , xn], fn ∈ K. If D ∈ W(A), then Ker D denotes the field of constants for

D in R, i.e., Ker D = {r ∈ R | D(r) = 0}.

1 MAIN PROPERTIES OF NILPOTENT SUBALGEBRAS OF W(A)

We often use the next relations for derivations which are well known (see, for example [7]).

Let D1, D2 ∈ W(A) and a, b ∈ R. Then

1) [aD1, bD2] = ab[D1, D2] + aD1(b)D2 − bD2(a)D1;

2) if a, b ∈ Ker D1 ∩ Ker D2, then [aD1, bD2] = ab[D1, D2].

The next two lemmas contain some results about derivations and Lie algebras of deriva-

tions.

Lemma 1 ([6], Lemma 2). Let L be a subalgebra of the Lie algebra DerK R and F the field of

constants for L in R. Then FL is a Lie algebra over F, and if L is abelian, nilpotent or solvable,

then so is FL, respectively.

Lemma 2 ([6], Proposition 1). Let L be a nilpotent subalgebra of the Lie algebra W(A) with

rkR L < ∞ and F = F(L) the field of constants for L in R. Then

1) FL is finite dimensional over F;

2) if rkR L = 1, then L is abelian and dimF FL = 1;

3) if rkR L = 2, then FL is either abelian with dimF FL = 2 or FL is of the form

FL = F

〈
D2, D1, aD1, . . . ,

ak

k!
D1

〉
,

for some D1, D2 ∈ FL and a ∈ R such that [D1, D2] = 0, D2(a) = 1, D1(a) = 0.
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Lemma 3. Let L be a nilpotent subalgebra of the Lie algebra W(A) of rank n over R with the

center Z = Z(L) of rank k over R. Then I := RZ ∩ L is an abelian ideal of L with rkR I = k.

Proof. By Lemma 4 from [6], I is an ideal of the Lie algebra L. Let us show that I is abelian.

Let us choose an arbitrary basis D1, . . . , Dk of the center Z over R ( i.e., a maximal by inclusion

linearly independent over R subset of Z). One can easy to see that D1, . . . , Dk is a basis of the

ideal I as well, so we can write for each element D ∈ I

D = a1D1 + · · ·+ akDk

for some a1, . . . , ak ∈ R. Since Dj ∈ Z, j = 1, . . . , k, it holds

[Dj, D] = [Dj,
k

∑
i=1

aiDi] =
k

∑
i=1

Dj(ai)Di = 0 (1)

for j = 1, . . . , k. The derivations D1, . . . , Dn are linearly independent over the field R, hence

we obtain from (1) that Dj(ai) = 0, i, j = 1, . . . , k. Therefore we have for each element

D = b1D1 + . . . bkDk of the ideal I the next equalities

[D, D] = [
k

∑
i=1

aiDi,
k

∑
j=1

bjDj] =
k

∑
i,j=1

aibj[Di, Dj] = 0,

since Di(bj) = Dj(ai) = 0 as mentioned above. The latter means that I is an abelian ideal.

Besides, obviously rkR I = k.

Lemma 4. Let L be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of L,

I := RZ ∩ L and F the field of constants for L in R. If for some D ∈ L it holds [D, FI] ⊆ FI,

[D, FI] 6= 0, then there exist a basis D1, . . . , Dm of the ideal FI of the Lie algebra FL over R and

a ∈ R such that D(a) = 1, Di(a) = 0, i = 1, . . . , m. Besides, each element D ∈ FI is of the

form D = f1(a)D1 + · · · + fm(a)Dm for some polynomials fi ∈ F1[t], where F1 is the field of

constants for the subalgebra L1 = FI + FD in R.

Proof. By Lemma 3, the intersection I = RZ ∩ L is an abelian ideal of the Lie algebra L and

therefore FI is an abelian ideal of the Lie algebra FL. Choose a basis D1, . . . , Dm of FI over the

field R in such a way that D1, . . . , Dm ∈ Z. Then FZ is the center of the Lie algebra FL. Now take

any basis T1, . . . , Ts of the F-space FI (note that the Lie algebra FL is finite dimensional over

the field F by [6]). Every basis element Ti can be written in the form Ti =
m

∑
j=1

rijDj, i = 1, . . . , s,

for some rij ∈ R. Denote by B the subring B = F[rij, i = 1, . . . , s, j = 1, . . . , m] of the field R

generated by F and the elements rij. Since the linear operator ad D is nilpotent on the F-space

FI the derivation D is locally nilpotent on the ring B. Indeed,

[D, Ti] = [D,
m

∑
j=1

rijDj] =
m

∑
j=1

D(rij)Dj

and therefore

(ad D)ki(Ti) =
m

∑
j=1

Dki(rij)Dj = 0
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for some natural ki, i = 1, . . . , s. Denoting k = max1≤t≤s kt, we get Dk(rij) = 0 and therefore

D is locally nilpotent on B. One can easily show that there exists an element p ∈ B (a preslice)

such that D(p) ∈ Ker D, D(p) 6= 0. Then denoting a := p/D(p), we have D(a) = 1 (such

an element a is called a slice for D). The ring B is contained in the localization B[c−1], where

c := D(p) and the derivation D is locally nilpotent on B[c−1]. Note that B[c−1] ⊆ F1, where

F1 is the field of constants for L1 = FI + FD in R. Besides, by Principle 11 from [4] it holds

B[c−1] = B0[a], where B0 is the kernel of D in B[c−1]. This completes the proof because B ⊆

B[c−1] and every element D of FI is of the form D = b1D1 + . . . bmDm, bi ∈ B.

Lemma 5. Let L be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of

L, F the field of constants of L in R and I = RZ ∩ L. Let rkR Z = n − 2. Then the following

statements for the Lie algebra FL/FI hold

1) if FL/FI is abelian, then dimF FL/FI = 2;

2) if FL/FI is nonabelian, then there exist elements Dn−1, Dn ∈ FL, b ∈ R such that

FL/FI = F

〈
Dn−1 + FI, bDn−1 + FI, . . . ,

bk

k!
Dn−1 + FI, Dn + FI

〉

with k ≥ 1, Dn(b) = 1, Dn−1(b) = 0, D(b) = 0 for all D ∈ FI.

Proof. Let us choose a basis D1, . . . , Dn−2 of the center Z over the field R and any central ideal

FDn−1 + FI of the quotient algebra FL/FI. Denote the intersection R(I + KDn−1) ∩ L by I1.

Then it is easy to see that FI1 is an ideal of the Lie algebra FL of rank n − 1 over R and the

Lie algebra FL/FI1 is of dimension 1 over F (by Lemma 5 from [6]). Let us choose an arbitrary

element Dn ∈ FL \ FI1. Then D1, . . . , Dn is a basis of the Lie algebra FL over the field R.

Case 1. The quotient algebra FL/FI is abelian. Let us show that

FL/FI = F 〈Dn−1 + FI, Dn + FI〉 .

Indeed, let us take any elements S1 + FI, S2 + FI of FL/FI and write

S1 =
n

∑
i=1

riDi, S2 =
n

∑
i=1

siDi, ri, si ∈ R, i, j = 1, . . . , n.

From the equalities [Di, S1] = [Di, S2] = 0, i = 1, . . . , n − 2 (recall that Di ∈ Z(L),

i = 1, . . . , n − 2) it follows that

Di(rj) = Di(sj) = 0, i = 1 . . . , n − 2, j = 1, . . . , n. (2)

Since [FL, FI] ⊆ FI we have [Di, S1], [Di, S2] ∈ FI for i = n − 1, n. Taking into account the

equalities (2) we derive that

Di(sj) = Di(rj) = 0, i = n − 1, n, j = n − 1, n.

Therefore it holds si, ri ∈ F for i = n − 1, n and the elements Dn−1 + FI, Dn + FI form a basis

for the abelian Lie algebra FL/FI over the field F.

Case 2. FL/FI is nonabelian. Then dimF FL/FI ≥ 3 because the Lie algebra FL/FI is

nilpotent. Let us show that the ideal FI1/FI of the Lie algebra FL/FI is abelian (recall that
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I1 = R(I + KDn−1) ∩ L). Since Dn−1 + FI lies in the center of the quotient algebra FL/FI we

have for any element rDn−1 + FI of the ideal FI1/FI the following equality

[Dn−1 + FI, rDn−1 + FI] = FI.

Hence Dn−1(r)Dn−1 + FI = FI. The last equality implies Dn−1(r) = 0. But then for any

elements rDn−1 + FI, sDn−1 + FI of FI1/FI we get

[rDn−1 + FI, sDn−1 + FI] = [rDn−1, sDn−1 + FI]

= (Dn−1(s)r − sDn−1(r))Dn−1 + FI = FI.

The latter means that FI1/FI is an abelian ideal of FL/FI.

Further, the nilpotent linear operator ad Dn acts on the linear space FI1/FI with

Ker(ad Dn) = FDn−1 + FI. Indeed, let ad Dn(rDn−1 + FI) = FI. Then [Dn, rDn−1] ∈ FI

and therefore Dn(r)Dn−1 ∈ FI. This relation implies Dn(r) = 0 and taking into account the

equalities Di(r) = 0, i = 1, . . . , n − 1, we get that r ∈ F and Ker(ad Dn) = FDn−1 + FI. It

follows from this relation that the linear operator ad Dn on FI/FI1 has only one Jordan chain

and the Jordan basis can be chosen with the first element Dn−1 + FI. Since dim FI1/FI ≥ 2

(recall that dimF FL/FI ≥ 3) the chain is of length ≥ 2. Let us take the second element of

the Jordan chain in the form bDn−1 + FI, b ∈ R. Then ad Dn(bDn−1 + FI) = Dn−1 + FI and

hence Dn(b) = 1. The inclusion [Dn−1, bDn−1] ∈ FI implies the equality Dn−1(b) = 0, and

analogously one can obtain Di(b) = 0, i = 1, . . . , n − 2.

If dim FI1/FI ≥ 3 and cDn−1 + FI is the third element of the Jordan chain of ad Dn, then

repeating the above considerations we get Dn(c) = b. Then the element α = b2

2! − c ∈ R satisfies

the relations Dn−1(α) = Dn(α) = 0 and Di(α) = 0, i = 1, . . . , n − 2, since Di(b) = Di(c) = 0.

Therefore, α = b2

2! − c ∈ F and c = b2

2! + α. Since αDn−1 + FI ∈ Ker(ad Dn), we can take the

third element of the Jordan chain in the form b2

2! Dn−1 + FI. Repeating the consideration one

can build the needed basis of the Lie algebra FL/FI.

Lemma 6. Let L be a nilpotent subalgebra of W(A) with the center Z = Z(L) of

rkR Z = n − 2, F the field of constants for L in R and I = RZ ∩ L. If S, T are elements of L such

that [S, T] ∈ I, the rank of the subalgebra L1 spanned by I, S, T equals n and CFL(FI) = FI,

then there exist elements a, b ∈ R such that S(a) = 1, T(a) = 0, S(b) = 0, T(b) = 1 and

D(a) = D(b) = 0 for each D ∈ I. Besides, every element D ∈ FI can be written in the form

D = f1(a, b)D1 + · · ·+ fn−2(a, b)Dn−2 with some polynomials fi(u, v) ∈ F[u, v].

Proof. Let us choose a basis D1, . . . , Dn−2 of Z over R. By the lemma conditions, one can easily

see that D1, . . . , Dn−2, S, T is a basis of L over R. The ideal FI of the Lie algebra FL is abelian

by Lemma 3 and ad S, ad T are commuting linear operators on the vector space FI (over F).

Take a basis T1, . . . , Ts of FI over F (recall that dimF FL < ∞ by Theorem 1 from [6]) and write

Ti =
n−2

∑
j=1

rijDj for some rij ∈ R, i = 1, . . . , s, j = 1, . . . , n − 2. Denote by

B = F[rij, i = 1, . . . , s, j = 1, . . . , n − 2],

the subring of R generated by F and all the coefficients rij. Then B is invariant under the deriva-

tions S and T, these derivations are locally nilpotent on B and linearly independent over R (by
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the condition CFL(FI) = FI of the lemma). By Lemma 4, there exists an element a ∈ B[c−1]

such that

S(a) = 1, Di(a) = 0, i = 1, . . . , n − 2,

(here c = S(p) for a preslice p for S in B). Since c ∈ Ker S and [S, T] = 0 one can assume

without loss of generality that T(c) ∈ Ker T. But then T is a locally nilpotent derivation on

the subring B[c−1]. Repeating these considerations we can find an element b ∈ B[c−1][d−1]

with T(b) = 1 (here d is a preslice for the derivation T in B[c−1]). Denote B1 = B[c−1, d−1],

the subring of R generated by B, c−1, d−1. Then using standard facts about locally nilpotent

derivations (see, for example Principle 11 in [4]) one can show that B1 = B0[a, b], where

B0 = Ker S ∩ Ker T. Therefore every element h of B1 can be written in the form h = f (a, b)

with f (u, v) ∈ F[u, v]. Note that

F = Ker T ∩ Ker S ∩n−2
i=1 Ker Di.

It follows from this representation of elements of B1 that every element of the ideal FI can be

written in the form

D = f1(a, b)D1 + · · ·+ fn−2(a, b)Dn−2

with some polynomials fi(u, v) ∈ F[u, v].

2 THE MAIN RESULTS

Theorem 1. Let L be a nilpotent subalgebra of rank n ≥ 3 over R from the Lie algebra W(A),

Z = Z(L) the center of L with rkR Z ≥ n − 2, F the field of constants of L in R. Then one of the

following statements holds:

1) dimF FL = n and FL is either abelian or is a direct sum of a nonabelian nilpotent Lie

algebra of dimension 3 and an abelian Lie algebra;

2) dimF FL ≥ n + 1 and FL lies in one of the locally nilpotent subalgebras L1, L2 of W(A) of

rank n over R, which have a basis D1, . . . , Dn over R satisfying the relations

[Di, Dj] = 0, i, j = 1, . . . , n, and are one of the form

L1 = F

〈{
bi

i!
D1

}∞

i=0

, . . . ,

{
bi

i!
Dn−1

}∞

i=0

, Dn

〉

for some b ∈ R such that Di(b) = 0, i = 1, . . . , n − 1, and Dn(b) = 1,

L2 = F

〈{
aibj

i!j!
D1

}∞

i,j=0

, . . . ,

{
aibj

i!j!
Dn−2

}∞

i,j=0

,

{
bi

i!
Dn−1

}∞

i=0

, Dn

〉

for some a, b ∈ R such that Dn−1(a) = 1, Dn(a) = 0, Dn−1(b) = 0, Dn(b) = 1,

Di(a) = Di(b) = 0, i = 1, . . . , n − 2.

Proof. By Lemma 3, I = RZ ∩ L is an abelian ideal of L and therefore FI is an abelian ideal of

the Lie algebra FL (here the Lie algebra FL is considered over the field F). Let dimF FL = n.

It is obvious that dimF M = rkR M for any subalgebra M of the Lie algebra FL, in particular

dimF FZ ≥ n − 2 because of conditions of the theorem. We may restrict ourselves only on
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nonabelian algebras and assume dimF FZ = n − 2 (in case dimF FZ ≥ n − 1 the Lie algebra

FL is abelian). Since FL is nilpotent of nilpotency class 2, one can easily show that FL is a

direct sum of a nonabelian Lie algebra of dimension 3 and an abelian algebra and satisfies the

condition 1) of the theorem. So, we may assume further that dimF FL ≥ n + 1.

Case 1. rkR Z = n − 1. Then FI is of codimension 1 in FL by Lemma 5 from [6]. Therefore

dimF FI ≥ n because of dimF FL ≥ n + 1 and dimF FL/FI = 1. We obtain the strong inclusion

FZ & FI because of dimF FZ = n − 1. Take a basis D1, . . . , Dn−1 of Z over R and an element

Dn ∈ FL \ FI. Then D1, . . . , Dn is a basis for FL over R and [Dn, FI] 6= 0. Using Lemma 4 one

can easily show that FL is contained in a subalgebra of type L1 from W(A).

Case 2. rkR Z = n − 2 and dimF FI = n − 2. Then FI = FZ, dimF FL/FI ≥ 3 and therefore

by Lemma 5 the quotient algebra FL/FI is of the form

FL/FI = F

〈{
bi

i!
Dn−1 + FI

}k

i=0

, Dn + FI

〉

for some k ≥ 1, b ∈ R such that Dn(b) = 1, Dn−1(b) = 0 and D(b) = 0 for each D ∈ FI.

The F-space

J = F

〈{
bi

i!
D1

}∞

i=0

, . . . ,

{
bi

i!
Dn−1

}∞

i=0

〉

is an abelian subalgebra of W(A) and [FL, J] ⊆ J. Therefore the sum

J + F

〈{
bi

i!
Dn−1

}∞

i=0

, Dn

〉

is a subalgebra of the Lie algebra W(A). If [Dn, Dn−1] 6= 0, then taking into account the relation

[Dn, Dn−1] ∈ FI one can write

[Dn, Dn−1] = α1D1 + · · ·+ αn−2Dn−2

for some αi ∈ F (recall that FI = FZ). Consider the element of W(A) of the form

D̃n−1 = Dn−1 − α1bD1 − · · · − αn−2bDn−2.

Since [Dn, D̃n−1] = 0, D̃n−1(b) = 0, one can replace the element Dn−1 with the element D̃n−1

and assume without loss of generality that [Dn, Dn−1] = 0. As a result we get the Lie algebra

of the type L1 from the statement of the theorem.

Case 3. rkR Z = n− 2 and dimF FI > n− 2. First, suppose CFL(FI) = FI. Then by Lemma 6

there are a basis D1, . . . , Dn−2 of the ideal FI over R and elements a, b ∈ R such that

Dn−1(a) = 1, Dn(a) = 0, Dn−1(b) = 0, Dn(b) = 1

and

Di(a) = Di(b) = 0, i = 1, . . . , n − 2,

and each element D ∈ FI can be written in the form

D = f1(a, b)D1 + · · ·+ fn−2(a, b)Dn−2
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for some polynomials fi(u, v) ∈ F[u, v].

Consider the F-subspace

J = F[a, b]D1 + · · ·+ F[a, b]Dn−2

of the Lie algebra W(A). It is easy to see that J is an abelian subalgebra of W(A) and [FL, J] ⊆ J.

If [Dn, Dn−1] = 0, then it is obvious that the subalgebra FL + J is of type L2 of the theorem and

FL ⊂ L1. Let [Dn, Dn−1] 6= 0. Since [Dn, Dn−1] ∈ FI, it follows

[Dn, Dn−1] = h1(a, b)D1 + · · ·+ hn−2Dn−2

for some polynomials hi(u, v) ∈ F[u, v]. Then the subalgebra J has such an element

T = u1(a, b)D1 + . . . un−2(a, b)Dn−2

that Dn(ui(a, b)) = hi(a, b), i = 1, . . . , n − 2 (recall that Dn(a) = 0, Dn(b) = 1), and hence the

element D̃n−1 = Dn−1 − T satisfies the equality [Dn, T] = 0. Replacing Dn−1 with D̃n−1 we get

the needed basis of the Lie algebra FL + J and see that FL can be embedded into the Lie L2 of

W(A). So in case of CFL(FI) = FI the Lie algebra FL can be isomorphically embedded into the

Lie algebra of type L2 from the statement of the theorem.

Further, suppose CFL(FI) 6= FI. Since CFL(FI) ⊇ FI one can easily show that

Dn−1 ∈ CFL(FI) \ FI (note that FL/FI has the unique minimal ideal FDn−1 + FI). Then

[Dn−1, FI] = 0, and therefore [Dn, FI] 6= 0. Therefore by Lemma 4 there is an element c ∈ R

such that

Dn(c) = 1, Dn−1(c) = 0, Di(c) = 0, i = 1, . . . , n − 2.

Moreover, each element of FI is of the form g1(c)D1 + · · ·+ gn−2(c)Dn−2 for some polynomials

gi(u) ∈ F[u]. By Lemma 5, the quotient algebra FL/FI is of the form

FL/FI = F

〈{
bi

i!
Dn−1 + FI

}k

i=0

, Dn + FI

〉

for some b ∈ R, k ≥ 1 such that Dn(b) = 1, Dn−1(b) = 0. But then

Dn−1(b − c) = 0, Dn(b − c) = 0, Di(b − c) = 0,

and hence b − c = α for some α ∈ F. Without loss of generality we can assume b = c. The

locally nilpotent subalgebra

L1 = F

〈{
aibj

i!j!
D1

}∞

i,j=0

, . . . ,

{
aibj

i!j!
Dn−2

}∞

i,j=0

,

{
bi

i!
Dn−1

}∞

i=0

, Dn

〉

of the Lie algebra W(A) contains FL and satisfies the conditions for the Lie algebra of type L2

from the statement of the theorem, possibly except the condition [Dn, Dn−1] = 0. If

[Dn, Dn−1] 6= 0, then from the inclusion [Dn, Dn−1] ∈ FI it follows that

[Dn, Dn−1] = f1(b)D1 + · · ·+ fn−2(b)Dn−2

for some polynomials fi(u) ∈ F[u].

One can easily show that there is such an element

D = h1(b)D1 + · · ·+ hn−2(b)Dn−2 ∈ L1,

that [Dn, D] = [Dn, Dn−1] (one can take antiderivations hi for polynomials fi, i = 1, . . . , n − 2).

Replacing Dn−1 with Dn−1 − D we get the needed basis over R of the Lie algebra L2.
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Remark 1. Any Lie algebra of dimension n over F can be realized as a Lie algebra of rank n

over R by Theorem 2 from [5]. So the Lie algebra of type 1) from Theorem 1 can be chosen in

any way possible.

As a corollary we get the next statement about embedding of Lie algebras of derivations.

Theorem 2. Let L be a nilpotent subalgebra of rank n over R of the Lie algebra W(A), Z = Z(L)

be the center of L and F be the field of constants of L in R. If rkR Z ≥ n − 2, then the Lie

algebra FL can be isomorphically embedded (as an abstract Lie algebra) into the triangular Lie

algebra un(F).

Proof. First, suppose dimF FL = n. If FL is abelian, then FL is isomorphically embeddable into

the Lie algebra un(F) because the subalgebra F
〈

∂
∂x1

, . . . , ∂
∂xn

〉
of un(F) is abelian of dimension

n over F. So one can assume that FL is nonabelian. Then by Theorem 1, FL = M1 ⊕ M2, where

M1 is an abelian Lie algebra of dimension n − 3 over F and M2 is nilpotent nonabelian with

dimF M2 = 3. The subalgebra H2 = F
〈

∂
∂x1

, ∂
∂x2

+ x3
∂

∂x1
, ∂

∂x3

〉
of the Lie algebra un(F) is obvi-

ously isomorphic to M2. The abelian subalgebra H1 = F
〈

∂
∂x4

, . . . , ∂
∂xn

〉
, n ≥ 4, is isomorphic to

the Lie algebra M1. So FL ≃ H1 ⊕ H2 is isomorphic to a subalgebra of un(F). Note that H1 ⊕ H2

is of rank n over the field K(x1, . . . , xn) of rational functions in n variables.

Next, let dimF FL > n. By Theorem 1, the Lie algebra FL lies in one of the subalgebras

of types L1 or L2. Therefore it is sufficient to show that the subalgebras L1, L2 of W(A) from

Theorem 1 can be isomorphically embedded into the Lie algebra un(F). In case L1, we define a

mapping ϕ on the basis D1, . . . , Dn,
{

bi

i! Di

}∞

i=1
of L1 over R by the rule ϕ(Di) =

∂
∂xi

, i = 1, . . . , n,

ϕ( bi

i! Di) =
xi

n
i!

∂
∂xi

, i = 1, . . . , n − 1, and then extend it on L1 by linearity. One can easily see that

the mapping ϕ is an isomorphic embedding of the Lie algebra L1 into un(F). Analogously, on

L2 we define a mapping ψ : L2 → un(F) by the rule

ψ(Di) =
∂

∂xi
, i = 1, . . . , n, ψ(

aibj

i!j!
Dk) =

xi
n−1x

j
n

i!j!

∂

∂xk
, k = 1, . . . , n − 2

ψ(
bi

i!
Dn−1) =

xi
n

i!

∂

∂xn−1
, i ≥ 1, j ≥ 1,

and further by linearity. Then ψ is an isomorphic embedding of the Lie algebra L2 into the Lie

algebra un(F).
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Нехай K — поле характеристики нуль, A — область цiлiсностi над K з полем часток R =

Frac(A), i DerK A — алгебра Лi K-диференцiювань A. Нехай W(A) := RDerKA i L — нiльпо-

тентна пiдалгебра рангу n над R Лi алгебри W(A). Ми показуємо, що якщо центр Z = Z(L)

має ранг ≥ n− 2 над R i F = F(L) — поле констант алгебри Лi L в R, то алгебра Лi FL мiститься

в локально нiльпотентнiй пiдалгебрi рангу n над R з природнiм базисом над полем R. Також

доводиться, що Лi алгебра FL може бути iзоморфно вкладена (як абстрактна Лi алгебра) в

трикутну алгебру Лi un(F), що була дослiджена ранiше iншими авторами.

Ключовi слова i фрази: диференцiювання, векторне поле, алгебра Лi, нiльпотентна алгебра,

область цiлiсностi.
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It is proved that for p > 2 every finite non-metacyclic 2-generated p-group of nilpotency class
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a nearring with identity. It is also shown that the subgroup of all non-invertible elements of this

nearring is of index p in its additive group.
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INTRODUCTION

Nearrings are generalizations of associative rings in the sense that with respect to the ad-

dition they need not be commutative and only one distributive law is assumed. In this paper

the concept “nearring” means a left distributive nearring with a multiplicative identity. The

reader is referred to the books by Meldrum [6] or Pilz [8] for terminology, definitions and basic

facts concerning nearrings.

Following [3], the nearring with identity will be called local, if the set of all non-invertible

elements forms a subgroup of its additive group. The main results concerning local nearrings

are summarized in [11].

In [4] it is shown that every non-cyclic abelian p-group of order pn
> 4 is the additive

group of a zero-symmetric local nearring which is not a ring. As it was noted in [5], neither a

generalized quaternion group nor a non-abelian group of order 8 can be the additive group of

a local nearring.

Therefore the structure of the non-abelian finite p-groups which are the additive groups of

local nearrings is an open problem [2].

It was proved that every non-metacyclic Miller–Moreno p-group of order pn
> 8 is the

additive group of a local nearring and the multiplicative group of such a nearring is the group

of order pn−1(p − 1) [9]. In this paper finite non-abelian non-metacyclic 2-generated p-groups

(p > 2) of nilpotency class 2 with cyclic commutator subgroup are studied.
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1 PRELIMINARIES

Let G be a finite non-abelian non-metacyclic 2-generated p-group (p > 2) of nilpotency

class 2 with cyclic commutator subgroup.

Denote by G′ and Z(G) the commutator subgroup and the centre of G, respectively.

Let a and b be generators for G such that G/G′ = 〈aG′〉 × 〈bG′〉, aG′ has order pm and

bG′ has order pn. Then c = [a, b] generates G′, c has order pd with 1 ≤ d ≤ n ≤ m, and

c ∈ Z(G) = 〈apm
, bpn

, c〉.

Suppose that 〈a〉 ∩ G′ = 〈b〉 ∩ G′ = 1. Then

G = 〈a, b, c|apm
= bpn

= cpd
= 1, ab = ac, ca = cb = c〉

and each element of G can be uniquely written in the form ax1 bx2 cx3 , x1 ∈ Cpm , x2 ∈ Cpn ,

x3 ∈ Cpd . Therefore the group G with p > 2 will be denoted by G(pm, pn, pd).

Lemma 1. For any natural numbers k and l the equality [ak, bl] = ckl holds.

Proof. Since b−1ab = ac, it follows that b−labl = acl . Therefore, b−lakbl = (acl)k = akckl, thus

a−kb−lakbl = ckl .

Corollary 1. Let the group G(pm, pn, pd) be additively written. Then for any natural numbers

k and l the equalities −ak − bl + ak + bl = c(kl) and bl + ak = −c(kl) + ak + bl hold.

Lemma 2. For any natural numbers k, l and r the equality

(akbl)r = akrblrc−kl(r
2) (1)

holds.

Proof. For r = 1, there is nothing to prove. By induction on r, we derive

(akbl)r = akrblrc−kl(r
2).

Replacing r by r + 1 in equality (1), we have

(akbl)(r+1) = akrblrakblc−kl(r
2) = ak(r+1)bl(r+1)c−klrc−kl(r

2)

= ak(r+1)bl(r+1)c−kl(r+(r
2)) = ak(r+1)bl(r+1)ckl(r+1

2 ).

Thus, equality (1) holds for an arbitrary r.

Corollary 2. Let the group G(pm, pn, pd) be additively written. Then for any natural numbers

k, l and r the equality (ak + bl)r = akr + blr − ckl(r
2) holds.

Obviously, the exponent of G(pm, pn, pd) is equal to pm for 1 ≤ d ≤ n ≤ m.

Lemma 3. If x is an element of order pm of G(pm, pn, pd), then there exist generators a, b, c of

this group such that a = x and apm
= bpn

= cpd
= 1, ab = ac, ca = cb = c.
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Proof. Indeed, for each x ∈ G(pm, pn, pd) there exist positive integers α, β and γ such that

x = aαbβcγ. Thus, we have

xpm
= (aαbβcγ)pm

= (aαbβ)pm
cγpm

= aαpm
bβpm

cγpm−αβ(pm

2 )

= apm α
bpmβcpm(γ−αβ

(pm−1)
2 ) = 1

by Lemma 2. Since |a| = pm and 1 ≤ d ≤ n ≤ m, where m > 1 and p > 2, it follows that the

exponent of G(pm, pn, pd) equals pm.

If

xpm−1
= apm−1αbpm−1βcpm−1(γ−αβ

(pm−1−1)
2 ) 6= 1,

then either (α, p) = 1, or (β, p) = 1 for m = n, or (γ, p) = 1 for m = n = d. So, without loss of

generality, we can assume that (α, p) = 1. Then

〈x, b〉 = 〈aαbβcγ, b〉 = 〈aα, b〉 = 〈a, b〉 = G

and

b−1xb = b−1(aαbβcγ)b = (ac)αbβcγ = (aαbβcγ)cα = xcα.

Furthermore, substituting cα instead of c for generators x and b of G(pm, pn, pd), we have simi-

lar expressions as for generators a and b, thus replacing the element a by x.

The following assertion concerning the automorphisms group of G(pm, pn, pd) is a direct

consequence of statement (B1) [7].

Lemma 4. Let G = G(pm, pn, pd) and let Aut(G) be the automorphism group of G. Then the

following statements hold:

1) if m = n, then |Aut(G)| = p2d+4m−5(p2 − 1)(p − 1);

2) if m > n, then |Aut(G)| = p2d+3n+m−2(p − 1)2.

An information about a group of automorphisms of G(pm, pm, pd) is given by the following

lemma.

Lemma 5. Let G = G(pm, pm, pd) and let there exist a subgroup A of Aut(G) of order

p2m+d−2(p2 − 1), where m, d > 1 with odd p. If an element g ∈ G of order pm and A contains

Sylow normal p-subgroup, then G 6= gA ∪ Φ(G).

Proof. Assume that G = gA ∪ Φ(G). Then G = (〈a〉 × 〈c〉)⋊ 〈b〉 with generators a, b of order

pm and a central commutator c = [a, b] of order pd by the definition. Hence

Φ(G) = (〈ap〉 × 〈c〉)⋊ 〈bp〉,

and thus all elements of order pm are contained in gA. Furthermore, a = gu for some u ∈ A,

hence gA = aA, i. e. G = aA ∪ Φ(G). Since |G| = p2m+d and Φ(G) = p2m+d−2, it follows that

|aA| = |G| − |Φ(G)| = p2m+d−2(p2 − 1),

and so the centralizer CA(a) of a in A equals 1. In particular, (a〈cp〉)A = (a〈cp〉)B = a〈cp〉 for

the normal subgroup B = CA(a〈c
p〉) of order pd−1 in A.

Considering the factor-group Ḡ = G/〈cp〉 and Ā = A/B. Taking into consideration, that

|āĀ| = p2m−1(p2 − 1), we have Ḡ = āĀ ∪ Φ(Ḡ). Since |Φ(Ḡ)| = |Z(Ḡ)| and xy = yx for all

x ∈ Φ(Ḡ), y ∈ Ḡ, we have Φ(Ḡ) = Z(Ḡ). Therefore, Ḡ is a Miller–Moreno group. Since

Ḡ = āĀ ∪ Z(Ḡ), the latter equality is impossible by [9, Lemma 7]. This contradiction completes

the proof.
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2 NEARRINGS WITH IDENTITY ON GROUP G(pm, pn, pd)

First recall some basic concepts of the theory of nearrings.

Definition 1. A set R with two binary operations “+” and “·” is called a (left) nearring if the

following statements hold

(1) (R,+) = R+ is a (not necessarily abelian) group with neutral element 0;

(2) (R, ·) is a semigroup;

(3) x(y + z) = xy + xz for all x, y, z ∈ R.

If R is a nearring, then the group R+ is called the additive group of R. If in addition 0 · x = 0,

then the nearring R is called zero-symmetric and if the semigroup (R, ·) is a monoid, i.e. it has

an identity element i, then R is a nearring with identity i. In the latter case the group R∗ of all

invertible elements of the monoid (R, ·) is called the multiplicative group of R.

The following assertion is well-known.

Lemma 6. Let R be a finite nearring with identity i. Then the exponent of R+ is equal to the

additive order of i which coincides with additive order of every element of R∗.

As a direct consequence of Lemmas 3 and 6 we have the following corollary.

Corollary 3. Let R be a nearring with identity i whose group R+ is isomorphic to a group

G(pm, pn, pd). Then R+ = 〈a〉+ 〈b〉+ 〈c〉 with elements a, b and c, satisfying relations apm =

bpn = cpd = 0, −b + a + b = a + c and −a + c + a = −b + c + b = c with 1 ≤ d ≤ n ≤ m,

where a = i.

The following statement [10, Lemma 1] establishes a connection between the automorphism

group of the additive group of the nearring with identity and its multiplicative group.

Lemma 7. Let R be a nearring with identity i. Then there exists a subgroup A of the

automorphism group Aut(R+) which is isomorphic to R∗ and satisfying the condition

iA = {ia | a ∈ A} = R∗.

The subgroup A defined in Lemma 7 is called the automorphism group of the group R+

associated with the group R∗.

The following statement [11, Theorem 54] concerns the structure of L which is the subgroup

of all non-invertible elements of finite local nearring R. Let Φ(G) denote the Frattini subgroup

of G.

Theorem 1. Let R be a local nearring of order pn and let G(R) = R+
⋊R∗ be a group associated

with R. Then H = R+
⋊ (i + L) is a Sylow normal p-subgroup of G(R) and L = R+ ∩ Φ(H).

In particular, if L is non-abelian, then its center is non-cyclic.

Considering Φ(R+) ≤ Φ(H), we have the following corollary.

Corollary 4. Φ(R+) ≤ L = Φ(H) ∩ R+.
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Let R be a nearring with identity i whose group R+ is isomorphic to a group G(pm, pn, pd).

It follows from Corollary 3 that R+ = 〈a〉+ 〈b〉+ 〈c〉 with elements a, b and c, satisfying re-

lations apm = bpn = cpd = 0, −b + a + b = a + c and −a + c + a = −b + c + b = c with

1 ≤ d ≤ n ≤ m, where a = i and each element x ∈ R is uniquely written in the form

x = ax1 + bx2 + cx3 with coefficients 0 ≤ x1 < pm, 0 ≤ x2 < pn and 0 ≤ x3 < pd.

Furthermore, we can assume xa = ax = x for each x ∈ R. Then there exist uniquely

defined mappings α : R → Zpm , β : R → Zpn and γ : R → Zpd such that

xb = aα(x) + bβ(x) + cγ(x). (2)

Lemma 8. If x = ax1 + bx2 + cx3 and y = ay1 + by2 + cy3 are arbitrary elements of R, then

xy = a(x1y1 + y2α(x)) + b(x2y1 + y2β(x))

+ c
(

− x1x2

(

y1

2

)

−

(

y2

2

)

α(x)β(x) − x2y1y2α(x)

+ x3y1 + y2γ(x) + x1y3β(x)− x2y3α(x)
)

,

where mappings α : R → Zpm , β : R → Zpn and γ : R → Zpd satisfy the conditions

(0) α(0) ≡ 0 (mod pm), β(0) ≡ 0 (mod pn) and γ(0) ≡ 0 (mod pd) if and only if the near-

ring R is zero-symmetric;

(1) α(xy) ≡ x1α(y) + α(x)β(y) (mod pm );

(2) β(xy) ≡ x2α(y) + β(x)β(y) (mod pn );

(3) γ(xy) ≡ −x1x2(
α(y)

2 )− α(x)β(x)(β(y)
2 )− x2α(x)α(y)β(y)

+x3α(y) + γ(x)β(y) + x1β(x)γ(y) − x2α(x)γ(y) (mod pd ).

Proof. If R is a zero-symmetric nearring, then

0 = 0 · b = aα(0) + bβ(0) + cγ(0),

thus α(0) ≡ 0 (mod pm), β(0) ≡ 0 (mod pn) and γ(0) ≡ 0 (mod pd). On the other hand, if

the last congruences hold, then 0 · b = a · 0 + b · 0 + c · 0 = 0. Since a is the multiplicative

identity in R, we have 0 · a = a · 0 = 0. Moreover, from the equality c = −a − b + a + b and the

left distributive law it follows that 0 · c = −0 · a − 0 · b + 0 · a + 0 · b = 0, hence

0 · x = 0 · (ax1 + bx2 + cx3) = (0 · a)x1 + (0 · b)x2 + (0 · c)x3 = 0.

This proves statement (0).

Next, using (2) and Corollary 1, we obtain

xc = −xa − xb + xa + xb = −cx3 − bx2 − ax1 − cγ(x)− bβ(x)− aα(x)

+ ax1 + bx2 + cx3 + aα(x) + bβ(x) + cγ(x)

= −bx2 − ax1 − bβ(x)− aα(x) + ax1 + bx2 + aα(x) + bβ(x)

= −bx2 + cx1β(x)− bβ(x)− ax1 − a(α(x) − x1) + bx2 + aα(x) + bβ(x)

= cx1β(x)− b(x2 + β(x)) − aα(x) + bx2 + aα(x) + bβ(x)
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= cx1β(x)− b(x2 + β(x)) − aα(x)− cx2α(x) + aα(x) + bx2 + bβ(x)

= c(x1β(x)− x2α(x))− b(x2 + β(x)) + bx2 + bβ(x) = c(x1β(x)− x2α(x)).

Therefore

xy = (ax1 + bx2 + cx3)y1 + (aα(x) + bβ(x) + cγ(x))y2 + (cx1β(x)− x2α(x))y3.

Corollary 2 implies that

(ax1 + bx2)y1 = ax1y1 + bx2y1 − cx1x2

(

y1

2

)

,

(aα(x) + bβ(x))y2 = ay2α(x) + by2β(x)− c

(

y2

2

)

α(x)β(x)

and

bx2y1 + ay2α(x) = ay2α(x) + bx2y1 − cx2y1y2α(x).

By the left distributive law, we have

xy = a(x1y1 + y2α(x)) + b(x2y1 + y2β(x)) + c
(

− x1x2

(

y1

2

)

−

(

y2

2

)

α(x)β(x) − x2y1y2α(x) + x3y1 + y2γ(x) + x1y3β(x)− x2y3α(x)
)

.

Finally, the associativity of multiplication for all x, y ∈ R implies that

1) (xy)b = x(yb).

Thus

2) (xy)b = aα(xy) + bβ(xy) + cγ(xy)

and yb = aα(y) + bβ(y) + cγ(y) by formula (2). Substituting the last expression in the right

part of equality 1), we get

3) x(yb) = a(x1α(y) + α(x)β(y)) + b(x2α(y) + β(x)β(y))

+ c(−x1x2(
α(y)

2 )− α(x)β(x)(β(y)
2 )− x2α(x)α(y)β(y)

+ x3α(y) + γ(x)β(y) + x1β(x)γ(y) − x2α(x)γ(y)).

Comparing the coefficients a, b and c in 2) and 3) by equality 1), we derive statements (1)–(3)

of the lemma.

3 LOCAL NEARRINGS ON GROUP G(pm, pn, pd)

Let R be a local nearring with identity i, whose group R+ is isomorphic to the group

G(pm, pn, pd). Then R+ = 〈a〉+ 〈b〉+ 〈c〉 with elements a, b and c, satisfying relations

apm = bpn = cpd = 0, −b+ a+ b = a+ c and −a+ c+ a = −b+ c+ b = c with 1 ≤ d ≤ n ≤ m,

where a = i and each element x ∈ R is uniquely written in the form x = ax1 + bx2 + cx3 with

coefficients 0 ≤ x1 < pm, 0 ≤ x2 < pn and 0 ≤ x3 < pd.

We show that the set L of all non-invertible elements of R is a subgroup of index p in R+.
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Theorem 2. The following statements hold

1) L = 〈a · p〉+ 〈b〉+ 〈c〉 and, in particular, the subgroup L is of index p in R+ and

|R∗| = pm+n+d−1(p − 1);

2) x = ax1 + bx2 + cx3 is an invertible element if and only if x1 6≡ 0 (mod p).

Proof. Assume that |R+ : L| = pt, t > 1. Since R = R∗ ∪ L, it follows that

|R∗| = |R| − |L| = pm+n+d − pm+n+d−t = pm+n+d−t(pt − 1).

According to Lemma 7, the group R∗ is isomorphic to the subgroup A of the automorphism

group of R+ and so |R∗| divides |Aut(R+)|. According to statement 1) of Lemma 4 it is possible

only if t = 2 and m = n.

Assume that |R+ : L| = p2 and m = n. If d = 1, then it is impossible because of [9, Theorem

2]. Now let d > 1. Since |R+ : Φ(R+)| = p2 and Corollary 4, we have L = Φ(R+). Hence

by Lemma 7, we get R+ = aA ∪ Φ(R+), which is impossible by Lemma 5. This contradiction

shows that our assumption is false and so |R+ : L| = p.

It is clear that R/L is a nearfield and so the factor-group R+/L+ is an elementary abelian

p-group. Thus for a /∈ L we have ap ∈ L and so L = 〈a · p〉+ 〈b〉+ 〈c〉. Therefore R∗ = R \ L

and hence

R∗ = {ax1 + bx2 + cx3 | x1 6≡ 0 ( mod p )}.

Applying statement (1) of Theorem 2 to Lemma 8, we get the following formula for multi-

plying elements x = ax1 + bx2 + cx3 and y = ay1 + by2 + cy3 in the local nearring R.

Corollary 5. If x, y ∈ R with 1 ≤ d ≤ n ≤ m and xb = aα(x) + bβ(x) + cγ(x), then

xy = a(x1y1 + y2α(x)) + b(x2y1 + y2β(x)) + c
(

− x1x2

(

y1

2

)

−

(

y2

2

)

α(x)β(x) − x2y1y2α(x) + x3y1 + y2γ(x) + x1y3β(x)− x2y3α(x)
)

,

where mappings α : R → Zpm , β : R → Zpn and γ : R → Zpd and the following statements

hold

(0) α(0) ≡ 0 (mod pm), β(0) ≡ 0 (mod pn) and γ(0) ≡ 0 (mod pd) if and only if the

nearring R is zero-symmetric;

(1) α(x) ≡ 0 (mod p);

(2) if β(x) ≡ 0 (mod p), then x1 ≡ 0 (mod p);

(3) α(xy) ≡ x1α(y) + α(x)β(y) (mod pm );

(4) β(xy) ≡ x2α(y) + β(x)β(y) (mod pn );

(5) γ(xy) ≡ −x1x2(
α(y)

2 )− α(x)β(x)(β(y)
2 )− x2α(x)α(y)β(y) +x3α(y) + γ(x)β(y)

+x1β(x)γ(y) − x2α(x)γ(y) (mod pd ).
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Proof. Indeed, statements (0), (3)–(5) repeat statements (0)–(4) of Lemma 8. Since L = 〈a · p〉+

〈b〉 + 〈c〉 by Theorem 2 and L is an (R, R)-subgroup in R by statement 2) [1, Lemma 3.2], it

follows that xb ∈ L and hence α(x) ≡ 0 (mod p), proving statement (1). Taking y = c, we

have xc = c(x1β(x)− x2α(x)). Thus, if β(x) ≡ 0 (mod p), then xc = 0 (mod p), and so x ∈ L.

Thus x1 ≡ 0 (mod p) by Theorem 2, proving statement (2).

The following theorem shows the conditions given in Theorem 2 are sufficient for existing

of finite local nearrings on G(pm, pn, pd). Moreover, each group G(pm, pn, pd) is the additive

group of a nearring with identity.

Theorem 3. For each prime p and positive integers m, n and d with 1 ≤ d ≤ n ≤ m there exists

a local nearring R whose additive group R+ is isomorphic to the group G(pm, pn, pd).

Proof. Let R be an additively written group G(pm, pn, pd) with generators a, b and c satisfy-

ing the relations |a| = pm, |b| = pn, |c| = pd, b−1ab = ac and a−1ca = b−1cb = c. Then

G = 〈a〉+ 〈b〉+ 〈c〉 and each element x ∈ R is uniquely written in the form x = ax1 + bx2 + cx3

with coefficients 0 ≤ x1 < pm, 0 ≤ x2 < pn and 0 ≤ x3 < pd. In order to define a multiplication

“·” on R in such a manner that (R,+, ·) is a local nearring.

Assume that 1 ≤ d ≤ n ≤ m and let the mappings from Corollary 5 be defined by the

congruences α(x) ≡ 0 (mod pm), β(x) ≡ x1 (mod pn) and γ(x) ≡ 0 (mod pd) for each

x ∈ G. Then

x · y = ax1y1 + b(x2y1 + x1y2) + c
(

− x1x2

(

y1

2

)

+ x3y1 + x2
1y3

)

.

It suffices to show that the mappings α : G → Zpm , β : G → Zpn and γ : G → Zpd with

respect to the multiplication “·” satisfy statements (0)–(5) of Corollary 5.

Indeed, α(0) ≡ 0 (mod pm), β(0) ≡ 0 (mod pn) and γ(0) ≡ 0 (mod pd) by the de-

finition. Since 0 · y = a · 0 + b · 0 + c · 0 = 0 for each y ∈ G, this implies that a multiplica-

tion “·” is zero-symmetric and so, proving statement (0) of Corollary 5. Indeed, we have

α(x) ≡ 0 (mod p) and x1 ≡ 0 (mod p), if β(x) ≡ 0 (mod p), so that statements (1) and (2) of

Corollary 5 hold. Clearly, we derive statements (3)–(5) of Corollary 5.

As corollary we have the following assertion.

Corollary 6. Each group G(pm, pn, pd) is the additive group of a nearring with identity.
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Раєвська I.Ю., Раєвська М.Ю. Локальнi майже-кiльця на скiнченних неабелевих неметациклiчних

2-породжених p-групах // Карпатськi матем. публ. — 2020. — Т.12, №1. — C. 199–207.

Доведено, що для p > 2 кожна скiнченна неметациклiчна 2-породжена p-група зi ступенем

нiльпотентностi рiвним 2 з циклiчним комутантом є адитивною групою деякого локального

майже-кiльця, зокрема, майже-кiльця з одиницею. Показано, що пiдгрупа всiх необоротних

елементiв цього локального майже-кiльця має iндекс p в його адитивнiй групi.

Ключовi слова i фрази: скiнченна p-группа, локальне майже-кiльце.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2020, 12 (1), 208–228 Карпатськi матем. публ. 2020, Т.12, №1, С.208–228

doi:10.15330/cmp.12.1.208-228

SOLTANOV K.1 , SERT U.2

CERTAIN RESULTS FOR A CLASS OF NONLINEAR FUNCTIONAL SPACES

In this article, we study properties of a class of functional spaces, so-called pn-spaces, which
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INTRODUCTION

This paper is concerned with some features of a class of functional spacesб which are emer-

ged from investigation of nonlinear differential equations. Studying boundary value problems

(BVPs) require to examine and understand the functional spacesб which are directly related

with the considered problem. In other words, it is required to work on the domain of the

operator generated by the addressed boundary value problem. We specify that it is better

to study each BVPs on its own space. Furthermore, detailed analysis of these spaces and

examining their topology, structure etc. cause to gain better results of the possed problem (for

example, regularity of the solution).

The spaces generated by boundary value problems for the linear differential equations are

generally linear spaces such as Sobolev spaces and different generalizations of them. Apart

from boundary value problems for linear differential equations, the spaces generated by non-

linear differential equations (essentially the domain of the corresponding operator) are subsets

of linear spaces and do not have linear structure. The class of spaces of this type were intro-

duced and investigated by Soltanov in the abstract case (see, e.g. [21–26]), and also in the case

of functions spaces (see, e.g. [23–30] and references therein, where various subsets of linear

spaces of this type were searched). In the mentioned articles, topology of these spaces were in-

vestigated and shown that under what circumstances they are metric or pseudo-metric spaces.

Starting from these features of the introduced spaces, they were defined as the class of pseudo-

normed spaces or pn-spaces and the class of quasi-pseudo normed spaces or qn-spaces.

In this work, we focus on the characteristics of certain class of functional pn-spaces. Essen-

tially, we deal with the following class of functional pn-spaces.

УДК 517.98
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35J62, 35K61.
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Let Ω ⊂ R
n (n ≥ 1) be bounded domain with sufficiently smooth boundary. In this work

the class of functions u : Ω −→ R of the following type will be investigated

Sm,α,β (Ω) :=
{

u ∈ L1 (Ω) : [u]
α+β
Sm,α,β(Ω)

< ∞
}

,

where

[u]
α+β
Sm,α,β(Ω)

:= ∑
0≤|k|≤m





∫

Ω

|u|α
∣

∣

∣
Dku

∣

∣

∣

β
dx



 , D = (D1, D2, . . . , Dn) ,

Di =
∂

∂xi
, Dk ≡ Dk1

1 Dk2
2 , . . . , Dkn

n , i = 1, n, |k| =
n

∑
i=1

ki. Here, we only address the cases m = 1, 2.

It is important to note that the following subset of Lp (Ω), p ≥ 2,

M :=







u ∈ L1 (Ω) :
n

∑
i=1





∫

Ω

|u|p−2 |Diu|2 dx



 < ∞, u | ∂Ω = 0







was arose in the article of Dubinskii earlier ( [7, 8, 11]) while studying the following nonlinear

problem
∂u

∂t
−

n

∑
i=1

Di

(

|u|p−2 Diu
)

= h(x, t), (t, x) ∈ (0, T)×Ω,

u (0, x) = u0 (x) , u
∣

∣

∣(0,T]×∂Ω = 0 .

Here, compact inclusion of subset M to the space Lp (Ω) and also necessary compactness the-

orems for analysis of the parabolic problem were proved. Later on, different new subsets of

L1 (Ω) appeared in the articles of Soltanov (see, e.g. [23–25]) while studying the mixed prob-

lem for the following nonlinear equation, which is type of the Prandtl-von-Mises equation

∂u

∂t
− |u|ρ ∂2u

∂x2
= h (t, x) , ρ > 0, (t, x) ∈ (0, T)×Ω. (1)

For example, one of the emerged class in the case of Ω = (a, b) ⊂ R can be expressed in the

form






u ∈ L1 (Ω) :
∫

Ω

|u|α
∣

∣

∣
D2u

∣

∣

∣

β
dx < ∞, u (a) = u (b) = 0







,

and also as type of subsets in the form Sm,α,β (Ω). Here, we specify that different problems to

the equation (1) were studied under various additional conditions as well (see, e.g. [12, 14, 18,

35–37]).

Accordingly, in the papers [24, 25] etc. different classes of sets of this type were examined

and it was shown that these sets are nonlinear topological spaces, moreover they are either

metric or pseudo-metric spaces. Many other properties of the introduced spaces were investi-

gated as well in these works. For instance, relations of these spaces amongst themselves and

with well known functional spaces (e.g. Lebesgue or Sobolev spaces etc).

Consequently, in the mentioned works pn-spaces and qn-spaces were defined with taking

into account the principal attributes of the presented spaces.

These spaces may arise from the research of the existence of smooth solution of the follow-

ing differential equation

−∆u + u + |u|p u = h (x) , x ∈ Ω ⊂ R
n, n ≥ 2,
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(

∂u

∂η
+ |u|µ u

)

∣

∣

∣

∂Ω
= ψ

(

x′
)

, x′ ∈ ∂Ω, p, µ ≥ 0,

which was studied by Soltanov [32]. We emphasize that equation of this form was considered

by many authors, who tried to answer various questions of different problems for this equa-

tion, (see, e.g. Berestycki ve Nirenberg [3], Brezis [4], etc.). In [15], Pohozaev employed another

approach for this problem that led to gaining distinct results other than [32].

This kind of nonlinear spaces are generated by the differential equations, which ensue from

the mathematical models of some processes in flood mechanics. For example, we may present

the nonlinear equation of type

∂u

∂t
− |u|p−2

∆u = h (x, t) , p ≥ 2,

where this equation were studied [24,31] and [33]. Similar equations were handled by Oleynik

[14], Walter [36] only using the approximation way and Tsutsumi, Ishiwata [35] focused on

understanding the behavior of the solution.

In recent years, there have been an increasing interest in the study of equations with vari-

able exponents of nonlinearities. The interest in the study of differential equations that in-

volves variable exponents is motivated by their applications to the theory of elasticity and

hydrodynamics, in particular, the models of electrorheological fluids [17] in which a substan-

tial part of viscous energy, the thermistor problem [38], image processing [5] and modeling of

non-Newtonian fluids with thermo-convective effects [2] etc.

In the most of these papers, that concern with equations, which have non standard growth,

authors studied the problems, which involve p(.)-Laplacian type equation or equations, which

fulfill monotonicity conditions, where enable to apply monotonicity methods. Unlike these

works, in the articles [19, 20] investigating some properties of nonlinear spaces with variable

exponent, we developed an approach based on the spaces corresponding to problem under

consideration. It is necessary to note, that the questions mentioned above may arise for the

problems, which have variable exponent nonlinearity. Eventually, here we also study vari-

able exponent nonlinear spaces that are essential for the investigation of the following type of

equations

∇ ·
[(

|∇u|p0(x)−2 + |u|p1(x)−2
)

∇u
]

= h (x, u) .

Since we want to establish the regularity of solution of the nonlinear differential equations

related with mentioned pn-spaces, thus our aim is to understand the structure and nature of

these spaces better, that allows to investigate the characteristics of solutions. For this reason,

in this article we prove some embedding results, which indicate the relation of these spaces

between Sobolev and Lebesgue spaces. We show that these spaces are not merely subsets of

Lebesgue spaces also subsets of Sobolev spaces.

This paper is organized as follows. In the next section, we give the definitions of certain

type of pn-spaces with variable and constant exponents ( [20, 33] and for general definition

see [34]) as well as recall some basic results for these spaces and variable exponent spaces. In

Section 2, we prove embedding theorems for constant exponent pn-spaces and give certain

results with examples in one dimensional case. In Section 3 firstly, we establish some inte-

gral inequalities with variable exponents, which are required to prove embedding theorems

of variable exponent nonlinear spaces then investigate some attributes of variable exponent

pn-spaces.
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1 PRELIMINARIES

In this section in the beginning we will give the general definition of spaces that are studied

here in the functional case. Let X, Y be locally convex vector topological spaces, B ⊆ Y be a

Banach space and g : D (g) ⊆ X −→ Y. Let’s introduce the following subset of X

MgB ≡ {x ∈ X : g (x) ∈ B, Im g ∩ B 6= ∅} .

Definition 1. A subsetM ⊆ X is called a pn-space (i.e. pseudonormed space) if S is a topo-

logical space and there is a function [·]M :M−→ R
1
+ ≡ [0, ∞) (which is called p-norm ofM)

such that

qn) [x]M ≥ 0, ∀x ∈ M and x = 0 =⇒ [x]M = 0;

pn) [x1]M 6= [x2]M =⇒ x1 6= x2 for x1, x2 ∈ M, and [x]M = 0 =⇒ x = 0.

The following conditions are often fulfilled in the spacesMgB.

N1) There exist a convex function ν : R
1 −→ R

1
+ and number K ∈ (0, ∞] such that [λx]M ≤

ν (λ) [x]M for any x ∈ M and λ ∈ R
1, |λ| < K, moreover, lim

|λ|−→λj

ν(λ)
|λ| = cj, j = 0, 1,

where λ0 = 0, λ1 = K and c0 = c1 = 1 or c0 = 0, c1 = ∞, i.e. if K = ∞ then λx ∈ M for

any x ∈ M and λ ∈ R
1.

Let g : D (g) ⊆ X −→ Y be such a mapping thatMgB 6= ∅ and the following conditions are

fulfilled

G1) g : D (g) ←→ Im g is a bijection and g (0) = 0;

G2) there is a function ν : R
1 −→ R

1
+ satsfying the condition N1 such that

‖g (λx)‖B ≤ ν (λ) ‖g (x)‖B , ∀x ∈ MgB, ∀λ ∈ R1.

If the mapping g satisfies the conditions G1 and G2 then MgB is a pn-space with p-norm

defined in the following way: there is a one-to-one function ψ : R
1
+ −→ R

1
+, ψ (0) = 0,

ψ, ψ−1 ∈ C0 such that [x]MgB
≡ ψ−1 (‖g (x)‖B). In this case MgB is a metric space with a

metric: dM (x1; x2) ≡ ‖g (x1)− g (x2)‖B. Further, we consider just such type of pn-spaces.

Definition 2. The pn-space MgB is called weakly complete if g
(

MgB

)

is weakly closed in

B. The pn-space MgB is “reflexive” if each bounded weakly closed subset ofMgB is weakly

compact inMgB.

It is clear that if B is a reflexive Banach space andMgB is a weakly complete pn-space, then

MgB is “reflexive”. Moreover, if B is a separable Banach space, then MgB is separable, also.

For complementary properties see, e.g. [23, 33, 34].

We now remind certain integral inequalities and facts about the functional pn-spaces with

constant exponent that are concerned in this paper (for general case see [21–25] and for func-

tional case [21, 25, 27] etc).

Let Ω ⊂ R
n (n ≥ 1) be a bounded domain with Lipschitz boundary ∂Ω. Throughout the

paper, we denote by |Ω| the Lebesgue measure of Ω.
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Lemma 1. Let α ≥ 0, β ≥ 1, |Ω| < ∞ and i = 1, n, then for all u ∈ C(Ω̄)∩C1(Ω) the inequality
∫

Ω

|u|α+β dx ≤ C1

∫

Ω

|u|α |Diu|β dx + C2

∫

∂Ω

|u|α+β dx′

is satisfied. Here, C1 = C1 (α, β, |Ω|) , C2 = C2 (|Ω|) > 0 are constants.

Lemma 2. Assume that α, α1 ≥ 0, β ≥ 1 and β > β1 > 0, α1
β1
≥ α

β , α1 + β1 ≤ α + β be satisfied.

Then for u ∈ C(Ω̄) ∩ C1(Ω)
∫

Ω

|u|α1 |Diu|β1 dx ≤ C3

∫

Ω

|u|α |Diu|β dx + C4

∫

∂Ω

|u|α+β dx′ + C5

holds. Here, for r = 3, 4, 5, Cr = Cr (α, β, α1, β1, |Ω|) > 0 are constants.

Lemma 3. Let α ≥ 0, β0 + β1 ≥ 2 and β1 ≥ β0 ≥ 0 be fulfilled. Then for all u ∈ C1 (Ω̄)∩C2 (Ω)
∫

Ω

|u|α |Diu|β0+β1 dx ≤ C6

∫

Ω

|u|α+β0

∣

∣

∣
D2

i u
∣

∣

∣

β1
dx

+ C7

∫

∂Ω

(|u|α+β0+β1 + |u|α+1 |Diu|β0+β1−1)dx′

holds. Here, for j = 6, 7, Cj = Cj (α, β, β0) > 0 are constants.

Definition 3. Let α ≥ 0, β ≥ 1, k = (k1, . . . , kn) be multi-index and |k| =
n

∑
i=1

ki, m ∈ Z
+,

Ω ⊂ R
n (n ≥ 1) is bounded domain with sufficiently smooth boundary (at least Lipschitz

boundary)

Sm,α,β (Ω) :=







u ∈ L1 (Ω) : [u]
α+β
Sm,α,β(Ω)

≡ ∑
0≤|k|≤m





∫

Ω

|u|α
∣

∣

∣
Dku

∣

∣

∣

β
dx



 < ∞







and

S̊m,α,β (Ω) := Sm,α,β (Ω) ∩
{

Dku | ∂Ω ≡ 0, 0 ≤ |k| ≤ m0 < m
}

.

We state a proposition which can be easily proved by the help of Lemmas 1–3 and Defini-

tion 3.

Proposition 1. Assume that α ≥ 0, β ≥ 1, then we have the following equivalence

S̊1,α,β (Ω) :=







u ∈ L1 (Ω) : [u]
α+β

S1,α,β(Ω)
≡

n

∑
i=1





∫

Ω

|u|α |Diu|β dx



 < ∞







and 1

S̊2,α,β (Ω) :=







u ∈ L1 (Ω) : [u]
α+β
S2,α,β(Ω)

≡
n

∑
i=1





∫

Ω

|u|α
∣

∣

∣D2
i u
∣

∣

∣

β
dx



 < ∞







.

1 S1,α,β (Ω) is a complete metric space with the following metric

dS1,α,β
(u, v) =

∥

∥

∥|u|
α
β u− |v|

α
β v
∥

∥

∥

W1,β(Ω)
, ∀u, v ∈ S1,α,β (Ω) .
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Theorem 1. Let α ≥ 0, β ≥ 1, then g : R −→ R, g(t) := |t|
α
β t is an one to one correspondence

from S1,α,β(Ω) onto W1,β(Ω).

Now, we recall some basic definitions and results about variable exponent Lebesgue and

Sobolev spaces [1, 6, 9, 10, 13].

Let Ω be a Lebesgue measurable subset of R
n such that |Ω| > 0. The function set M (Ω)

denotes the family of all measurable functions p : Ω −→ [1, ∞] and the set M0 (Ω) is defined

by

M0 (Ω) :=
{

p ∈ M (Ω) : 1 ≤ p− ≤ p (x) ≤ p+ < ∞, a.e. x ∈ Ω
}

,

where p− := ess
Ω

inf |p (x)| , p+ := ess
Ω

sup |p (x)|.
For p ∈ M (Ω) , Ω

p
∞ ≡ Ω∞ ≡ {x ∈ Ω| p (x) = ∞}. On the set of all functions on Ω, define

the functional σp and ‖.‖p by

σp (u) ≡
∫

Ω\Ω∞

|u|p(x) dx + ess
Ω∞

sup |u (x)|

and

‖u‖Lp(x)(Ω) ≡ inf
{

λ > 0 : σp

(u

λ

)

≤ 1
}

.

If p ∈ L∞ (Ω), then p ∈ M0 (Ω), σp (u) ≡
∫

Ω

|u|p(x) dx and the variable exponent Lebesgue

space is defined as follows

Lp(x) (Ω) :=
{

u : u is a measurable real-valued function such that σp (u) < ∞
}

.

If p− > 1, then the space Lp(x) (Ω) becomes a reflexive and separable Banach space with the

norm ‖.‖Lp(x)(Ω), which is so-called Luxemburg norm.

If 0 < |Ω| < ∞, and p1, p2 ∈ M (Ω), then the continuous embedding Lp1(x) (Ω) ⊂
Lp2(x) (Ω) exists ⇐⇒ p2 (x) ≤ p1 (x) for a.e. x ∈ Ω.

For u ∈ Lp(x) (Ω) and v ∈ Lq(x) (Ω), where p, q ∈ M0 (Ω) and 1
p(x)

+ 1
q(x)

= 1, the following

inequalities be satisfied

∫

Ω

|uv| dx ≤ 2 ‖u‖Lp(x)(Ω) ‖v‖Lq(x)(Ω),

and

min
{

‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}

≤ σp (u) ≤ max
{

‖u‖p−

Lp(x)(Ω)
, ‖u‖p+

Lp(x)(Ω)

}

.

Lemma 4. Let u, uk ∈ Lp(x) (Ω) , k = 1, 2, . . . . Then the following statements are equivalent to

each other:

1. lim
k→∞
‖uk − u‖Lp(x)(Ω) = 0;

2. lim
k→∞

σp (uk − u) = 0;

3. uk converges to u in Ω in measure and lim
k→∞

σp (uk) = σp (u) .
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Let Ω ⊂ R
n be a bounded domain and p ∈ L∞ (Ω), then variable exponent Sobolev space

is defined by

W1, p(x) (Ω) :=
{

u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)
}

and this space is a separable Banach space with the norm

‖u‖W1, p(x)(Ω) ≡ ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω) .

In the following discussion, we give the definition of generalized nonlinear spaces (func-

tional pn-spaces with variable exponent) and features of them that indicate their relation

with known spaces. These classes are nonlinear spaces, which are generalization of nonlin-

ear spaces with constant exponent studied in [24] (see also references therein). We also specify

that some of the results and its proofs can be found in [19, 20].

Definition 4. Let Ω ⊂ R
n (n ≥ 2) be a bounded domain with Lipschitz boundary and γ, β

∈ M0 (Ω) . We introduce S1,γ(x),β(x) (Ω) , the class of functions u : Ω → R, and the functional

[ · ]Sγ,β
: S1,γ(x),β(x) (Ω) −→ R+ as follows

S1,γ(x),β(x) (Ω) :=







u ∈ L1 (Ω) :
∫

Ω

|u|γ(x)+β(x) dx +
n

∑
i=1

∫

Ω

|u|γ(x) |Diu|β(x) dx < ∞







,

[u]Sγ,β
:= inf











λ > 0 :
∫

Ω

∣

∣

∣

u

λ

∣

∣

∣

γ(x)+β(x)
dx +

n

∑
i=1







∫

Ω

∣

∣

∣

∣

∣

∣

|u|
γ(x)
β(x) Diu

λ
γ(x)
β(x)

+1

∣

∣

∣

∣

∣

∣

β(x)





dx ≤ 1











.

[ · ]Sγ,β
defines a pseudo-norm on S1,γ(x),β(x) (Ω) , actually it can be readily verified that

[ · ]Sγ,β
fulfills all axioms of pseudo-norm (see [33, 34]), i.e. [u]Sγ,β

≥ 0, u = 0 ⇒ [u]Sγ,β
= 0,

[u]Sγ,β
6= [v]Sγ,β

⇒ u 6= v and [u]Sγ,β
= 0⇒ u = 0.

Let S1,γ(x),β(x) (Ω) be the space given in the Definition 4 and θ (x) ∈ M0 (Ω), we denote

S1,γ(x),β(x),θ(x) (Ω) , the class of functions u : Ω→ R, by the following intersection

S1,γ(x),β(x),θ(x) (Ω) := S1,γ(x),β(x) (Ω) ∩ Lθ(x) (Ω)

with the pseudo-norm

[u]Sγ,β,θ
:= [u]Sγ,β

+ ‖u‖Lθ(x)(Ω) , ∀u ∈ S1,γ(x),β(x),θ(x) (Ω) .

Proposition 2. If γ, β, θ ∈ M0 (Ω) and θ (x) ≥ γ (x) + β (x) + ε0 a.e. x ∈ Ω for some ε0 > 0,

then we have the following equivalence

S1,γ(x),β(x),θ(x) (Ω) ≡
{

u ∈ L1 (Ω) : Rγ,β,θ (u) < ∞
}

,

where Rγ,β,θ (u) :=
∫

Ω

|u|θ(x) dx + ∑
n
i=1

∫

Ω

|u|γ(x) |Diu|β(x) dx, and the pseudo-norm on this

space is

[u]Sγ,β,θ
≡ inf











λ > 0 :
∫

Ω

∣

∣

∣

u

λ

∣

∣

∣

θ(x)
dx +

n

∑
i=1







∫

Ω

∣

∣

∣

∣

∣

∣

|u|
γ(x)
β(x) Diu

λ
γ(x)
β(x)

+1

∣

∣

∣

∣

∣

∣

β(x)





dx ≤ 1











.
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Lemma 5. Assume that conditions of Proposition 2 are fulfilled. Let u ∈ S1,γ(x),β(x),θ(x) (Ω)

and λu := [u]Sγ,β,θ
, then the following inequality

max
{

λ
γ−+β−
u , λθ+

u

}

≥ Rγ,β,θ (u) ≥ min
{

λ
γ−+β−
u , λθ+

u

}

holds.

Theorem 2. Suppose that conditions of Proposition 2 are satisfied and let p ∈ M0 (Ω) , p (x) ≥
θ (x) a.e. x ∈ Ω. Then, the embedding

W1, p(x) (Ω) ⊂ S1,γ(x),β(x),θ(x) (Ω)

holds.

Definition 5. Let η ∈ M0 (Ω) , we introduce L1, η(x) (Ω) the class2 of functions u : Ω→ R

L1, η(x) (Ω) ≡
{

u ∈ L1 (Ω) : Diu ∈ Lη(x) (Ω) , i = 1, n
}

.

Theorem 3. Let γ, β ∈ M0 (Ω) ∩ C1 (Ω̄) and L1, β(x) (Ω) be the space given in Definition 5.

Then the function ϕ : Ω × R −→ R, ϕ (x, t) := |t|
γ(x)
β(x) t is a bijective mapping between

S1,γ(x),β(x),θ(x) (Ω) and L1, β(x) (Ω) ∩ Lψ(x) (Ω), where ψ (x) := θ(x)β(x)
γ(x)+β(x)

.

Theorem 4. Suppose that conditions of Theorem 3 are satisfied. Let p ∈ M0 (Ω) , additionally

1 ≤ β− ≤ β (x) < n, x ∈ Ω holds and for ε > 0, the inequality

p (x) + ε <
n(γ(x)+β(x))

n−β(x)
, x ∈ Ω,

is satisfied. Then the following compact embedding

S1,γ(x),β(x),θ(x) (Ω) →֒ Lp(x) (Ω)

exists.

2 SOME RELATIONS BETWEEN CONSTANT EXPONENT PN-SPACES AND SOBOLEV SPACES

In this section, we give some embedding results for constant exponent pn-spaces with

proofs.

Theorem 5. Let α ≥ 0, β ≥ 1. Then for all p satisfying the following conditions

(i) if β = n, then p > β,

(ii) if β > n, then p ≥ β,

(iii) if β < n, then p ≥ n(α+β)
α+n ,

the embedding

W
1,p
0 (Ω) ⊂ S̊1,α,β(Ω) (2)

holds.

2 This space is not Banach one unlike to the space W1, η(x) (Ω) [6].
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Proof. The cases (i) and (ii) are evident as by virtue of the Sobolev imbedding theorems occurs

the inclusion

W
1,p
0 (Ω) ⊂ C(Ω̄).

For the last case (iii), if β < n and p > n, then the proof is same with the proofs of the cases

(i) and (ii).

On the other side, let β < n and p ∈
[

n(α+β)
α+n , n

)

, by Sobolev imbedding theorems we have

W
1,p
0 (Ω) ⊂ Lq̃(Ω) (3)

for all q̃ ∈
[

1,
np

n−p

]

. Hence, for u ∈ W
1,p
0 (Ω) we have the following estimate by Young’s in-

equality
∫

Ω

|u|α |Diu|β dx ≤
(

p− β

p

)

∫

Ω

|u|
αp

p−β dx +

(

p

β

)

∫

Ω

|Diu|p dx. (4)

We deduce from the equation
αp

p−β −
np

n−p = p[n(α+β)−p(α+n)]
(p−β)(n−p)

and p ∈
[

n(α+β)
α+n , n

)

that

αp

p− β
≤ np

n− p
.

Thus, by (3) and (4) we arrive at

[u]
α+β

S̊1,α,β
=
∫

Ω

|u|α |Diu|β dx ≤ C̃ ‖u‖
αp

p−β

W
1,p
0 (Ω)

+ C̃1 ‖u‖p

W
1,p
0 (Ω)

,

which implies [u]
α+β

S̊1,α,β
≤ C̃2 ‖u‖p

W
1,p
0 (Ω)

+ C3.

To complete the proof if p = n > β, by employing the embedding W
1,p
0 (Ω) ⊂ Lr(Ω),

1 ≤ r < ∞, one can obtain the desired result by the help of above approach.

Remark 1. Under the conditions of Theorem 5, if p ≥ α + β is satisfied, then we have the

imbedding (2) independently from dimension of Ω.

Actually for u ∈W
1,p
0 (Ω), we deduce from Lemma 2 that

∫

Ω

|u|α |Diu|β dx ≤ C
∫

Ω

|Diu|p dx + C1,

which yields [u]
α+β

S̊1,α,β
≤ C ‖u‖p

W
1,p
0 (Ω)

+ C1.

Theorem 6. Suppose that β > α ≥ 0, β ≥ 2. Then for all p satisfying the following conditions

(i) if α + β = n, then 1 ≤ p < 2β,

(ii) if α + β > n, then 1 ≤ p ≤ 2β,

(iii) if α + β < n, then 1 ≤ p ≤ 2nβ(α+β)
2nβ−(α+β)(β−α)

,

the embedding

S̊2,α,β (Ω) ⊂W
1,p
0 (Ω) (5)

holds.
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Proof. Considering these conditions, by Lemma 3 when 1 ≤ p ≤ α + β following inequality

∫

Ω

|Diu|p dx ≤ C
∫

Ω

|u|α
∣

∣

∣
D2

i u
∣

∣

∣

β
dx + C1

holds independently of the dimension n, that yields the imbedding (5). So, if 1 ≤ p ≤ 2, then

1 ≤ p ≤ α + β, which concludes the proof.

First, we prove (5) in line with conditions of (i). Let α + β = n and p > 2 (from now on we

assume p > 2).

For u ∈ S̊2,α,β (Ω) , by Lemma 3 we have the following estimate

∫

Ω

|Diu|α+β dx ≤ C
∫

Ω

|u|α
∣

∣

∣
D2

i u
∣

∣

∣

β
dx. (6)

On the other hand, from Sobolev imbedding theorems

W
1,α+β
0 (Ω) ⊂ Lq (Ω) ∀q, q ∈ [1, ∞) . (7)

Hence, from (6) and (7) for all q satisfying 1 ≤ q < ∞ we get

‖u‖q ≤ C̃

(

n

∑
i=1

‖Diu‖α+β
α+β

) 1
α+β

≤ C̃0





n

∑
i=1





∫

Ω

|u|α
∣

∣

∣D2
i u
∣

∣

∣

β
dx









1
α+β

= C̃0 [u]S̊2,α,β
. (8)

Therefore, for all u ∈ S̊2,α,β (Ω) and i = 1, n

∫

Ω

|Diu|p dx =
∫

Ω

(

Diu |Diu|p−2
)

Diudx = (p− 1)
∫

Ω

uD2
i u |Diu|p−2 dx

≤ (p− 1)
∫

Ω

|u|
β−α

β |u|
α
β

∣

∣

∣
D2

i u
∣

∣

∣ |Diu|p−2 dx.
(9)

Employing Hölder’s inequality in (9) with exponents
(

pβ
2β−p , β,

p
p−2

)

, we obtain

∫

Ω

|Diu|p dx ≤ C





∫

Ω

|u|
p(β−α)
2β−p dx





2β−p
pβ




∫

Ω

|u|α
∣

∣

∣D2
i u
∣

∣

∣

β
dx





1
β




∫

Ω

|Diu|p dx





p−2
p

= C ‖u‖
β−α

β

p(β−α)
2β−p

[u]
α+β

β

S̊2,α,β
‖Diu‖p−2

p .

(10)

Estimating (10) by using (8) we get

∫

Ω

|Diu|p dx ≤ C̃ [u]
β−α

β

S̊2,α,β
[u]

α+β
β

S̊2,α,β
‖Diu‖p−2

p = C̃ [u]2S̊2,α,β
‖Diu‖p−2

p . (11)

By using Young’s inequality in (11), we arrive at

‖Diu‖p
p ≤ C̃ (ε) [u]

p

S̊2,α,β
+ C̃ε ‖Diu‖p

p ,



218 SOLTANOV K., SERT U.

choosing ε such that C̃ε < 1, then we acquire

‖Diu‖p ≤ C̃ [u]S̊2,α,β
< ∞,

which completes the proof for the case (i).

Assume that (ii) holds, i.e. α + β > n and 2 < p ≤ 2β. Then

W1,α+β (Ω) ⊂ C (Ω̄) ,

by (6) and (8), we obtain

‖u‖C(Ω̄) ≤ C̃ [u]S̊2,α,β
. (12)

For all u ∈ S̊2,α,β (Ω) from (9) one concludes

‖Diu‖p
p ≤ (p− 1)

∫

Ω

|u|
β−α

β |u|
α
β

∣

∣

∣
D2

i u
∣

∣

∣ |Diu|p−2 dx

≤ (p− 1)C(ε)
∫

Ω

|u|β−α |u|α
∣

∣

∣D2
i u
∣

∣

∣

β
dx + (p− 1)ε

∫

Ω

|Diu|
β(p−2)

β−1 dx

≤ (p− 1)C (ε) ‖u‖β−α

C(Ω̄)

∫

Ω

|u|α
∣

∣

∣
D2

i u
∣

∣

∣

β
dx + (p− 1)ε ‖Diu‖

β(p−2)
β−1

β(p−2)
β−1

.

By using (12) and
β(p−2)

β−1 − p = p−2β
β−1 with p ≤ 2β to estimate ‖u‖β−α

C(Ω̄)
and ‖Diu‖

β(p−2)
β−1

β(p−2)
β−1

respec-

tively, we arrive at

‖Diu‖p
p ≤ C (ε) (p− 1) [u]

β−α

S̊2,α,β
[u]

α+β

S̊2,α,β
+ (p− 1)εC̃C ‖Diu‖p

p + (p− 1)εC1

= C (ε) [u]
2β

S̊2,α,β
+ εC̃C ‖Diu‖p

p + εC1,

which implies

‖Diu‖p
p ≤ C̃ [u]

2β

S̊2,α,β
+ C1,

that ends the proof.

For the last case (iii), let α + β < n and 1 ≤ p ≤ 2nβ(α+β)
2nβ−(α+β)(β−α)

. From Sobolev imbedding

theorems

W1,α+β (Ω) ⊂ Lq̃ (Ω) ∀q̃, q̃ ∈
[

1,
n (α + β)

n− (α + β)

]

. (13)

By (6) and (13), we attain

‖u‖q̃ ≤ C [u]S̊2,α,β
. (14)

For all u ∈ S̊2,α,β (Ω) , we deduce from the inequality p ≤ 2nβ(α+β)
2nβ−(α+β)(β−α)

< 2β that

‖Diu‖p
p ≤ C ‖u‖

β−α
β

p(β−α)
2β−p

[u]
α+β

β

S̊2,α,β
‖Diu‖p−2

p . (15)

If we take the inequality p(β−α)
2β−p ≤

n(α+β)
n−(α+β)

into account and estimate ‖u‖ p(β−α)
2β−p

in (15) by (14)

we obtain

‖Diu‖p
p ≤ C̃ [u]

β−α
β

S̊2,α,β
[u]

α+β
β

S̊2,α,β
‖Diu‖p−2

p = C̃ [u]2S̊2,α,β
‖Diu‖p−2

p . (16)



CERTAIN RESULTS FOR A CLASS OF NONLINEAR FUNCTIONAL SPACES 219

Applying Young’s inequality in (16) we attain

‖Diu‖p
p ≤ C̃ (ε) [u]

p

S̊2,α,β
+ C̃ε ‖Diu‖p

p ,

that yields

‖Diu‖p ≤ C̃ [u]S̊2,α,β
,

so, the proof is complete.

We now turn our attention to some examples and results for one dimensional case.

Definition 6. Let α > β− 1 ≥ 0 we define the following function space

S̃2,α,β(a, b) :=

{

u ∈ L1(a, b) : [u]
α+β

S̃1,α,β(a,b)
=

b
∫

a

|u|α+β dx +

b
∫

a

|u|α−β |Du|2β dx

+

b
∫

a

|u|α
∣

∣

∣
D2u

∣

∣

∣

β
dx < ∞

}

.

The proofs of the following lemmas can be attained readily, thus we skip the proofs for the

sake of brevity.

Lemma 6. Let S̃2,α,β(a, b) be the space given in Definition 6, then the imbedding

S̃2,α,β(a, b) ⊂ S1,α,β(a, b)

holds.

Lemma 7. Let α > β − 1 > 0 and g(t) ≡ |t|
α
β t for any t ∈ R. Then following assertions are

true

1) if u ∈ S̃2,α,β(a, b), then g (u) ∈W2,β(a, b);

2) for a function u ∈ L1 (a, b), if g (u) ≡ v ∈ W2,β(a, b), then u ∈ S̃2,α,β(a, b).

Consequently, we can define the space S̃2,α,β(a, b) in the following way by virtue of the

general definition of the nonlinear spaces.

Definition 7. Let g : R → R, g(t) = |t|
α
β t and α > β− 1 > 0, then S̃2,α,β(a, b) has the following

representation

S̃2,α,β(a, b) =

{

u ∈ L1(a, b) : [u]
α+β
S

gW2,β
≡ ∑

0≤s≤2

‖Dsg(u)‖β
β < ∞

}

≡ SgW2,β(a, b).

Remark 2. The following equivalences are true

S̃2,α,β(a, b) ∩ {u : u | ∂Ω = 0} ≡ S̊2,α,β(a, b)

and

∑
0≤s≤k

‖Dsg(u)‖β
β ≡ ∑

0≤s≤k

∥

∥

∥
g−1 (Dsg(u))

∥

∥

∥

α+β

α+β

for k = 0, 1, but for k = 2
∥

∥

∥g′(u)D2u
∥

∥

∥

β

β
≡
∥

∥

∥g−1
(

g′(u)D2u)
)∥

∥

∥

α+β

α+β

and
∥

∥

∥
g′′(u) (Du)2

∥

∥

∥

β

β
≡
∥

∥

∥
g−1

(

g′′(u) (Du)2)
)∥

∥

∥

α+β

α+β
.
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The following example shows the nonlinear structure of the pn-spaces.

Example 1. Suppose that β > 1. Then S1,1,β(0, 1) is a nonlinear space.

Let τ ∈
(

β−1
β+1 ,

β−1
β

]

and define the functions

u0 (x) := xτ and u1 (x) := θ, x ∈ (0, 1) ,
(

θ ∈ R
+ is a constant

)

.

It is easy to show that u0, u1 ∈ S1,1,β(0, 1) by the definition of S1,1,β(0, 1). Besides

u (x) := u0 (x) + u1 (x) = xτ + θ 6∈ S1,1,β(0, 1).

[u]
β+1
S1,1,β(0,1)

=

1
∫

0

|u|β+1 dx +

1
∫

0

|u| |Du|βdx =

1
∫

0

(xτ + θ)β+1 dx + τβ

1
∫

0

(xτ + θ) xβ(τ−1)dx

=

1
∫

0

(xτ + θ)β+1 dx + τβ

1
∫

0

(

xτ(β+1)−β + θxβ(τ−1)
)

dx.

Since β(τ − 1) ≤ −1 so, the right and side of the above equation is divergent which implies

u 6∈ S1,1,β(0, 1).

3 VARIABLE EXPONENT NONLINEAR SPACES AND EMBEDDING THEOREMS

In this section, we present certain new results with detailed proofs for variable exponent

pn-spaces mentioned in Section 1. First, we derive integral inequalities (see, also [20]) to un-

derstand the structure of these spaces. Afterwards, we prove some lemmas and theorems on

continuous embeddings of these spaces and on topology of them. Throughout this section, we

assume that Ω ⊂ R
n (n ≥ 2) is a bounded domain with Lipschitz boundary.

Lemma 8. Let α, β ∈ M0(Ω) and α (x) ≥ β (x) a.e. x ∈ Ω. Then the inequality
∫

Ω

|u|β(x) dx ≤
∫

Ω

|u|α(x) dx + |Ω| , ∀u ∈ Lα(x) (Ω) (17)

holds.

Proof. Let Ω1 := {x ∈ Ω : α (x) = β (x)} and Ω2 := Ω \Ω1. Hence
∫

Ω

|u|β(x) dx =
∫

Ω1

|u|α(x) dx +
∫

Ω2

|u|β(x) dx.

Estimating the second integral on the right member of the above equation by utilizing Young

inequality (α (x) > β (x) on Ω2), we achieve that
∫

Ω

|u|β(x) dx ≤
∫

Ω1

|u|α(x) dx +
∫

Ω2

(

β (x)

α (x)

)

|u|α(x) dx +
∫

Ω2

(

α (x)− β (x)

α (x)

)

dx,

since
β(x)
α(x)

< 1 and
α(x)−β(x)

α(x)
< 1, for x ∈ Ω2 we deduce from the last inequality that

∫

Ω

|u|β(x) dx ≤
∫

Ω1

|u|α(x) dx +
∫

Ω2

|u|α(x) dx + |Ω| =
∫

Ω

|u|α(x) dx + |Ω| .

On the other side if α (x) = β (x) a.e. x ∈ Ω, then (17) is clear.
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Lemma 9. Assume that ζ ∈ M0(Ω) and β ≥ 1, ε > 0. Then for every u ∈ Lζ(x)+ε (Ω)
∫

Ω

|u|ζ(x) |ln |u||β dx ≤ N1

∫

Ω

|u|ζ(x)+ε dx + N2

is satisfied. Here N1 ≡ N1 (ε, β) > 0 and N2 ≡ N2 (ε, β, |Ω|) > 0 are constants.

Proof. Let us consider the function f (t) = |t|ε − ln |t| for t ∈ R − {0}. Since f is an even

function it is sufficient to investigate only f (t) = tε − ln t, t > 0. It can be readily shown that

this function is decreasing on
(

0, 1
ε
√

ε

]

and increasing on the interval
[

1
ε
√

ε
, ∞
)

. Also f ր ∞

when x ց 0 and x ր ∞ and f
(

1
ε
√

ε

)

= 1
ε (1 + ln ε). Here we have two situations: (i) if

ε ∈
(

1
e , ∞

)

, then f
(

1
ε
√

ε

)

> 0; (ii) if ε ∈
(

0, 1
e

]

, then f
(

1
ε
√

ε

)

≤ 0. For the first case (i)

∀t ∈ (0, ∞) , f (t) > 0 or equivalently ln t < tε. For the case (ii), the function f has two zeros,

say m1 > 0 and m2 > 0, and for t ∈ R
+ − (m1, m2) it is obvious that ln t < tε. For t ∈ [m1, m2] ,

∃N0 > 1
(

N0 ≡ N0

(

1
ε
√

ε

))

such that ln t < N0tε. Hence, the inequality ln t ≤ N0tε will be

satisfied on (0, ∞) . As a result, from the cases (i) and (ii) for arbitrary ε > 0 and t ∈ R− {0},
we have the inequality

ln |t| ≤ N0 (ε) |t|ε ,

that implies on the set {x ∈ Ω : |u (x)| ≥ 1 } the inequality |u|ζ(x) |ln |u||β ≤ N0 (ε, β) |u|ζ(x)+ε

be fulfilled. Moreover, from lim
t→0+

tε |ln t|β = 0 and for every fixed x0 ∈ Ω, lim
t→0+

|t|ζ(x0)|ln|t||β

tζ(x0)+ε+1
= 0,

we arrive at the inequality |u|ζ(x)−1 |u| |ln |u||β ≤ Ñ0

(

|u|ζ(x)+ε + 1
)

is fulfilled on the set

{x ∈ Ω : |u (x)| < 1 } for some Ñ0 = Ñ0 (ε, β) > 0. So, the proof is complete by the combi-

nation of these inequalities.

Lemma 10. Let ε̃ > 0 and β1 : Ω → [ε̃, ∞) be a measurable function, which satisfies

ε̃ ≤ β−1 ≤ β1 (x) ≤ β+
1 < ∞ and ξ, β ∈ M0(Ω), then the inequality

∫

Ω

|u|ξ(x) |ln |u||β(x) dx ≤ C1

∫

Ω

|u|ξ(x)+β1(x) dx + C2, ∀u ∈ Lξ(x)+β1(x) (Ω) (18)

holds. Here C1 ≡ C1 (ε̃, β+) > 0 and C2 ≡ C2 (ε̃, β+, |Ω|) > 0 are constants.

Proof. For arbitrary γ ∈ (0, 1) , β++γ
β(x)

> 1, by utilizing the Young’s inequality with this expo-

nent to |ln |u||β(x) we obtain the following inequality|ln |u||β(x) ≤ |ln |u||β++γ + 1, by multi-

plying each side of this inequality with |u|ξ(x) , we get

|u|ξ(x) |ln |u||β(x) ≤ |u|ξ(x) |ln |u||β++γ + |u|ξ(x) , x ∈ Ω.

Thus, integrating both sides over Ω,
∫

Ω

|u|ξ(x) |ln |u||β(x) dx ≤
∫

Ω

|u|ξ(x) |ln |u||β++γ dx +
∫

Ω

|u|ξ(x) dx

is established. For ε < ε̃, estimating the first integral on the right side of the last inequality by

Lemma 9, we acquire
∫

Ω

|u|ξ(x) |ln |u||β(x) dx ≤ C3

∫

Ω

|u|ξ(x)+ε dx + C4 +
∫

Ω

|u|ξ(x) dx.
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As
ξ(x)+ε

ξ(x)
> 1, applying Lemma 8 to estimate the second integral on the right member of the

last inequality, we gain
∫

Ω

|u|ξ(x) |ln |u||β(x) dx ≤ C1

∫

Ω

|u|ξ(x)+ε dx + C2 ,

here C1 ≡ C1 (ε, β+) > 0 and C2 ≡ C2 (ε, β+, |Ω|) > 0 are constants.

Since ξ (x) + ε < ξ (x) + β1 (x) , a.e. x ∈ Ω, estimating the integral on the right side of the

above equation by using Lemma 8, we attain (18).

In the following discussions, we examine elaborate properties of the pn-spaces

S1,γ(x),β(x),θ(x) (Ω), presented in Section 1 (for other results, see [19, 20]).

Lemma 11. Let S1,γ(x),β(x),θ(x) (Ω) and S1,ξ(x),α(x),θ1(x) (Ω) be the spaces given in Definition 4.

Assume that one of the conditions given below are satisfied

(i) θ1 (x) ≤ θ (x) , β (x) ≥ α (x) and ξ (x) β (x) = γ (x) α (x) , a.e. x ∈ Ω,

(ii) θ1 (x) ≤ θ (x) , ξ (x) β (x) > γ (x) α (x) , γ (x) + β (x) ≥ ξ (x) + α (x) and β (x) ≥ α (x) +

ε for some ε > 0.

Under these conditions the embedding

S1,γ(x),β(x),θ(x) (Ω) ⊂ S1,ξ(x),α(x),θ1(x) (Ω) (19)

holds.

Proof. First, suppose that (i) holds. Let u ∈ S1,γ(x),β(x),θ(x) (Ω) , to show the embedding (19) it

is sufficient to verify the finiteness of

Rξ,α,θ1 (u) =
∫

Ω

|u|θ1(x) dx +
n

∑
i=1

∫

Ω

|u|ξ(x) |Diu|α(x) dx,

estimating the first integral on the right member of the above equation with the help of Lem-

ma 8 and second one by employing Young’s inequality, we acquire

Rξ,α,θ1 (u) ≤ (n + 1) |Ω|+
∫

Ω

|u|θ(x) dx +
n

∑
i=1

∫

Ω

|u|
ξ(x)β(x)

α(x) |Diu|β(x) dx.

From the conditions,
ξ(x)β(x)

α(x)
= γ (x) that yields

Rξ,α,θ1 (u) ≤ Rγ,β,θ (u) + (n + 1) |Ω| ,

so (19) is gained. We note that when the case β (x) = α (x) a.e. x ∈ Ω, then ξ (x) = γ (x),

hence (19) can be obtained by similar operations as above.

Now, assume that (ii) fulfills. We need to show that Rξ,α,θ1 (u) is finite. We have

Rξ,α,θ1 (u) =
∫

Ω

|u|θ1(x) dx +
n

∑
i=1

∫

Ω

|u|ξ(x) |Diu|α(x) dx

=
∫

Ω

|u|θ1(x) dx +
n

∑
i=1

∫

Ω

|u|ξ(x)− γ(x)α(x)
β(x) |u|

γ(x)α(x)
β(x) |Diu|α(x) dx.
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If we estimate the first integral on the right member of the above equation with the help of

Lemma 8 and second one by employing Young’s inequality with the exponent
β(x)
α(x)

at every

point, one can acquire that

Rξ,α,θ1 (u) ≤
∫

Ω

|u|θ(x) dx + |Ω|+
n

∑
i=1

∫

Ω

|u|γ(x) |Diu|β(x) dx + n
∫

Ω

|u|
ξ(x)β(x)−γ(x)α(x)

β(x)−α(x) dx.

In the light of the condition (ii), the inequality
ξ(x)β(x)−γ(x)α(x)

β(x)−α(x)
< γ (x) + β (x) holds, so esti-

mating the third integral in the right side of the last inequality by Lemma 8, we arrive at

Rξ,α,θ1 (u) ≤ (n + 1)
∫

Ω

|u|θ(x) dx + (n + 1) |Ω|+
n

∑
i=1

∫

Ω

|u|γ(x) |Diu|β(x) dx

≤ (n + 1)
(

Rγ,β,θ (u) + |Ω|
)

,

hence from here desired inequality is achieved. Also if θ1 (x) = θ (x) a.e. x ∈ Ω, by employing

the same operations one can show (19).

Lemma 12. Let β, γ and ψ satisfy the conditions of Theorem 3, then S1,γ(x),β(x),θ(x) (Ω) is a

metric space with the metric which is defined below

dS1
(u, v) := ‖ϕ (u)− ϕ (v)‖Lψ(x)(Ω) +

n

∑
i=1

∥

∥ϕ′t (u) Diu− ϕ′t (v) Diu
∥

∥

Lβ(x)(Ω)
,

∀u, v ∈ S1,γ(x),β(x),θ(x) (Ω) , here ϕ (x, t) = |t|
γ(x)
β(x) t and for every fixed x ∈ Ω

ϕ′t (t) =
(

γ (x)

β (x)
+ 1

)

|t|
γ(x)
β(x) .

Proof. It has been shown in Theorem 3 that3 ϕ (u) ∈ Lψ(x) (Ω) and ϕ′t (u) Diu ∈ Lβ(x) (Ω)

whenever u ∈ S1,γ(x),β(x),θ(x) (Ω) , thus one can verify that dS1
( · , · ) : S1,γ(x),β(x),θ(x) (Ω) → R

satisfy the metric axioms, i.e.

(i) dS1
(u, v) ≥ 0,

(ii) dS1
(u, v) = dS1

(v, u) ,

(iii) u = v⇒ dS1
(u, v) = 0,

(iv) dS1
(u, v) = 0⇒ ‖ϕ (u)− ϕ (v)‖Lψ(x)(Ω) = 0⇒ ϕ (u) = ϕ (v) since ϕ is 1-1, then u = v,

(v) from the subadditivity of norm, dS1
(u, v) ≤ dS1

(u, w) + dS1
(w, v).

3 From now on, we denote ϕ (x, u) := ϕ (u) = |u|
γ(x)
β(x) u for simplicity.
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Theorem 7. Under the conditions of Theorem 3, ϕ is a homeomorphism between the spaces

S1,γ(x),β(x),θ(x) (Ω) and L1, β(x) (Ω) ∩ Lψ(x) (Ω) .

Proof. The function ϕ is a bijection between S1,γ(x),β(x),θ(x) (Ω) and L1, β(x) (Ω) ∩ Lψ(x) (Ω) by

Theorem 3. Thus it is ample to prove the continuity of ϕ as well as ϕ−1 in the sense of topology

induced by the metric dS1
( · , · ). For this, we need to show that

(i) dS1
(um, u0) −→

mր∞
0 ⇒ ϕ(um)

L1, β(x)(Ω)∩Lψ(x)(Ω)−→
mր∞

ϕ(u0) for every {um} ∈ S1,γ(x),β(x),θ(x)(Ω)

which converges to u0 and

(ii) vm
L1, β(x)(Ω)∩Lψ(x)(Ω)−→

mր∞
v0 ⇒ dS1

(ϕ−1(vm), ϕ−1(v0)) −→
mր∞

0 for every vm∈ L1, β(x)(Ω)∩ Lψ(x)(Ω)

which converges to v0.

Since for every vm and v0 there exist a unique um and u0 ∈ S1,γ(x),β(x),θ(x) (Ω) such that

ϕ (um) = vm and ϕ (u0) = v0, the implication (ii) can be written equivalently as follows

ϕ (um)
L1, β(x)(Ω)∩Lψ(x)(Ω)−→

mր∞
ϕ (u0) ⇒ dS1

(um, u0) −→
mր∞

0 for every {um} ∈ S1,γ(x),β(x),θ(x) (Ω)

which converges to u0.

Since the proofs of (i) and (ii) are similar, we only prove (ii). Let v0, vm ∈ L1, β(x) (Ω) ∩
Lψ(x) (Ω) and vm

L1, β(x)(Ω)∩Lψ(x)(Ω)−→ v0 ⇔ ϕ (um)
L1, β(x)(Ω)∩Lψ(x)(Ω)−→ ϕ (u0) .

To verify dS1
(um, u0)→ 0, by definition of metric dS1

it is ample to demonstrate that

∥

∥ϕ′t (um) Dium − ϕ′t (u0) Diu0

∥

∥

Lβ(x)(Ω)
→ 0 and ‖ϕ (um)− ϕ (u0)‖Lψ(x)(Ω) → 0

as mր ∞.

From ϕ (um)
L1, β(x)(Ω)∩Lψ(x)(Ω)−→ ϕ (u0) , we have

‖ϕ (um)− ϕ (u0)‖Lψ(x)(Ω)→0 and ‖Di (ϕ (um)− ϕ (u0))‖Lβ(x)(Ω)→ 0.

Hence, we only need to show that

∥

∥ϕ′t (um) Dium − ϕ′t (u0) Diu0

∥

∥

Lβ(x)(Ω)
−→ 0 as mր ∞.

From Lemma 4, we have

∥

∥ϕ′t (um) Dium − ϕ′t (u0) Diu0

∥

∥

Lβ(x)(Ω)
→ 0 ⇔ σβ

(

ϕ′t (um) Dium − ϕ′t (u0) Diu0

)

→ 0. (20)

Based on (20), for i = 1, n

σβ

(

ϕ′t (um) Dium − ϕ′t (u0) Diu0

)

=
∫

Ω

∣

∣ϕ′t (um) Dium − ϕ′t (u0) Diu0

∣

∣

β(x)
dx, (21)

one can show that the following equality holds

ϕ′t (um) Dium − ϕ′t (u0) Diu0 =
(

β(x)
β(x)+γ(x)

)

Di (ϕ (um)− ϕ (u0))

−
(

Diγ.β−γ.Diβ
β(γ+β)

)

(

|um|
γ(x)
β(x) um ln |um| − |u0|

γ(x)
β(x) u0 ln |u0|

)

.
(22)
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Substituting (22) into (21), we acquire

σβ

(

ϕ′t (um) Dium − ϕ′t (u0) Diu0

)

=
∫

Ω

∣

∣

∣

(

β(x)
γ(x)+β(x)

)

Di (ϕ (um)− ϕ (u0))

−
(

Diγ.β−γ.Diβ
β(γ+β)

)

(

|um|
γ(x)
β(x) um ln |um| − |u0|

γ(x)
β(x) u0 ln |u0|

)

∣

∣

∣

β(x)

taking β(x) into the absolute value and applying known inequality, we gain

σβ

(

ϕ′t (um) Dium − ϕ′t (u0) Diu0

)

≤ 2β+−1
∫

Ω

|Di (ϕ (um))− Di (ϕ (u0))|β(x) dx

+ C3

∫

Ω

∣

∣

∣

∣

|um|
γ(x)
β(x) um ln |um| − |u0|

γ(x)
β(x) u0 ln |u0|

∣

∣

∣

∣

β(x)

dx,

(23)

here C3 = C3

(

β+, ‖γ‖C1(Ω̄) , ‖β‖C1(Ω̄)

)

> 0 is constant.

Since ‖Di (ϕ (um)− ϕ (u0))‖Lβ(x)(Ω)−→0 as m ր ∞, the first integral in the right member

of (23) converges to zero when m tends to infinity (Lemma 4).

From Theorem 3, function ϕ is bijective between the spaces Lθ(x) (Ω) and Lψ(x) (Ω) . Also

since ‖ϕ (um)− ϕ (u0)‖Lψ(x)(Ω)−→ 0, we arrive at

ϕ (um)
a.e−→
Ω

ϕ (u0)⇒ um
a.e−→
Ω

u0 (24)

and

σθ (um) =
∫

Ω

|um|θ(x) dx =
∫

Ω

∣

∣

∣

∣

|um|
γ(x)
β(x) um

∣

∣

∣

∣

ψ(x)

dx =
∫

Ω

|ϕ (um)|ψ(x) dx ≤ M (25)

for some M > 0.

Employing (24), (25) and Vitali’s Theorem4, we attain

∫

Ω

|um|θ(x) dx −→
∫

Ω

|u0|θ(x) dx, mր ∞. (26)

Since um converges to u0 in measure on Ω, using this and (26), we deduce from Lemma 4 that

σθ (um − u0) −→ 0⇒ ‖um − u0‖Lθ(x)(Ω) −→ 0. (27)

4 Theorem (Vitali, [16]). Let (Ω, Σ, µ) be a finite measure space, and fn : Ω → R be a sequence of measurable

functions converging a.e. to a measurable f . Then ‖ fn − f ‖L1(Ω) → 0 as n → ∞ iff { fn : n ≥ 1} is uniformly

integrable. When the condition is satisfied, we have

lim
n→∞

∫

Ω

fndµ =
∫

Ω

f dµ.
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Denote wm := |um|
γ(x)
β(x) um ln |um| and w0 := |u0|

γ(x)
β(x) u0 ln |u0| , then

σβ (wm) =
∫

Ω

|um|γ(x)+β(x) |ln |um||β(x) dx.

Estimating the above integral by using Lemma 10, one can obtain

σβ (wm) ≤ C4

∫

Ω

|um|θ(x) dx + C5 = C4σθ (um) + C5.

From (27), σβ (wm) ≤ M̃ for all m ≥ 1, for some M̃ > 0. Thus as shown above for um similarly

we conclude that as mր ∞

σβ (wm −w0) −→ 0⇒
∫

Ω

∣

∣

∣

∣

|um|
γ(x)
β(x) um ln |um| − |u0|

γ(x)
β(x) u0 ln |u0|

∣

∣

∣

∣

β(x)

−→ 0,

hence from (23) we attain,

∥

∥ϕ′t (um) Dium − ϕ′t (u0) Diu0

∥

∥

Lβ(x)(Ω)
−→ 0, mր ∞.

So, the proof is complete.
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256.

[5] Chen Y., Levine S., Rao M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math.

2006, 66 (4), 1383–1406. doi:10.1137/050624522
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У данiй роботi ми вивчаємо властивостi класу функцiональних просторiв, так званих

pn-просторiв, якi з’являються при дослiдженнi нелiнiйних диференцiальних рiвнянь. Ми вста-

новили деякi iнтегральнi нерiвностi для аналiзу структури pn-просторiв зi сталими та змiнни-

ми показниками. Ми довели теореми про вкладення, якi встановлюють спiввiдношення цих

просторiв з добре вiдомими класичними просторами Лебега i Соболєва зi сталими та змiнни-
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ON TWO LONG STANDING OPEN PROBLEMS ON Lp-SPACES

POPOV M.M.1,2

The present note was written during the preparation of the talk at the International Confer-

ence dedicated to 70-th anniversary of Professor O. Lopushansky, September 16-19, 2019, Ivano-

Frankivsk, Ukraine. We focus on two long standing open problems. The first one, due to Linden-

strauss and Rosenthal (1969), asks of whether every complemented infinite dimensional subspace of

L1 is isomorphic to either L1 or ℓ1. The second problem was posed by Enflo and Rosenthal in 1973:

does there exist a nonseparable space Lp(µ) with finite atomless µ and 1 < p < ∞, p 6= 2, having

an unconditional basis? We analyze partial results and discuss on some natural ideas to solve these

problems.
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1 INTRODUCTION

Investigation of the geometry of Lebesgue spaces Lp := Lp[0, 1] has long and rich history

(see [3]) due to famous mathematicians: D.E. Alspach, S. Banach, J. Bourgain, D.L. Burkholder,

L.E. Dor, P. Enflo, W.B. Johnson, M.I. Kadets, N. Kalton, J. Lindenstrauss, B. Maurey, E. Odell,

R.E.A.C. Paley, A. Pełczyński, H.P. Rosenthal, G. Schechtman, T.W. Starbird, S. Szarek,

M. Talagrand, L. Tzafriri and others. More is known on the isomorphic structure of these

classical spaces. Isomorphic embeddability of Lr(ν) into Lp is completely known. We use the

notation X →֒ Y to express that X embeds isomorphically into Y, and X ≃ Y means that the

Banach spaces X and Y are isomorphic. The relation ℓp →֒ Lp, which is easily seen, was first

noted by S. Banach [4, p. 175]. The embedding ℓ2 →֒ Lp follows from Khintchin’s inequa-

lity [30, p. 66]. It is not hard to see that ℓp 6 →֒ L2 for p 6= 2 (for the proof, see [4, p. 175]). The

relation ℓr 6 →֒ Lp for 2 < p < r and 1 ≤ r < p < 2 was proved by S. Banach [4, p. 175]. Paley’s

results [37] imply ℓr 6 →֒ Lp for 1 ≤ r < 2 < p, 2 < r < p and 1 ≤ p < 2 < r.

A special case is 1 ≤ p < r < 2, where isometric embeddings of Lr into Lp are possible.

First it was proved by P. Levy [25] that ℓr is finitely representable1 in Lp if 1 ≤ p < r < 2. Later

M.I. Kadets proved that ℓr →֒ Lp for 1 ≤ p < r < 2 [20]. Then the latter result was strengthen

to the embedding Lr →֒ Lp by J. Bretagnolle, D. Dacunha-Castelle and J. L. Krivine [9] and

independently by J. Lindenstrauss J. and A. Pełczyński [27], who proved more: if a Banach

space X is finitely representable in Lp then X →֒ Lp.

УДК 517.982
2010 Mathematics Subject Classification: Primary 46B03; secondary 46B15, 46B26.
1 A Banach space X is said to be finitely representable in a Banach space Y if for every ε > 0 and every finite

dimensional subspace F of X there exists a subspace G of Y of the same dimension such that d(F, G) < 1 + ε,

where d(F, G) denotes the Banach-Mazur distance between F and G.

c© Popov M.M., 2020
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As we see, the properties of the spaces Lp are different for the cases p < 2 and p > 2.

Moreover, if 2 < p < ∞ then every subspace of Lp possesses the following properties:

− either is isomorphic to a Hilbert space or contains a complemented subspace isomorphic

to ℓp [21];

− either contains a subspace isomorphic to ℓ2 or embeds isomorphically into ℓp [19].

On the other hand, if 1 ≤ p < 2 then every subspace of Lp either contains a complemented

subspace isomorphic to ℓp or embeds isomorphically into Lr for some p < r ≤ 2 [44].

Acknowledgments. The author is grateful to W. B. Johnson and G. Schechtman for valuable

remarks.

2 COMPLEMENTED SUBSPACES OF Lp

2.1 As p goes to 1, the complementability properties of subspaces of Lp, p 6= 2, get worse

By Khintchin’s inequality, the closed linear span R of the Rademacher system in Lp is iso-

morphic to ℓ2 and is actually independent on p, as a set. Remark that R is complemented in

Lp for 1 < p < ∞ [30, p. 66] and is uncomplemented in L1, as well as any other subspace of L1

isomorphic to ℓ2 [38]. So, it became interesting, whether there exists an uncomplemented sub-

space of Lp isomorphic to ℓ2 for p > 1. If 2 < p < ∞ then every subspace X of Lp isomorphic

to ℓ2 is complemented, and, moreover, the Lp- and L2-norms2 on X are equivalent [21]. To the

contrast, if 1 < p < 2 then there exists an uncomplemented subspace of Lp isomorphic to ℓ2

(first it was proved for 1 < p < 4/3 in [42] and then for the rest of values in [5]).

It is clear that Lp contains a complemented subspace isomorphic to ℓp. If 1 ≤ p < ∞, p 6= 2,

then there is an uncomplemented subspace of Lp isomorphic to ℓp, and hence, it is not difficult

to show that there is an uncomplemented subspace of Lp isomorphic to Lp itself (first it was

proved for 2 < p < ∞ and 1 < p < 4/3 in [43], then in a different way for all 1 < p < 2 in [5],

and finally for p = 1 in [6]).

2.2 Primarity of Lp and Enflo operators

By the famous Enflo theorem, if Lp = X ⊕ Y, 1 ≤ p < ∞, is a decomposition into mutually

complemented subspaces, then at least one of the subspaces X, Y is isomorphic to Lp (first it

was announced by P. Enflo; then B. Maurey [34] published a proof, see also [2] for all p, [14]

for p = 1 and [31, p. 179] for a generalization to rearrangement invariant spaces). This nice

property of the spaces Lp is called the primarity.

Let X, Y be Banach spaces. Denote by L(X, Y) the Banach space of all continuous linear op-

erators from X to Y, and write L(X) instead of L(X, X). Recall that an operator T ∈ L(X, Y)

is said to fix a copy of a Banach space Z, if there exists a subspace X1 of X isomorphic to Z

such that the restriction T|X1
of T to X1 is an into isomorphism. An operator T ∈ L(Lp, Y),

1 ≤ p < ∞, is called an Enflo operator provided T fixes a copy of Lp. Note that every Enflo op-

erator T ∈ L(Lp) fixes a complemented copy of Lp, that is, there is a complemented subspace

X1 of X isomorphic to Lp such that the restriction T|X1
is an into isomorphism, because every

subspace X of Lp, which is isomorphic to Lp, contains a further subspace Y ⊆ X isomorphic to

2 which are well defined for these values of p
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Lp and complemented in Lp (see [18, p. 239] for p > 1 and [14] for p = 1). The Enflo theorem

implies that, if the identity operator Id on Lp is a sum of two projections Id = P + Q, then at

least one of the projections P, Q is an Enflo operator. Moreover, the range of a projection P on

Lp is isomorphic to Lp if and only if P is an Enflo operator (to prove, use the mentioned above

result from [18] and Pełczyński’s decomposition method [31, p. 54]).

2.3 Isomorphic types of complemented subspaces of Lp

How many do there exist pairwise non-isomorphic complemented subspaces of Lp for

1 ≤ p < ∞, p 6= 2? If p > 1 then there are obviously the following pairwise non-isomorphic

Banach spaces isomorphic to complemented subspaces of Lp:

Lp, ℓp, ℓ2, ℓp ⊕ ℓ2,
( ∞⊕

n=1

ℓ2

)
p
.

Further finitely many examples, different from the above obvious ones, was obtained by

H.P. Rosenthal in [43]. Later G. Schechtman provided infinitely many pairwise non-isomor-

phic examples in [48], and then J. Bourgain, H.P. Rosenthal and G. Schechtman constructed

uncountably many pairwise non-isomorphic complemented subspaces of Lp for 1 < p < ∞,

p 6= 2 in [8] (it is unknown, whether there exists continuum such subspaces).

The exceptional case is p = 1: there are only two known obvious examples of pairwise

non-isomorphic infinite dimensional subspaces of L1, they are L1 itself and ℓ1.

Problem 1 (Lindenstrauss and Rosenthal, 1969, [29]). Is every complemented infinite dimen-

sional subspace of L1 isomorphic to either L1 or ℓ1?

2.4 Progress in the solution of Problem 1

The following assertions have been established for an arbitrary complemented subspace E

of L1.

Theorem 1 (Pełczyński, 1960, [38]). E contains a subspace isomorphic to ℓ1 and complemented

in L1.

Theorem 2 (Lindenstrauss, Pełczyński, 1968, [27]). If E has an unconditional basis then E is

isomorphic to ℓ1.

Recall that the Radon-Nikodým property (RNP) for a Banach space X means that for every

finite measure space (Ω, Σ, µ) and every µ-continuous X-valued measure G : Σ → X of

bounded variation there exists g ∈ L1(µ, X) such that G(A) =
∫

A g dµ for all A ∈ Σ. One

can show that the characteristic function G(A) = 1A is an example of L1-valued such measure

for which the function g does not exist [12, p. 61]; thus, L1 does not have the RNP. However,

ℓ1 has the RNP (this can be proved directly, using the Radon-Nikodým theorem for separate

coordinates [12, p. 64]).

Theorem 3 (Lewis, Stegall, 1973, [26]). If E has the RNP then E is isomorphic to ℓ1.

A Banach space X is said to have the Schur property if the weak convergence of a sequence

in X implies its norm convergence. It is well known that ℓ1 has the Schur property.
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Theorem 4 (Rosenthal, 1975, [45]). If E does not have the Schur property then ℓ2 embeds into

E.

Theorem 5 (Enflo, Starbird, 1979, [14]). If E contains a subspace isomorphic to L1 then E is

itself isomorphic to L1.

Simultaneously, W.B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri [18] obtained the

same result as Theorem 5 asserts for Lp with 1 < p < ∞.

The next result strengthens Theorem 4.

Theorem 6 (Bourgain, 1980, [7]). If E does not have the Schur property then (
⊕∞

n=1 ℓ2)1 embeds

into E.

There is a natural idea to solve Problem 1. Obviously, the hypothesis that every comple-

mented infinite dimensional subspace of L1 is isomorphic to either L1 or ℓ1, is equivalent

to the hypothesis that the following two climes hold true.

Let E be an infinite dimensional complemented subspace of L1.

Claim 1. If E has the Schur property then E is isomorphic to ℓ1.

Claim 2. If E does not have the Schur property then E is isomorphic to L1.

As to the best of our knowledge, there is no information about Claim 1 in the literature.

Remark that there is no direct way to prove Claim 1 without taking into account peculiarity of

L1, because there exists a Banach space with the Schur property but without the RNP, and so,

not isomorphic to ℓ1 (see J. Hagler [17]).

However, Claim 2 has been considered by different mathematicians as a weak version of

Problem 1 in the sense that a positive solution to Problem 1 implies a positive answer to Prob-

lem 2.

Problem 2 ([45], [14] and [7]). Must a non-Dunford-Pettis projection P ∈ L(L1) be an Enflo

operator? Equivalently, whether each non-Schur complemented subspace of L1 is isomorphic

to L1?

The most unclear thing concerning Problem 2 is how to use the information that P is a

projection, not just a continuous linear operator. H.P. Rosenthal constructed an example of

a non-Dunford-Pettis operator T ∈ L(L1) failing to be an Enflo operator [45]. This is the so-

called biased coin convolution operator. To explain the details, recall that the Rademacher system

is defined by rn(t) = sign sin(2n+1πt) for each n ∈ N and t ∈ [0, 1]. Denote by N
<ω the set

of all finite subsets of N. The Walsh system (wI)I∈N<ω is defined by setting wI = ∏i∈I ri, where

(rn)∞
n=1 is the Rademacher system (in particular, w∅ = 1, by convention). The Walsh system

with respect to the lexicographical order w∅, w{1}, w{2}, w{1,2}, w{3}, w{1,3}, w{2,3}, w{1,2,3}, . . .

is a Schauder basis of Lp for 1 < p < ∞, an orthonormal basis of L2, a conditional basis of Lp

for p 6= 2, and a Markushevich basis of L1.

Theorem 7 (H.P. Rosenthal, [45]). There is ε0 ∈ (0, 1) such that for every ε ∈ (0, ε0) there is an

operator Rε ∈ L(L1) possessing the equality RεwI = ε|I|wI for all I ∈ N
<ω, where |I| is the

cardinality of I.

The operator Rε is called the ε-biased coin convolution operator. Since Rεrn = εrn for all

n ∈ N, the operator Rε is not Dunford-Pettis. H.P. Rosenthal proved in [45] that Rε is not an

Enflo operator.
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2.5 All operators on L1 are regular

Recall some information. Let E, F be vector lattices. An operator T : E → F is called positive

if T(E+) ⊆ F+, and T : E → F is called regular if T equals a difference of two positive operators.

Obviously, every positive (and hence, every regular) operator T : E → F is order bounded, that

is, T sends order bounded subsets of E to order bounded subsets of F. Two elements x, y ∈ E

are said to be disjoint (write x ⊥ y) if |x| ∧ |y| = 0. The notation x =
⊔n

k=1 xk means that

x = ∑
n
k=1 xk and xi ⊥ xj for i 6= j.

It is an amazing and seldom used fact on operators on L1 that all of them are regular [47,

p. 232]. More precisely, every operator T ∈ L(L1) admits the representation T = T+ − T−,

where for every x ∈ L+
1 one has

T+x = sup
{ m

∑
k=1

Txk : x =
n⊔

k=1

xk, n ∈ N

}
.

As a consequence, we obtain that for any operator T ∈ L(L1) the modulus |T| = T++ T− ∈

L(L1) exists and could be defined by setting for every x ∈ E+

|T| x = sup
{ n

∑
k=1

∣∣Txi

∣∣ : x =
n

∑
k=1

xk, xk ∈ E+, n ∈ N

}
.

Moreover, ‖|T|‖ = ‖T‖ for every T ∈ L(L1) [47, p. 232].

As was noted by H.P. Rosenthal [46], the regularity of operators T ∈ L
(

L1(µ), L1(ν)
)

is

a consequence of the following Grothendieck’s inequality [16, Corollaire, p. 67]: given any

f1, . . . , f1 ∈ L1(µ), one has
∫

Ων

max
i

|T fi | dν ≤ ‖T‖
∫

Ωµ

max
i

|T fi | dµ.

A very useful development of Grothendieck’s inequality is M. Lévy’s extension theorem

(see [24]) asserting that, for every subspace X of L1(µ) every order bounded operator

T ∈ L(X, L1(ν)) has an extension to some operator T̂ ∈ L(L1(µ), L1(ν)), which is therefore

order bounded as well. The latter fact was then generalized to regular operators from Lp(µ) to

Lp(ν) for 1 ≤ p ≤ ∞ by G. Pisier in [40].

The regularity of all operators on L1 in fact means that there are few operators on L1, only

regular ones. This explains why common subspaces of all Lp (like the closed linear span of

the Rademacher system), which are complemented in Lp for p > 1 becomes uncomplemented

in L1: they are complemented in Lp by means of non-regular projections. The same reason

makes the Haar system a conditional basis in L1. This argument made the authors of [33]

and [41, Problem 10.45] to generalize Problem1 as follows. We say that a subspace X of a

Banach lattice is regularly complemented if there is a regular projection of E onto X.

Problem 3. Let 1 ≤ p < ∞, p 6= 2. Is every regularly complemented subspace of Lp isomor-

phic to either ℓp or Lp?

2.6 Complemented subspaces of Lp for 0 < p < 1

Consider now the quasi-Banach spaces Lp for 0 < p < 1. The list of known isomorphic

types of complemented subspaces of these spaces becomes smaller by one space, namely by ℓp,

because Lp has trivial dual and hence cannot have a complemented subspace with nontrivial

dual, like those that are isomorphic to ℓp. So, the problem is as follows.
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Problem 4. Let 0 ≤ p < 1. Is every complemented subspace of Lp isomorphic to Lp?

This problem has been systematically studied by N.J. Kalton in a number of papers. The

best progress is Kalton’s theorem, which asserts that, if there exists a complemented subspace

of Lp not isomorphic to Lp, then at most one, up to an isomorphism [22].

3 UNCONDITIONAL BASES IN Lp(µ)

3.1 Preliminary information

For convenience of the reader, we recall some necessary information on bases [1, 30]. A

sequence (xn)∞
n=1 of elements of a Banach space X is called a Schauder basis (or just a basis) of

X if for every x ∈ X there is a unique sequence of scalars (an)∞
n=1 such that

x =
∞

∑
k=1

akxk. (1)

A sequence in X, which is a basis in its closed linear span, is called a basic sequence. The

partial sums Pnx = ∑
n
k=1 akxk of the expansion (1) are linear bounded projections on X with

K := supn ‖Pn‖ < ∞, and the number K is called the basis constant of (xn)∞
n=1. In particular, the

coefficients x∗k (x) := ak of the expansion (1) are elements of X∗ with supn ‖xn‖‖x∗n‖ ≤ 2K and

are called the biorthogonal functionals to (xn)∞
n=1. The best possible basis constant is 1; a basis

with basis constant 1 is said to be monotone. The biorthogonal functionals (x∗n)
∞
n=1 form a basic

sequence in X∗ with the same basis constant K. A basis (xn)∞
n=1 of X is called unconditional if for

every x ∈ X the series x = ∑
∞
k=1 x∗k (x)xk converges unconditionally; otherwise the basis is said

to be conditional. If (xn)∞
n=1 is unconditional then for every sequence of signs Θ = (θn)∞

n=1,

θn ∈ {−1, 1}, and every x ∈ X the series TΘx := ∑
∞
n=1 θnx∗n(x)xn converges and TΘ is a linear

bounded operator. Moreover, M := supΘ ‖TΘ‖ < ∞. The number M is called the unconditional

constant of the unconditional basis (xn)∞
n=1.

Let (xn)∞
n=1 be a basic sequence in X, (an)∞

n=1 be a sequence of scalars and 0 ≤ k1 < k2 < . . .

be integers. A sequence (un)∞
n=1 of nonzero elements of X of the form

un =
kn+1

∑
i=kn+1

aixi

is called a block basis of (xn)∞
n=1. It is not hard to see that (un)∞

n=1 is a basic sequence itself,

the basis constant of which does not exceed that of (xn)∞
n=1. Two basic sequences (xn)∞

n=1 in X

and (yn)∞
n=1 in Y are called λ-equivalent if there exists an isomorphism T : [xn] → [yn] between

the closed linear spans of these systems with Txn = yn for all n such that ‖T‖‖T−1‖ ≤ λ.

Basic sequences are said to be equivalent if they are λ-equivalent for some λ ∈ [1,+∞). Us-

ing the Closed Graph theorem, one can easily show that basic sequences (xn)∞
n=1 and (yn)∞

n=1

are equivalent if and only if for every sequence of scalars (an)∞
n=1 the convergence of the se-

ries ∑
∞
n=1 anxn and ∑

∞
n=1 anxn are equivalent. It is clear that if one of two λ-equivalent basic

sequences is unconditional then the other one is unconditional as well, and the basic (uncon-

ditional) constants K1, K2 are estimated as follows: λ−1K1 ≤ K2 ≤ λK1.
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3.2 The Haar system in Lp

Define the dyadic intervals by setting Ik
n = [ k−1

2n , k
2n ) for n = 0, 1, . . . and k = 1, . . . , 2n. The

L∞-normalized Haar system is the following sequence in L∞: h1 = 1 and

h2n+k = 1
I2k−1
n+1

− 1I2k
n+1

(2)

for n = 0, 1, 2, . . . and k = 1, 2, . . . , 2n (by 1A we denote the characteristic function of a set A).

The Haar system is a monotone basis of every space Lp with 1 ≤ p < ∞ [30, p. 3], and an

unconditional basis of Lp for any 1 < p < ∞ [31, p. 155] (the first fact one can obtain using a

criterium of bases, and the second fact is a deep result of Paley [36] (1932), the proof of which

was then simplified by Burkholder [11] (1985)). The unconditional constant of the Haar system

in Lp equals Kp = max{p, q} − 1, where 1/p + 1/q = 1 [10].

The Haar system possesses the following useful property, called the precise reproducibility

[28], [31, p. 158]: for every isomorphic embedding T : Lp → X, 1 ≤ p < ∞, where X is a Banach

space with a basis (xn)∞
n=1, and every ε > 0 there is a block basis (un)∞

n=1 of (xn)∞
n=1, which

is (‖T‖‖T−1‖+ ε)-equivalent to the Haar system in Lp. This gives that the Haar system is the

“best” basis: once we have an unconditional basis in Lp, the Haar system is unconditional as

well, and its unconditional constant is the minimal possible one. Since the Haar system is a

conditional basis in L1 [31, p. 156], we obtain that L1 cannot be isomorphically embedded in a

Banach space with an unconditional basis (initially this was proved by A. Pełczyński [39]).

3.3 Nonseparable Lp(µ)-spaces

There is a nice complete isomorphic classification of the spaces Lp(µ) over finite atom-

less measure spaces (Ω, Σ, µ). A canonical representative of measure spaces (Ω, Σ, µ) with3

dim Lp(µ) = ℵα for 0 < p < ∞ is
(
{−1, 1}ωα , Σωα , µωα

)
, where ωα is the cardinal of cardinality

ℵα, Σωα is the Borel σ-algebra of subsets of {−1, 1}ωα endowed with the Tykhonov topology

on the power of the discrete two-point space {−1, 1}, and µωα is the corresponding power of

the measure µ0 on the subsets of {−1, 1} defined by µ0{−1} = µ0{1} = 1/2. In other words,

µωα is the Haar measure on the compact Abelian group {−1, 1}ωα with the point-wise prod-

uct. By the famous Maharam theorem (see [32] for the original paper, and [15, 23] for different

proofs), every finite atomless measure space (Ω, Σ, µ) is isomorphic (in the sense of measure

spaces) to a unique (up to a permutation of summands) direct sum of the measure spaces⊕
α∈A

(
{−1, 1}ωα , Σωα, εαµωα

)
, where A is an at most countable set of ordinals, called the

Maharam invariants of (Ω, Σ, µ), and εα > 0 are weights with ∑α∈A εα = µ(Ω). The Lebesgue

measure space
(
[0, 1], Σ, λ

)
, where λ is the Lebesgue measure on the Borel σ-algebra Σ of sub-

sets of [0, 1], is isomorphic to
(
{−1, 1}ω0 , Σω0 , µω0

)
. As a consequence, we obtain that every

Lp(µ)-space over a finite atomless measure µ with 0 < p ≤ ∞ is isometrically isomorphic to

the ℓp-sum
(
∑α∈A Lp{−1, 1}ωα

)
p
.

A (not ordered) family (xi)i∈I of elements of a (non-separable) Banach space X is called an

unconditional basis of X if every x ∈ X admits a unique representation x = ∑i∈I aixi, where the

set of all indices i ∈ I with ai 6= 0 is at most countable, and the series converges uncondition-

ally. One can show directly, that a family (xi)i∈I with dense linear span is an unconditional

basis of X if and only if every its countable subfamily is an unconditional basic sequence. If

this is the case then the unconditional constants of countable subfamilies are bounded from

3 By dim X we mean the smallest cardinality of subsets of X with dense linear span.
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above, and their supremum equals the unconditional constant of the entire family, which is

defined similarly.

P. Enflo and H.P. Rosenthal (1973) [13] proved that, if dim Lp(µ) ≥ ℵω0 , where µ is finite

atomless and 1 < p < ∞, p 6= 2, then Lp(µ) does not embed isomorphically into a Banach

space with an unconditional basis. They proved preliminarily that, for any n ∈ N, assuming

the isomorphic embedding T : Lp{−1, 1}ωn → X into a Banach space X with an unconditional

basis (xi)i∈I , the finite Walsh system (wJ)|J|≤n is ‖T‖‖T−1‖-reproducible in (xi)i∈I , even more,

‖T‖‖T−1‖-equivalent to a suitable block basis of (xi)i∈I . As a consequence, the unconditional

constant Mn of (wJ)|J|≤n does not exceed M‖T‖‖T−1‖, where M is the unconditional constant

of (xi)i∈I . Since for every n ∈ N the space Lp{−1, 1}ωn isometrically embeds into Lp(µ), it

then remained to show that Mn → ∞ as n → ∞, which is true. Unfortunately, their method

could not give more, remaining the following problem to be open.

Problem 5 (P. Enflo and H.P. Rosenthal, 1973, [13]). Let 1 ≤ p < ∞, p 6= 2, and let (Ω, Σ, µ) be

a finite atomless measure space with ℵ0 < dim Lp(µ) < ℵω0 . Is there an unconditional basis

of Lp(µ)?

Below we describe two different possible ideas to solve this problem.

3.4 The Olevskii system

In 1966 A.M. Olevskii constructed a system of functions on [0, 1], which is a basis of L1 con-

taining the Rademacher system as a part [35]. This system, called in the literature the Olevskii

system, is a conditional basis in Lp for p 6= 2, a result of E.M. Semenov [49]. If one tries to prove

that Lp{−1, 1}ω1 (and therefore, Lp{−1, 1}ωn for each n ≥ 1) has no unconditional basis, then

it would be enough to prove that the Olevskii system is reproducible in any unconditional ba-

sis of Lp{−1, 1}ω1 . Let us present an author’s description of the Olevskii system, which may

be convenient for this purpose.

First, we represent the Haar system (2), collected by bunches, via the Rademacher system

(rn)∞
n=1 as follows:

bunch 1 : 1,

bunch 2 : r1,

bunch 3 :
r1 + 1

2
· r2,

r1 − 1

2
· r2,

bunch 4 :
r1 + 1

2
·

r2 + 1

2
· r3,

r1 + 1

2
·

r2 − 1

2
· r3,

r1 − 1

2
·

r2 + 1

2
· r3,

r1 − 1

2
·

r2 − 1

2
· r3,

. . .

The Olevskii system can be constructed using the following scheme. First, we take the

function 1. Then, to obtain the (n + 1)-th Olevskii bunch, we multiply the beginning of the

Haar system including its n-th bunch by rn.

bunch 1 : 1,

bunch 2 : r1,

bunch 3 : r2, r1 · r2,
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bunch 4 : r3, r1 · r3,
r1 + 1

2
· r2 · r3,

r1 − 1

2
· r2 · r3,

bunch 5 : r4, r1 · r4,
r1 + 1

2
· r2 · r4,

r1 − 1

2
· r2 · r4,

r1 + 1

2
·

r2 + 1

2
· r3 · r4,

r1 + 1

2
·

r2 − 1

2
· r3 · r4,

r1 − 1

2
·

r2 + 1

2
· r3 · r4,

r1 − 1

2
·

r2 − 1

2
· r3 · r4,

. . .

A partial question to this concern: is the beginning 1, r1, r2, r1 · r2 of the Olevskii sys-

tem isometrically reproducible in any unconditional basis of Lp{−1, 1}ω1? Remark that it is

isometrically reproducible in any unconditional basis of Lp{−1, 1}ω2 , by the Enflo-Rosenthal

results, because it coincides with the Walsh system of order two.

3.5 A close separable problem

Consider the following important partial case of Problem 5.

Problem 6. Let 1 ≤ p < ∞, p 6= 2. Does there exist an unconditional basis in Lp{−1, 1}ω1 ?

We now pose a separable problem and then provide arguments to show that it is close to

Problem 6. Let Ep = Lp[0, 1]2 be the Lp-space over the Lebesgue measure space of Borel subsets

of the square [0, 1]2, and let Fp be the subspace of Ep consisting of all functions depending only

on the first variable.

Problem 7. Let 1 ≤ p < ∞, p 6= 2. Does there exist an unconditional basis ( fn) ∪ (gn) in Ep

consisting of two parts such that [ fn] = Fp and the unconditional constant of ( fn) equals the

unconditional constant of the entire basis ( fn) ∪ (gn)?

Theorem 8. An affirmative answer to Problem 6 implies an affirmative answer to Problem 7.

Before the proof, we provide with some necessary information. Given an infinite set I,

i ∈ I, x ∈ {−1, 1}I\{i}, and θ ∈ {−1, 1}, we denote by θ × x the element y ∈ {−1, 1}I such

that y(i) = θ and y(j) = x(j) for all j ∈ I \ {i}. Following [13], a µI-measurable function

f : {−1, 1}I → R is said to be independent of i ∈ I, if f (1 × x) = f (−1 × x) for µI\{i}-

almost all values of x ∈ {−1, 1}I\{i}. In the opposite case we say that f depends on i. For any

measurable function f : {−1, 1}I → R, the set {i ∈ I : f depends on i} is at most countable.

By the obvious reason, the same terminology we apply to equivalence classes of measurable

functions.

Proof. Let ( fα)α<ω1 be an unconditional basis of Lp{−1, 1}ω1 with unconditional constant M.

For any α < ω1 we denote by Xα the subspace of all f ∈ Lp{−1, 1}ω1 depending on coordinates

< α only. Obviously, Xα is isometrically isomorphic to Lp{−1, 1}α, which is separable and

atomless, and hence, isometrically isomorphic to Lp.

Lemma 1. There exists a strictly increasing ω1-sequence of limited ordinals (ξγ)γ<ω1 , ξγ < ω1,

such that [ fα]α<ξγ
= Xξγ

for all γ < ω1.

Proof of Lemma 1. Since every function f ∈ Lp{−1, 1}ω1 depends on at most countable set of

ordinals α < ω1, for every separable subspace Z of Lp{−1, 1}ω1 the value ϕ(Z) = min{α <

ω1 : Z ⊆ Xα} is well defined. Then

Z ⊆ Xϕ(Z) for every separable subspace Z. (3)
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Since every function f ∈ Lp{−1, 1}ω1 has an expansion f = ∑α<ω1
aα fα, where the set

{α < ω1 : aα 6= 0} is at most countable, for every separable subspace Z of Lp{−1, 1}ω1 the

value ψ(Z) = min{β < ω1 : Z ⊆ [ fα]α<β} is well defined as well. Then

Z ⊆ [ fα]α<ψ(Z) for every separable subspace Z. (4)

Now define recursively ω1-sequences (αη)η<ω1 and (βη)η<ω1 possessing the following pro-

perties for every η < ζ < ω1:

1. αη ≤ βη < αζ ;

2. [ fα]α<αη ⊆ Xβη
⊆ [ fα]α<αζ

.

Set α0 = ω0 and β0 = max
{

ϕ
(
[ fα]α<α0

)
, ω0

}
. Then α0 ≤ β0 and [ fα ]α<α0 ⊆ Xβ0

. Given

any δ < ω1, we assume that δ-sequences (αη)η<δ and (βη)η<δ possessing 1 and 2 for every

η < ζ < δ have been already constructed. To define αδ and βδ, we consider cases.

(i) δ is an isolated ordinal, that is, δ = δ′ + 1. In this case we set

αδ = max
{

ψ(Xβδ′
), βδ′ + 1

}
and βδ = max

{
ϕ
(
[ fα]α<αδ

)
, αδ

}
.

(ii) δ is a limited ordinal. In this case we set

αδ = βδ =
⋃

η<δ

αη =
⋃

η<δ

βη

(the latter equality is guaranteed by property 1 for every η < ζ < δ).

Property 1 for η < ζ ≤ δ follows directly from the construction. To prove 2, observe

that in case (i) by (3), (4), Xβδ′
⊆ [ fα]α<ψ(Xβ

δ′
) ⊆ [ fα ]α<αδ

and [ fα]α<αδ
⊆ X[ fα]α<αδ

⊆ Xβδ
. In

case (ii) inclusions 2 are obvious. Thus, the desired ω1-sequences (αη)η<ω1 and (βη)η<ω1 are

constructed.

By (ii) and 2, for every limited ordinal δ < ω1 one has [ fα]α<αδ
= Xαδ

. By (ii), for every

limited ordinal δ < ω1, the ordinal αδ is limited as well. Since there are uncountably many

such ordinals, we can renumber them to obtain the desired ω1-sequence.

Lemma 2. Let I ⊂ J be countable subsets with J \ I infinite. Then there is an isometric isomor-

phism T : Ep → Lp{−1, 1}J such that T(Fp) equals the subspace of Lp{−1, 1}J consisting of all

functions which depend on coordinates i ∈ I only.

Proof of Lemma 2. It is straightforward that the linear span of the Walsh system (wA)A∈N<ω

coincides with that of the Haar system, hence it is dense in Lp. So, to define an isometrical

isomorphism on the entire Lp(µ), it is enough to define it on the Walsh system and prove that

it is an isometry on the linear span. Observe that the Walsh system in Ep = Lp[0, 1]2 is given

by wA(x)wB(y), where A, B are finite subsets of N.

Let I = {i1, i2, . . .} and J \ I = {j1, j2, . . .} be any numerations. Given any A, B ∈ N
<ω,

we define functions ŵ′
A, ŵ′′

B : {−1, 1}J → R by setting ŵ′
A(x) = ∏n∈A x(in) and ŵ′′

B(x) =

∏n∈B x(jn). Likewise, the Walsh system in Lp{−1, 1}J can be represented as follows:

ŵ′
A · ŵ′′

B, A, B ∈ N
<ω. Now we define T : Ep → Lp{−1, 1}J , first on the Walsh system by

TwA(x)wB(y) = ŵ′
A · ŵ′′

B for all A, B ∈ N
<ω, and then extend to the linear span of the Walsh

system W by linearity. We omit a routine proof that the obtained mapping is an isometry on

W. It remains to observe that T(Fp) = Lp{−1, 1}I .
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We continue the proof of the theorem. Take a sequence (ξγ)γ<ω1 satisfying the claims of

Lemma 1. Denote by Mγ the unconditional constant of the system ( fα)α<ξγ
. Then Mγ ↑ M.

Since there is no strictly increasing ω1-sequence of reals, we obtain that there is γ0 < ω1

such that Mγ = M for all γ0 ≤ γ < ω1. Choose by Lemma 2 an isometric isomorphism

T : Ep → Xξγ0+1
with T(Fp) = Xξγ0

. Since ( fα)α<ξγ0+1
= ( fα)α<ξγ0

∪ ( fα)ξγ0
≤α<ξγ0+1

is an un-

conditional basis of Xξγ0+1
with unconditional constant M and ( fα)α<ξγ0

is an unconditional

basis of Xξγ0
with with the same unconditional constant M, we obtain that (T−1 fα)α<ξγ0+1

=

(T−1 fα)α<ξγ0
∪ (T−1 fα)ξγ0

≤α<ξγ0+1
is an unconditional basis of T−1(Xξγ0+1

) = Ep with uncon-

ditional constant M and (T−1 fα)α<ξγ0
is an unconditional basis of T−1(Xξγ0

) = Fp with with

the same unconditional constant M.

Remarks.

1. In Problem 7, one can equivalently replace the unconditional constants of unconditional

bases with the supremum of norms of projections with respect to the bases.

2. We do not know of whether an affirmative solution to Problem 7 formally implies an

affirmative solution to Problem 6, however, an affirmative solution to Problem 7 would

give a possible way to construct an unconditional basis of Lp{−1, 1}ω1 by a recursive

procedure.
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Дану замiтку написано при пiдготовцi доповiдi на мiжнароднiй конференцiї, присвяченiй

70-рiччю професора О. Лопушанського, 16-19 вересня 2019 р. Ми зосереджуємося на двох дав-

нiх вiдкритих проблемах. Перша, що належить Лiнденштраусу i Розенталю (1969 р.), форму-

люється так: чи кожний доповнювальний нескiнченновимiрний пiдпростiр простору L1 iзо-

морфний до L1 чи до ℓ1? Друга проблема була поставлена Енфло i Розенталем у 1973 р.: чи

iснує несепарабельний простiр Lp(µ) зi скiнченною безатомною мiрою µ та 1 < p < ∞, p 6= 2,

з безумовним базисом? У замiтцi наведено аналiз часткових результатiв та природних iдей

розв’язання даних проблем.

Ключовi слова i фрази: простори Lp, доповнювальний пiдпростiр, безумовний базис.
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THE GENERALIZED CENTRALLY EXTENDED LIE ALGEBRAIC STRUCTURES AND

RELATED INTEGRABLE HEAVENLY TYPE EQUATIONS

There are studied Lie-algebraic structures of a wide class of heavenly type non-linear integrable

equations, related with coadjoint flows on the adjoint space to a loop vector field Lie algebra on

the torus. These flows are generated by the loop Lie algebras of vector fields on a torus and their

coadjoint orbits and give rise to the compatible Lax-Sato type vector field relationships. The re-

lated infinite hierarchy of conservations laws is analysed and its analytical structure, connected

with the Casimir invariants, is discussed. We present the typical examples of such equations and

demonstrate in details their integrability within the scheme developed. As examples, we found

and described new multidimensional generalizations of the Mikhalev-Pavlov and Alonso-Shabat

type integrable dispersionless equation, whose seed elements possess a special factorized structure,

allowing to extend them to the multidimensional case of arbitrary dimension.
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1 INTRODUCTION

The main object of our study are integrable multidimensional dispersionless differential

equations, which possess modified Lax-Sato type representations, related with their hidden

Hamiltonian structures. Equations of this type arise and widely applied in mechanics, gen-

eral relativity, differential geometry and the theory of integrable systems. Among the most

one can mention the Boyer-Finley equation, heavenly type Plebański equations, which are

descriptive of a class of self-dual four-manifolds, as well as the dispersionless Kadomtsev-

Petviashvili (dKP) equation, also known as the Khokhlov-Zabolotskaya equation, which arises

in non-linear acoustics and the theory of Einstein-Weyl structures. Their integrability have

been investigated by a whole variety of modern techniques including symmetry analysis,

differential-geometric and algebro-geometric methods, dispersionless ∂̄-dressing, factoriza-

tion techniques, Virasoro constraints, hydrodynamic reductions, etc. The first examples and

the importance of the related Hamiltonian structures were before demonstrated in [29, 36, 38]

and later were developed in [25, 43], where there were analyzed in detail many examples of

dispersionless differential equations as flows on orbits of the coadjoint action of loop vector
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field algebras d̃i f f (Tn), generated by specially chosen seed elements l̃ ∈ d̃i f f (Tn)∗. In these

works there was observed that many integrable multidimensional dispersionless differential

equations are generated by seed elements of a very special structure, namely for them there

exist such analytical functional elements η̃, ρ̃ ∈ Λ0(C∞(Tn; R))⊗ C that l̃ = η̃dρ̃. As the latter

naturally generates the symplectic structure ω̃(2) :=
∫

Tn dη̃ ∧ dρ̃ ∈ Λ2(Tn) ⊗ C on the mod-

uli space [2, 42] of flat connections on Tn, related to coadjoint actions of the corresponding

Casimir functionals, the geometric nature of many integrable multidimensional dispersionless

differential equations can be also studied using cohomological techniques, devised in [2,10] in

the case of Riemannian surfaces. It is worth also to mention a revealed in [25] deep connec-

tion of the related Hamiltonian flows on d̃i f f (Tn)∗ with the well known in classical mechanics

Lagrange–d’Alembert principle.

In this article, in part developing the approach, devised in [29, 38], we describe a Lie al-

gebraic structure and integrability properties of a generalized hierarchy of the Lax-Sato type

compatible systems of Hamiltonian flows and related integrable multidimensional dispersion-

less differential equations. Such systems are called the heavenly type equations and were first

introduced by Plebański in [41]. The heavenly type equations were analyzed in many arti-

cles (see, e.g., [16, 19–22, 32, 38, 39] and [40, 46, 47, 52, 53]) using several different approaches.

In [7–9, 50] the heavenly type equations were analyzed by using nonassociative and noncom-

mutative current algebras on the torus T
m, m ∈ N. Mention also that [49, 51] B. Szablikowski

and A. Sergyeyev developed some generalizations of the classical AKS-algebraic and related

R-structures [11, 13, 15, 45, 54]. In [38, 39] and recently in [25] these ideas were applied to a

semi-direct Lie algebra T n)∗ of the loop Lie algebra d̃i f f (Tn) := Ṽect(Tn) of vector fields

on the torus T
n, n ∈ Z+, and its dual space d̃i f f (Tn)∗. Several interesting and deep results

about orbits of the corresponding coadjoint actions on the space G̃∗ ≃ G̃ and the classical Lie-

Poisson type structures on them were presented. It is worth to specially remark here that the

AKS-algebraic scheme is naturally imbedded into the classical R-structure approach via the

following construction.

Let (G̃ ; [·, ·]) denote a Lie algebra over C and G̃∗ be its natural adjoint space. Take some

tensor element r ∈ G̃ ⊗ G̃ ≃ Hom(G̃∗; G̃) and consider its splitting into symmetric and anti-

symmetric parts

r = k ⊕ σ,

respectively, and assume that the symmetric tensor k ∈ G̃ ⊗ G̃ is not degenerate. That allows

to define on the Lie algebra G̃ a symmetric nondegenerate bi-linear product (·|·) : G̃ ⊗ G̃ → C

via the expression

(a|b) := k−1a(b) (1)

for any a, b ∈ G̃ . The composed mapping R := σ ◦ k−1 : G̃ → G̃ , following the scheme G̃
k−1

→

G̃∗ σ
→ G̃ , defines the following R-structure on the Lie algebra G̃ :

[a, b]R := [Ra, b] + [a, Rb]

for all elements a, b ∈ G̃ . The following theorem, defining the related Poisson structure [10, 12,

45, 48] on the adjoint space G̃ holds.

Theorem 1. Let α, β ∈ G̃∗ be arbitrary and define the bracket

{α, β} := ad∗rαβ − ad∗rβα. (2)
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Then the bracket (2) is Poisson if and only if the R-structure on the Lie algebra G̃ defines the

Lie structure on G̃, that is there holds the Yang-Baxter equation

[Ra, Rb]− R[a, b]R = −[a, b]

for any a, b ∈ G̃ .

The above theorem makes it possible to consider the Hamiltonian flows on the coadjoint

space G̃∗ as those determined on the Lie algebra G̃ . The latter is exceptionally useful if for the

scalar product (1) there exists such a trace-type Tr(·) symmetric and ad-invariant functional

(of Killing type) that

Tr(ab) := (a|b), (a|[b, c]) = (([a, b]|, c)

for any a, b and c ∈ G̃ . Then any Hamiltonian flow of an element a ∈ G̃ is representable in the

standard Lax type form

da/dt = [∇(h), a],

where ∇(h) ∈ G̃ is generated by the corresponding Gateaux derivative of the corresponding

smooth Hamiltonian function h ∈ D(G̃).

Concerning the loop Lie algebra G̃ := d̃i f f (Tn) on the torus T
n, it is well known that such

a trace-type functional on G̃ does not exist, thus we need to study the Hamiltonian flows on

the adjoint loop space G̃∗ ≃ Λ̃1(Tn) of meromorphic differential forms on the torus Tn and

obtain, as a result, integrable dispersionless differential equations as compatibility conditions

for the related loop vector fields, generated by Casimir functionals on G̃∗. This procedure is

much more complicated for analysis than the standard one and employs more geometrical

tools and considerations about the orbit space structure of the seed elements l̃ ∈ G̃∗, generating

a hierarchy of integrable Hamiltonian flows. The latter, in part, is deeply related to its reduction

properties, guaranteeing the existence of nontrivial Casimir invariants on its coadjoint orbits.

By applying and extending these ideas to central extensions of Lie algebras, we construct

new classes of commuting Hamiltonian flows on an extended adjoint space Ḡ := G̃∗⊕C. These

Hamiltonian flows are generated by seed elements (ã ⋉ l̃; α) ∈ Ḡ∗ and specially constructed

Casimir invariants on the corresponding orbits of G̃∗. In most cases these seed elements ap-

peared to be represented as specially factorized differential objects, whose real geometric na-

ture is still much hidden and not clear. Moreover, we found that the corresponding com-

patibility condition of constructed Hamiltonian flows coincides exactly with the compatibility

condition for a system of related three Lax-Sato type linear vector field equations. As exam-

ples, we found and described new multidimensional generalizations of the Mikhalev-Pavlov

and Alonso-Shabat type integrable dispersionless equation, whose seed elements possess a

special factorized structure, allowing to extend them to the multidimensional case of arbitrary

dimension.

2 DIFFEOMORPHISMS GROUP Di f f (Tn) AND ITS DESCRIPTION

Consider the n-dimensional torus Tn and call points X ∈ Tn as the Lagrangian variables

of a configuration η ∈ Di f f (Tn). The manifold Tn, thought of as the target space of a con-

figuration η ∈ Di f f (Tn), is called the spatial or Eulerian configuration, whose points, called

spatial or Eulerian points, will be denoted by small letters x ∈ T
n. Then any one-parametric
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configuration of Di f f (Tn) is a time t ∈ R dependent family [1, 4, 6, 28, 34] of diffeomorphisms

written as

T
n ∋ x = η(X, t) := ηt(X) ∈ T

n

for any initial configuration X ∈ Tn and some mappings ηt ∈ Di f f (Tn), t ∈ R.

Being interested in studying flows on the space of Lagrangian configurations η ∈ Di f f (Tn)

with respect to the temporal variable t ∈ R, which are generated by group diffeomorphisms

ηt ∈ Di f f (Tn), t ∈ R, let us proceed to describing the structure of tangent Tηt(Di f f (Tn))

and cotangent T∗
ηt
(Di f f (Tn)) spaces to the diffeomorphism group Di f f (Tn) at the points

ηt ∈ Di f f (Tn) for any t ∈ R. Determine first the tangent space Tηt(Di f f (Tn)) to the diffeo-

morphism group manifold Di f f (Tn) at point η ∈ Di f f (Tn) for which we will make use of the

construction, devised before in [1, 4, 27]. Namely, let η ∈ Di f f (Tn) be a Lagrangian configu-

ration and try to determine the tangent space Tη(Di f f (Tn)) at η ∈ Di f f (Tn) as the collection

of vectors ξη := dητ/dτ|τ=0, where R ∋ τ → ητ ∈ Di f f (Tn), ητ|τ=0 = η, is a smooth curve

on Di f f (Tn), and for arbitrary reference point X ∈ Tn there holds ξη(X) = dητ(X)/dτ|τ=0 .

The latter equivalently means that the vectors ξη(X) ∈ Tη(X)(T
n), X ∈ Tn, represent a vector

field ξ : Tn → T(Tn) on the manifold Tn for any η ∈ Di f f (Tn). Thus, the tangent space

Tη(Di f f (Tn)) coincides with the set of vector fields on Tn :

Tη(Di f f (Tn)) ≃ {ξη ∈ Γ(T(Tn)) : ξη(X) ∈ Tξ(X)(T
n)}

and similarly, the cotangent space T∗
η (Di f f (Tn)) consists of all one-form densities on Tn over

η ∈ Di f f (Tn) :

T∗
η (Di f f (Tn)) = {αη ∈ Λ1(Tn)⊗ Λ3(Tn) : αη(X) ∈ T∗

η(X)(T
n)⊗ |Λ3(Tn)|}

subject to the canonical nondegenerate pairing (·|·)c on T∗
η (Di f f (Tn)) × Tη(Di f f (Tn)) : if

αη ∈ T∗
η (Di f f (Tn)), ξη ∈ Tη(Di f f (Tn)), where

αη|X = 〈αη(X)|dx〉 ⊗ d3X, ξη |X = 〈ξη(X)|∂/∂x〉,

then

(αη |ξη)c :=
∫

Tn
〈αη(X)|ξη (X)〉d3X.

The construction above makes it possible to identify the cotangent bundle T∗
η (Di f f (Tn))

at the fixed Lagrangian configuration η ∈ Di f f (Tn) to the tangent space Tη(Di f f (Tn)), as

the tangent space T(Tn) is endowed with the natural internal tangent bundle metric 〈·|·〉 at

any point η(X) ∈ Tn, identifying T(Tn) with T∗(Tn) via the related metric isomorphism

♯ : T∗(Tn) → T(Tn). The latter can be also naturally lifted to T∗
η (Di f f (Tn)) at η ∈ Di f f (Tn),

namely: for any elements αη, βη ∈ T∗
η (Di f f (Tn)), αη |X = 〈αη(X)|dx〉 ⊗ d3X and βη |X =

〈βη(X)|dx〉 ⊗ d3X ∈ T∗
η (Di f f (Tn)) we can define the metric

(αη |βη) :=
∫

Tn
〈α♯η(X)|β♯

η (X)〉d3X,

where, by definition, α♯η(X) := ♯〈αη(X)|dx〉), β♯
η(X) := ♯〈βη(X)|dx〉 ∈ Tη(X)(T

n) for any X ∈

T
n. Based on the notions above one can proceed to constructing smooth invariant functionals

on the cotangent bundle T∗(Di f f (Tn)) subject to the corresponding co-adjoint actions of the
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diffeomorphism group Di f f (Tn). Moreover, as the cotangent bundle T∗(Di f f (Tn)) is a priori

endowed with the canonical symplectic structure, equivalent [1, 4, 5, 11, 13, 26, 30, 31, 34, 45] to

the corresponding Poisson bracket on the space of smooth functionals on T∗(Di f f (Tn)), one

can study both the related Hamiltonian flows on it and their adjoint symmetries and complete

integrability.

Consider now the cotangent bundle T∗(Di f f (Tn)) as a smooth manifold endowed with the

canonical symplectic structure [1, 5] on it, equivalent to the corresponding canonical Poisson

bracket on the space of smooth functionals on it. Taking into account that the cotangent space

T∗
η (Di f f (Tn)) at η ∈ Di f f (Tn), shifted by the right Rη−1- action to the space T∗

Id(Di f f (Tn)),

Id ∈ Di f f (Tn), becomes diffeomorphic to the adjoint space di f f ∗(Tn) to the Lie algebra

di f f (Tn) ≃ Γ(T(Tn)) of vector fields on Tn, as there was stated [34, 35, 56, 57] still by S. Lie in

1887, this canonical Poisson bracket on T∗
η (Di f f (Tn)) transforms [4, 5, 24, 31, 33, 34, 55–57] into

the classical Lie-Poisson bracket on the adjoint space G∗. Moreover, the orbits of the diffeomor-

phism group Di f f (Tn) on T∗(Di f f (Tn)) respectively transform into the coadjoint orbits on

the adjoint space G∗, generated by suitable elements of the Lie algebra G . To construct in detail

this Lie-Poisson bracket, we formulate preliminary the following simple lemma.

Lemma 1. The Lie algebra di f f (Tn) ≃ Γ(T(Tn)) is determined by the following Lie commu-

tator relationships:

[a1, a2] = 〈a1|∇〉a2 − 〈a2|∇〉a1 (3)

for any vector fields a1, a2 ∈ Γ(T(Tn)) on the manifold T
n.

Proof. Proof of the commutation relationships (3) easily follows from the group multiplication

(ϕ1,t ◦ ϕ2,t)(X) = ϕ2,t(ϕ1,t(X))

for any local group diffeomorphisms ϕ1,t, ϕ2,t ∈ Di f f (Tn), t ∈ R, and X ∈ T
n under condition

that aj(X) := dϕj,t(X)/dt|t=0 and ϕj,t|t=0 = Id ∈ Di f f (Tn), j = 1, 2.

To calculate the Poisson bracket on the cotangent space T∗
η (Di f f (Tn)) at any η ∈ Di f f (Tn),

let us consider the cotangent space T∗
η (Di f f (Tn)) ≃ di f f ∗(Tn), the adjoint space to the tangent

space Tη(Di f f (Tn)) of left invariant vector fields on Di f f (Tn) at any η ∈ Di f f (Tn), and take

the canonical symplectic structure on T∗
η (Di f f (Tn)) in the form ω(2)(µ, η) := δα(µ, η), where

the canonical Liouville form α(µ, η) := (µ|δη)c ∈ Λ1
(µ,η)

(T∗
η (Di f f (Tn))) at a point (µ, η) ∈

T∗
η (Di f f (Tn)) is defined a priori on the tangent space Tη(Di f f (Tn)) ≃ Γ(T(M)) of right-

invariant vector fields on the torus manifold Tn. Having calculated the corresponding Pois-

son bracket of smooth functions (µ|a)c , (µ|b)c ∈ C∞(T∗
η (Di f f (Tn)); R) on T∗

η (Di f f (Tn)) ≃

di f f ∗(Tn), η ∈ Di f f (Tn), one can formulate the following proposition.

Proposition 1. The Lie-Poisson bracket on the coadjoint space T∗
η (Di f f (Tn)), η ∈ M, is equal

to the expression

{ f , g}(µ) = (µ|[δg(µ)/δµ, δ f (µ)/δµ])c (4)

for any smooth right-invariant functionals f , g ∈ C∞(G∗; R).

Proof. By definition (see [1, 5]) of the Poisson bracket of smooth functions (µ|a)c , (µ|b)c ∈

C∞(T∗
η (Di f f (Tn)); R) on the symplectic space T∗

η (Di f f (Tn)), it is easy to calculate that

{µ(a), µ(b)} := δα(Xa , Xb) = Xa(α|Xb)c − Xb(α|Xa)c − (α|[Xa , Xb])c, (5)
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where Xa := δ(µ|a)c/δµ = a ∈ di f f (Tn), Xb := δ(µ|b)c/δµ = b ∈ di f f (Tn). Since the

expressions Xa(α|Xb)c = 0 and Xb(α|Xa)c = 0 owing the right-invariance of the vector fields

Xa, Xb ∈ Tη(Di f f (Tn)), the Poisson bracket (5) transforms into

{(µ|a)c , (µ|b)c} = −(α|[Xa , Xb])c = (µ|[b, a])c = (µ|[δ(µ|b)c /δµ, δ(µ|a)c /δµ])c

for all (µ, η) ∈ T∗
η (Di f f (Tn)) ≃ di f f ∗(Tn), η ∈ Di f f (Tn) and any a, b ∈ di f f (Tn). The

Poisson bracket (5) is easily generalized to

{ f , g}(µ) = (µ|[δg(µ)/δµ, δ f (µ)/δµ])c

for any smooth functionals f , g ∈ C∞(G∗; R), finishing the proof.

Based on the Lie-Poisson bracket (4), one can naturally construct Hamiltonian flows on the

adjoint space di f f ∗(Tn) via the expressions

∂l/∂t = −ad∗∇h(l)l

for any element l ∈ di f f ∗(Tn), t ∈ R, where, by definition, d
dε h(l + εm)|ε=0 := (m|∇h(l))c ,

for some smooth Hamiltonian function h ∈ C∞(di f f ∗(Tn); R). If the system possesses enough

additional invariants except the Hamiltonian function, one can expect its simplification often

reducing to its complete integrability. Below we proceed to developing an effective enough

analytical scheme, before suggested in [25, 37] for suitably constructed holomorphic loop dif-

feomorphism groups on tori, allowing to generate infinite hierarchies of such completely inte-

grable Hamiltonian systems on related functional phase spaces.

3 HEAVENLY TYPE SYSTEMS: THE MODIFIED LIE-ALGEBRAIC INTEGRABILITY SCHEME

Let D̃i f f ±(T
n), n ∈ Z+, be subgroups of the loop diffeomorphisms group D̃i f f (Tn) :=

{C ⊃ S1 → Di f f (Tn)}, holomorphically extended, respectively, on the interior D1
+ ⊂ C and

on the exterior D
1
− ⊂ C regions of the unit centrally located disk D

1 ⊂ C
1 and such that for

any g̃(λ) ∈ D̃i f f −(T
n), λ ∈ D

1
−, g̃(∞) = 1 ∈ Di f f (Tn). The corresponding Lie subalgebras

d̃i f f ±(T
n) ≃ Ṽect±(Tn) of the loop subgroups D̃i f f ±(T

n) are vector fields on S1 × Tn, ex-

tended holomorphically, respectively, on regions D1
± ⊂ C1, where for any ã(λ) ∈ d̃i f f −(T

n)

the value ã(∞) = 0. The loop Lie algebra splitting d̃i f f (Tn) = d̃i f f +(T
n)⊕ d̃i f f −(T

n) can be

naturally identified with a dense subspace of the dual space d̃i f f (Tn)∗ through the pairing

(l̃|ã) := res
λ∈C

(l(x; λ)|a(x; λ))H0 (6)

with respect to the scalar product

(l(x; λ)|a(x; λ))H0 :=
∫

Tn

dx〈l(x; λ), a(x; λ)〉

on the usual Hilbert space H0 := L2(T
n; Cn) for any elements l̃ ∈ d̃i f f (Tn)∗ and ã ∈ d̃i f f (Tn),

naturally represented in their reduced canonical form

ã =
n

∑
j=1

a(j)(x; λ)
∂

∂xj
:=

〈
a(x; λ),

∂

∂x

〉
,

l̃ =
n

∑
j=1

lj(x; λ)dxj := 〈l(x; λ), dx〉,
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where we have introduced for brevity the gradient operator ∂
∂x :=

(
∂

∂x1
, ∂

∂x2
, ..., ∂

∂xn

)⊺
in the

Euclidean space (En; 〈·, ·〉). The corresponding Lie commutator [ã, b̃] ∈ d̃i f f (Tn) of any vector

fields ã, b̃ ∈ d̃i f f (Tn) is calculated the standard way and equals

[ã, b̃] = ãb̃ − b̃ã =

〈〈
a(x; λ),

∂

∂x

〉
b(x; λ),

∂

∂x

〉
−

〈〈
b(x; λ),

∂

∂x

〉
a(x; λ),

∂

∂x

〉
.

The Lie algebra G̃ is naturally split into the direct sum of two Lie subalgebras

d̃i f f (Tn) = d̃i f f +(T
n)+ ⊕ d̃i f f −(T

n),

for which one can identify the following dual spaces:

d̃i f f +(T
n)∗ ≃ d̃i f f −(T

n), d̃i f f −(T
n)∗ ≃ d̃i f f +(T

n),

where for any l̃(λ) ∈ d̃i f f −(T
n)∗ there holds the constraint l̃(0) = 0.

Construct now the Lie algebra G̃ := d̃i f f (Tn)⋉ d̃i f f (Tn)∗ as the semi-direct sum of the Lie

algebra d̃i f f (Tn) and its dual space d̃i f f (Tn)∗, whose Lie structure is given by the following

expression

[ã1 ⋉ l̃1, ã2 ⋉ l̃2] := [ã1, ã2]⋉ (ad∗ã2
l̃1 − ad∗ã1

l̃2) (7)

for any pair of elements (ã1 ⋉ l̃1), (ã2 ⋉ l̃2) ∈ G̃ , where ad∗
d̃i f f (Tn)

: d̃i f f (Tn)∗ → d̃i f f (Tn)∗,

(ad∗ã l̃|b̃) := (l̃|[ã, b̃]) for l̃ ∈ d̃i f f (Tn)∗ and any ã, b̃ ∈ d̃i f f (Tn), is the standard coadjoint map-

ping of the Lie algebra d̃i f f (Tn) on its adjoint space d̃i f f (Tn)∗ with respect to the pairing (6).

The Lie algebra G̃ can be metricized, as it can be endowed with the nondegenerate symmetric

product

(ã1 ⋉ l̃1|ã2 ⋉ l̃2) := (l̃2|ã1) + (l̃1|ã2), (8)

where ã1 ⋉ l̃1, ã2 ⋉ l̃2 ∈ G̃ are arbitrary elements. Owing to the holomorphic structure of the

Lie algebra d̃i f f (Tn), the ad-invariant product (8) makes it possible to identify the Lie algebra

G̃ with its dual G̃∗, that is G̃∗ ≃ G̃ . Moreover, the Lie algebra G̃ can be naturally split [38,39,49]

with respect to the pairing (6) and the Lie bracket (7) into two subalgebras G̃ = G̃+ ⊕ G̃−,

where, by definition,

G̃+ := d̃i f f (Tn)+ ⋉ d̃i f f (Tn)∗−, G̃− := d̃i f f (Tn)− ⋉ d̃i f f (Tn)∗+.

The latter allows to define on the Lie algebra G̃ a new Lie bracket

[w̃1, w̃2]R := [Rw̃1, w̃2] + [w̃1,Rw̃2]

for any elements w̃1, w̃2 ∈ G̃, where R := (P+ − P−)/2 is the standard R-matrix homomor-

phism [11,14,44,54] on G̃ and, by definition, P± : G̃ → G̃± ⊂ G̃ are projectors. The construction

above makes it possible to apply to the Lie algebra G̃ the classical AKS-scheme and, respec-

tively, to generate a wide class of completely integrable Hamiltonian systems as the commuting

flows on the adjoint space G̃∗ ≃ G̃, generated by the corresponding hierarchies of the Casimir

invariants subject to the basic Lie bracket (7).

To describe this scheme in more details, we need to find the corresponding Casimir func-

tionals h ∈ I(G̃∗), satisfying, by definition, the following relationship:

ad∗
∇h(l̃;ã)

(l̃; ã) = 0 (9)



THE INTEGRABLE HEAVENLY TYPE EQUATIONS 249

at (l̃; ã) ∈ G̃∗ ≃ G̃ , where, by definition, the gradient ∇h(l̃; ã) := ∇hl̃ ⋉∇hã ∈ d̃i f f (Tn)⋉

d̃i f f (Tn)∗ = G̃ satisfies the following from (9) differential-algebraic equations:

[∇hl̃ , ã] = 0, ad∗∇hl̃
l̃ − ad∗ã∇hã = 0 (10)

for arbitrarily chosen element ã ⋉ l̃ ∈ G̃. The equations (10) can be rewritten [25] in details as

〈∇hl , ∂/∂x〉 a − 〈a, ∂/∂x〉 ∇hl = 0,

〈∂/∂x,∇hl〉 l + 〈l, (∂/∂x∇hl )〉 − 〈∂/∂x, a〉 ∇ha − 〈∇ha, (∂/∂xa)〉 = 0,

(11)

where we put, by definition, that

∇hl̃ := 〈∇hl , ∂/∂x〉 , ã := 〈a, ∂/∂x〉 ,

(12)

l̃ := 〈l, dx〉 , ∇hã := 〈∇ha, dx〉 .

The system of linear equation (11) for a given element ã ⋉ l̃ ∈ G̃ , singular as λ → ∞, can be, in

general, resolved by means of the asymptotical expressions

∇hl ∼ ∑
j∈Z+

∇h
(j)
l λ−j, ∇ha ∼ ∑

j∈Z+

∇h
(j)
a λ−j, (13)

giving rise to an infinite hierarchy of gradients ∇h(p)(ã, l̃) = λp∇h(ã, l̃) ∈ G̃ , p ∈ Z+, for

the corresponding Casimir functionals h(p) ∈ I(G̃∗), p ∈ Z+. Similarly, if a given element

ã ⋉ l̃ ∈ G̃ is chosen to be singular as λ → 0, the system of linear equations (11) can be resolved

by means of the asymptotical expressions

∇hl ∼ ∑
j∈Z+

∇h
(j)

l λj, ∇ha ∼ ∑
j∈Z+

∇h
(j)
a λ−j, (14)

also generating an infinite hierarchy of gradients ∇h(p)(l̃, ã) = λ−p∇h(ã, l̃) ∈ G̃, p ∈ Z+, for

the corresponding Casimir functionals h(p) ∈ I(G̃∗), p ∈ Z+.

Let us now assume that we have already found the gradients ∇h(y)(ã, l̃) := λpy∇h(1)(ã, l̃),

∇h(t)(ã, l̃) := λpy∇h(2)(ã, l̃) ∈ G̃ , related with two Casimir invariants h(1), h(2) ∈ I(G̃∗) (not

necessary different) for some integers py, pt ∈ Z, satisfying the determining equations (11).

Then, owing to the classical AKS-scheme [11, 14, 48, 54], one can construct two commuting to

each other flows with respect to the evolution parameters y, t ∈ R on the adjoint space G̃∗ ≃ G̃

∂

∂y
ã = −[∇h

(y)

l̃,+
, ã],

∂

∂t
ã = −[∇h

(t)

l̃ ,+
, ã], (15)

and
∂

∂y
l̃ = −ad∗

∇h
(y)

l̃,+

l̃ + ad∗ã (∇h
(y)
ã,+

),
∂

∂t
l̃ = −ad∗

∇h
(t)

l̃,+

l̃ + ad∗ã (∇h
(t)
ã,+

), (16)

where, we have denoted by (∇h
(y)

l̃,+
⋉∇h

(y)
ã,+

) := P+∇h(y)(ã, l̃) ∈ G̃+ and (∇h
(t)

l̃,+
⋉∇h

(t)
ã,+

) :=

P+∇h(t)(ã, l̃) ∈ G̃+ the corresponding projections on positive degree parts of the correspond-

ing asymptotic expansions (12)–(14). The flows (15) and (16) are, by construction, Hamiltonian,

as they are a result of the expressions

∂

∂y
(ã ⋉ l̃) = {ã ⋉ l̃, h(y)}R,

∂

∂t
(ã ⋉ l̃) = {ã ⋉ l̃, h(t)}R (17)
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for a chosen element ã⋉ l̃ ∈ G̃∗ ≃ G̃ , stemming from the R-deformed Lie-Poisson [11,14,48,54]

bracket

{h, f}R := (ã ⋉ l̃, [∇h(l̃, ã),∇ f (l̃, ã)]R) (18)

on the adjoint space G̃∗ ≃ G̃ , defined for any smooth functionals h, f ∈ D(G̃∗). Their commu-

tativity condition is equivalent to two equations such as

[∇h
(y)

l̃,+
,∇h

(t)

l̃,+
]−

∂

∂t
∇h

(y)

l̃,+
+

∂

∂y
∇h

(t)

l̃,+
= 0, (19)

and

ad∗ã P̃ = 0,

P̃ = ad∗
∇h

(y)

l̃,+

(∇h
(t)
ã,+)− ad∗

∇h
(t)

l̃,+

(∇h
(y)
ã,+)−

∂

∂t
∇h

(y)
ã,+ +

∂

∂y
∇h

(t)
ã,+

for any ã ⋉ l̃ ∈ G̃ . Thus, the following important proposition holds.

Proposition 2. The Hamiltonian flows (17) generate the separately commuting evolution equa-

tions (15) and (16). The evolution equations (15) give rise to the Lax type compatibility con-

dition (19), being equivalent to some system of nonlinear heavenly type equations in partial

derivatives.

The presented above construction of Hamiltonian flows on the adjoint space G̃∗ still allows

the next important generalization. Namely, let us endow the point product G̃S
1: = ∏

z∈S1

G̃ of

the loop Lie algebra G̃ with the central extension generated by a two-cocycle ω2 : G̃ × G̃ → C,

where

ω2(ã1 ⋉ l̃1, ã2 ⋉ l̃2) :=
∫

S1
[(l1, ∂ã2/∂z)− (l2, ∂ã1/∂z)]

for any elements ã1 ⋉ l̃1, ã2 ⋉ l̃2 ∈ G̃. The resulting centrally extended Lie-algebra G̃ := G̃ ⊕ C

is defined by the commutator

[(ã1 ⋉ l̃1; α1), (ã2 ⋉ l̃2; α1)] := ([ã1, a2]⋉ (ad∗ã1
l̃2 − ad∗ã2

l̃1); ω2(ã1 ⋉ l̃1, ã2 ⋉ l̃2)

for any pair of elements (ã1 ⋉ l̃1; α1), (ã2 ⋉ l̃2; α1) ∈ G̃ . The resulting R-deformed Lie-Poisson

bracket (18) for any smooth functionals h, f ∈ D(G∗) on the adjoint space G̃∗ becomes equal to

{h, f}R := (ã ⋉ l̃, [∇h(l̃, ã),∇ f (l̃ , ã)]R)

+ ω2(R∇h(l̃, ã),∇ f (l̃, ã)) + ω2(∇h(l̃, ã),R∇ f (l̃, ã)).
(20)

The corresponding Casimir functionals h(p) ∈ I(G̃∗), p ∈ Z+, are defined with respect to

the standard Lie-Poisson bracket as

{h(p), f} := (ã ⋉ l̃, [∇h(p)(l̃, ã),∇ f (ã, l̃)]) + ω2(∇h(p)(ã, l̃),∇ f (ã, l̃)) = 0 (21)

for all smooth functionals f ∈ D(G̃∗). Based on the equality (21) one easily finds that the

gradients ∇h(p) ∈ G̃ of the Casimir functionals h(p) ∈ I(G̃∗), p ∈ Z+, satisfy the following

equations:

[∇hl̃ , ã]−
∂

∂z
∇hl̃ = 0, ad∗∇hl̃

l̃ − ad∗ã∇hã −
∂

∂z
∇hã = 0
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for any chosen element ã ⋉ l̃ ∈ Ḡ∗. Making use of suitably constructed Casimir functionals

h(y), h(t) ∈ I(G̃), one can construct from (20) the following commuting Hamiltonian flows on

the adjoint space G̃∗ :

∂

∂y
(ã ⋉ l̃) = {ã ⋉ l̃, h(y)}R,

∂

∂t
(ã ⋉ l̃) = {ã ⋉ l̃, h(t)}R, (22)

which are equivalent to the evolution equations

∂

∂y
ã = −[∇h

(y)

l̃,+
, ã] +

∂

∂z
∇h

(y)

l̃,+
,

∂

∂t
ã = −[∇h

(t)

l̃ ,+
, ã] +

∂

∂z
∇h

(t)

l̃,+
, (23)

and

∂

∂y
l̃ = −ad∗

∇h
(y)

l̃,+

l̃ + ad∗ã (∇h
(y)
ã,+

) +
∂

∂z
∇h

(y)
ã,+

, (24)

∂

∂t
l̃ = −ad∗

∇h
(t)

l̃,+

l̃ + ad∗ã (∇h
(t)
ã,+

) +
∂

∂z
∇h

(t)
ã,+

.

The commutativity condition for these flows is split into two equations such as

[∇h
(y)

l̃,+
,∇h

(t)

l̃,+
]−

∂

∂t
∇h

(y)

l̃,+
+

∂

∂y
∇h

(t)

l̃,+
= 0, (25)

and

∂P̃

∂z
+ ad∗ã P̃ = 0,

P̃ = ad∗
∇h

(y)

l̃,+

(∇h
(t)
ã,+)− ad∗

∇h
(t)

l̃,+

(∇h
(y)
ã,+)−

∂

∂t
∇h

(y)
ã,+ +

∂

∂y
∇h

(t)
ã,+

for any ã ⋉ l̃ ∈ G̃ . The first of them can be considered as the Lax type compatibility condi-

tion for the evolution equations (23). As a consequence of the obtained above results one can

formulate the following proposition.

Proposition 3. The Hamiltonian flows (22) on the adjoint space G̃∗ generate the separately

commuting evolution equations (23) and (24). The evolution equations (23) give rise to the

Lax type compatibility condition (25), being equivalent to some system of nonlinear heavenly

type equations in partial derivatives. Moreover, the system of evolution equations (23) can be

considered as the compatibility condition for the following set of linear vector equations

∂ψ/∂y +∇h
(y)

l̃,+
ψ = 0, ∂ψ/∂z + ãψ = 0, ∂ψ/∂t +∇h

(t)

l̃,+
ψ = 0

for all (y, t; λ, z, x) ∈ R
2 × (C × S

1)× T
n) and a function ψ ∈ C2(R2 × C ×(S1 × T

n); C).

The following example demonstrates the analytical applicability of the devised above Lie-

algebraic scheme for construction a wide class of nonlinear multidimensional heavenly type

integrable Hamiltonian systems on functional spaces.
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3.1 Example: the modified Mikhalev-Pavlov heavenly type system

Let a seed element ã ⋉ l̃ ∈ G̃∗ be chosen in its reduced form as

ã ⋉ l̃ = ((ux + vxλ − λ2)∂/∂x ⋉ (wx + ζxλ)dx, (26)

where u, v, w, ζ ∈ C2(R2 × S1 × T1; R). The asymptotic splits for the components of the gradi-

ent of the corresponding Casimir functional h ∈ I(Ḡ∗), as |λ| → ∞ have the following forms:

∇hl̃ ≃ 1 − vxλ−1 − uxλ−2 − vzλ−3 − (uz + vxvz − 2(∂−1
x vxxvz))λ

−4

+ vyλ−5 − (−uy − vxvy + 2(∂−1
x vxxvy))λ

−6 + . . . ,

∇hã ≃ −ζxλ−1 − wxλ−2 − ζzλ−3 − (wz − ζxvz + 2vxζz + (∂−1
x vxζx)z)λ

−4

+ ζyλ−5 − (−wy + ζxvy − 2vxζy + (∂−1
x vxζx)y)λ

−6 + . . . .

In the case when

∇h
(y)

l̃,+
:= λ4 − vxλ3 − uxλ2 − vzλ − (uz + vxvz − 2(∂−1

x vxxvz)),

∇h
(y)
ã,+ := −ζxλ3 − wxλ2 − ζzλ − (wz − ζxvz + 2vxζz − (∂−1

x vxζx)z),

and

∇h
(t)

l̃,+
:= λ6 − vxλ5 − uxλ4 − vzλ3 − (uz + vxvz − 2(∂−1

x vxxvz))λ
2

+ vyλ − (−uy − vxvy + 2(∂−1
x vxxvy)),

∇h
(t)
ã,+ := −ζxλ5 − wxλ4 − ζzλ3 − (wz − ζxvz + 2vxζz − (∂−1

x vxζx)z)λ
2

+ ζyλ − (−wy + ζxvy − 2vxζy + (∂−1
x vxζx)y),

the compatibility condition of the Hamiltonian vector flows (22) leads to the system of evolu-

tion equations:

uzt + uyy = −uyuxz + uzuxy − vyvxy + vzvxt − uzvyvxx + uyvzvxx

− v2
xvzvxy + v2

xvyvxz − 2euxy − 2suxz + 2et − 2sy + 2evyvxx + 2svzvxx,

vzt + vyy = −uyvxz + uzvxy − vyuxz + vzuxy − 2evxy − 2svxz − 2vxvyvxz + 2vxvzvxy,

−uxy − uzz = uxuxz − uzuxx − uxxvxvz + uxvxzvx − uxvxxvz + (vxvz)z + 2uxxe − 2ez,

−vxy − vzz = uxzvx − uzvxx − uxxvz + uxvxz − 2vxxvxvz + v2
xvxz + 2vxxe,

−uxt + uyz = −uxuxy + uyuxx + uxxvxvy − uxvxyvx + uxvxxvy − (vxvy)z + 2uxxs − 2sz,

−vxt + vyz = −uxyvx + uyvxx + uxxvy − uxvxy + 2vxxvxvy − v2
xvxy + 2vxxs,

(27)

where

exx = vxxvz, sxx = −vxxvy. (28)

Under the constraint v = 0 one obtains a set of independent scalar differential equations before

listed in [17, 18, 23]; two equations are spatially four-dimensional:

uzt + uyy = −uyuxz + uzuxy (29)

and

−uxt + uyz = −uxuxy + uyuxx, (30)
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a one is spatially three-dimensional:

−uxy − uzz = uxuxz − uzuxx. (31)

In particular, under the spatial variable reductions x → y ∈ R, t → z ∈ R, the second equation

becomes trivial and the first (32) and third (31) equations bring about the reduced Mikhalev-

Pavlov type equation

uzz + uyy = −uyuyz + uzuyy. (32)

Proposition 4. The constructed set of heavenly type equations (27), (28) has the Lax-Sato vector

field representation (19) with the “spectral” parameter λ ∈ C, which is related with the seed

element ã ⋉ l̃ ∈ G̃∗ in the form (26).

Remark 1. The following remark concerning the dimensionality of the differential systems

obtained above proves to be essential. The generalized Mikhalev-Pavlov differential system

(29) as the one considered on the related jet-manifold J(R4; R
2) for smooth mappings (u, v) :

R4 → R2 presents, in reality, a differential system with effective dimension equal 2 = 4 − 2.

This fact is important from the geometric point of view devised recently in E.V. Ferapontov and

others [19,22] works, devoted to the Plücker manifold imbedding into the Grassmannians and

a classification of related integrable differential systems. There was, in particular, stated that

the corresponding integrable systems associated with fourfolds in Gr(3, 5) also appeared to be

effectively two-dimensional, ensuing at the present time in some sense a challenging problem.

As it was also mentioned above concerning a generalization of spatially multidimensional

Mikhalev-Pavlov type equations by means of the seed element (33), there is a possibility to

check directly the existence of effectively three and more dimensional integrable differential

systems and then, eventually, to construct them.

We can here observe that the seed element (26) can be presented in the following special

compact form:

ã ⋉ l̃ :=
dη̃

dx
∂/∂x ⋉ dρ̃, η̃ = u + vλ − λ2x, ρ̃ = w + ζλ,

deeply connected with geometry of the related moduli space of flat connections, related to

coadjoint actions of the corresponding Casimir functionals. Its possible generalization to spa-

tially multidimensional Mikhalev-Pavlov type equations can be done by the seed element

ã ⋉ l̃ := 〈∇η̃,∇〉⋉ dρ̃ (33)

for some elements η̃, ρ̃ ∈ Ω0(Tn)⊗ C, n ∈ N. An analysis of the case (33) and corresponding

systems of spatially multidimensional Mikhalev-Pavlov type equations is planned to be done

in a separate study.

3.2 The modified Martinez Alonso-Shabat heavenly type system

If the seed element ã ⋉ l̃ ∈ G̃∗ is chosen in its reduced form as

ã ⋉ l̃ = (((ux1 + cux2) + λ)∂/∂x1 + ((vx1 + cvx2) + cλ)∂/∂x2)

⋉ ((wx1 + cwx2)dx1 + (ζx1 + cζx2)dx2),
(34)
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where u, v, w, ζ ∈ C2(R2 × S1 × T2; R), c ∈ R\{0}, one has the following asymptotic splits for

the components of the gradients of the corresponding Casimir functionals h(1), h(2) ∈ I(Ḡ∗) as

|λ| → ∞:

∇h
(1)

l̃
≃

(
1 + (ux1 + cux2)λ

−1 − uzλ−2 + . . .

c + (vx1 + cvx2)λ
−1 − vzλ−2 + . . .

)
,

∇h
(1)
ã ≃

(
(wx1 + cwx2)λ

−1 − wzλ−2 + . . .

(ζx1 + cζx2)λ
−1 − ζzλ−2 + . . .

)
,

and

∇h
(2)

l̃
≃

(
1 + (ux1 − cux2)λ

−1 + κλ−2 + . . .

−c + (vx1 − cvx2)λ
−1 + ωλ−2 + . . .

)
,

∇h
(2)
ã ≃

(
(wx1 − cwx2)λ

−1 + ̺λ−2 + . . .

(ζx1 − cζx2)λ
−1 + χλ−2 + . . .

)
,

where

κx1 + cκx2 = −(uzx1 − cuzx2) + 2c(ux1 ux1x2 − ux2 ux1x1 + vx1 ux2x2 − vx2 ux1x2),

ωx1 + cωx2 = −(vzx1 − cvzx2) + 2c(ux1 vx1x2 − ux2 vx1x1 + vx1 vx2x2 − vx2 vx1x2),
(35)

and

̺x1 + c̺x2 =− (wzx1 − cwzx2) + 2c(ux1 wx1x2 − ux2 wx1x1 + 2wx2 ux1x1

− 2wx1 ux1x2 + vx1 wx2x2 − vx2 wx1x2 + wx2 vx1x2 − wx2 vx2x2 + ζx2 vx1x1 − ζx1 vx1x2),

χx1 + cχx2 =− (ζzx1 − cζzx2) + 2c(vx1 ζx2x2 − vx2 ζx1x2 + 2ζx2 vx1x2

− 2ζx1 vx2x2 + ux1 ζx1x2 − ux2 ζx1x1 + ζx2 ux1x1 − ζx1 ux1x2 + wx2 ux1x2 − wx1 ux2x2).

In the case when

∇h
(y)

l̃,+
:=

(
λ2 + (ux1 + cux2)λ − uz

cλ2 + (vx1 + cvx2)λ − vz

)
,

∇h
(y)
ã,+ :=

(
(wx1 + cwx2)λ − wz

(ζx1 + cζx2)λ − ζz

)
,

and

∇h
(t)

l̃,+
:=

(
λ2 + (ux1 − cux2)λ +κ

−cλ2 + (vx1 − cvx2)λ + ω

)
,

∇h
(t)
ã,+ :=

(
(wx1 − cwx2)λ + ̺

(ζx1 − cζx2)λ + χ

)
,
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the compatibility condition of the Hamiltonian vector flows (22) leads to the system of evolu-

tion equations:

uzt +κy = −uzx1κ − uzx2 ω + uzκx1 + vzκx2 ,

vzt + ωy = −vzx1κ − vzx2 ω + uzωx1 + vzωx2 ,

uyx1 + cuyx2 = −(ux1 + cux2)uzx1 − (vx1 + cvx2)uzx2 + (ux1x1 + cux1x2)uz

+ (ux1x2 + cux2x2)vz − uzz,

vyx1 + cvyx2 = −(ux1 + cux2)vzx1 − (vx1 + cvx2)vzx2 + (vx1 x1 + cvx1x2)uz

+ (vx1 x2 + cvx2x2)vz − vzz,

utx1 + cutx2 = (ux1 + cux2)κx1 + (vx1 + cvx2)κx2 − (ux1x1 + cux1x2)κ

− (ux1x2 + cux2x2)ω + κz,

vtx1 + cvtx2 = (ux1 + cux2)ωx1 + (vx1 + cvx2)ωx2 − (vx1x1 + cvx1x2)κ

− (vx1 x2 + cvx2x2)ω + ωz.

(36)

Thus, the following proposition holds.

Proposition 5. The constructed system of heavenly type equations (36) and (35) has the Lax-

Sato vector field representation (19) with the “spectral” parameter λ ∈ C, which is related with

the element ã ⋉ l̃ ∈ G̃∗ in the form (34).

The system of equations (36) and (35) admits the reduction when v = u and ω = κ. In this

case, under c = 1 one obtains

uzt +κy = −(uzx1 + uzx2)κ + uz(κx1 +κx2),

κx1 +κx2 = −(uzx1 − uzx2)− 2((ux1 ux2)x1 − (ux1 ux2)x2).
(37)

The change uz = ux1 + ux2 in (37) leads to the system:

(ut̃x1
+ ut̃x2

)− (uỹx1 − uỹx2) = ux1x2(ux1 − ux2)− ux1x1 ux2 + ux2x2 ux1

− ux1x2(u
2
x1
− u2

x2
)− ux1x1 ux2(ux1 + ux2) + ux2x2 ux1(ux1 + ux2)

− 2ρỹ + (ux1x1 + 2ux1x2 + ux2x2)ρ,

ρx1 + ρx2 = (ux1 ux2)x1 − (ux1 ux2)x2 ,

where t̃ = 2t and ỹ = 2y. Thus, the system (37) can be considered as some modification of the

Martinez Alonso-Shabat one [3].

4 HEAVENLY TYPE SYSTEMS: THE GENERALIZED LIE-ALGEBRAIC STRUCTURES

Concerning a further generalization of the multi-dimensional case related with the loop

group D̃i f f (Tn) on the torus Tn, n ∈ Z+, one can proceed, as before, [25] the following nat-

ural way: as the Lie algebra d̃i f f (Tn) consists of the loop group elements, holomorphically

continued from the circle S1 := ∂D1, being the boundary of the disk D1 ⊂ C, by means of the

complex “spectral” variable λ ∈ C both into the interior D
1
+ ⊂ C and the exterior D

1
− ⊂ C

parts of the disk D
1 ⊂ C, one can take into account its analytical invariance subject to the
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circle S1 := ∂D1 diffeomorphism group Di f f (S1). The latter gives rise to the naturally ex-

tended holomorphic Lie algebra d̃i f f (Tn) = d̃i f f +(T
n)+ ⊕ d̃i f f−(Tn) on the Cartesian prod-

uct C × T
n, whose elements are representable as

ā :=

〈
a(x; λ),

∂

∂x

〉
= a0(x; λ)

∂

∂λ
+

n

∑
j=1

aj(x; λ)
∂

∂xj

for some holomorphic in λ ∈ D
1
± vectors a(x; λ) ∈ E × En for all x ∈ T

n, and where we

denoted by ∂
∂x := ( ∂

∂λ , ∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

)⊺the generalized Euclidean vector gradient with respect

to the vector variable x := (λ, x) ∈ Tn.

Construct now the semi-direct sum Ḡ := di f f (Tn) ⋉ di f f (Tn)∗ of the loop Lie algebra

di f f (Tn) and its adjoint space di f f (Tn)∗, taking into account their natural pairing

(l̄|ā) := res
λ∈C

(l(x)|a(x))H0

for any l̄ := 〈l(x; λ), dx〉 = l0(x; λ)dλ +
n

∑
j=1

lj(x; λ)dxj ∈ di f f (Tn)∗ and ā ∈ di f f (Tn). The

corresponding Lie commutator on the loop Lie algebra Ḡ is naturally given by the expression

[ā1 ⋉ l̄1, ā2 ⋉ l̄2] = [ā1, a2]⋉ ad∗a2
l̄1 − ad∗a1

l̄2

for any ā1 ⋉ l̄1, ā2 ⋉ l̄2 ∈ Ḡ . The Lie algebra Ḡ also splits into the direct sum of two subalgebras

Ḡ = Ḡ+ ⊕ Ḡ−,

allowing to introduce on it the classical R-structure

[ā1 ⋉ l̄1, ā2 ⋉ l̄2]R := [R(ā1 ⋉ l̄1), ā2 ⋉ l̄2] + [ā1 ⋉ l̄1,R(ā2 ⋉ l̄2)]

for any ā1 ⋉ l̄1, ā2 ⋉ l̄2 ∈ Ḡ, where, by definition,

R := (P+ − P−)/2, and P±Ḡ := Ḡ± ⊂ Ḡ .

The space Ḡ∗ adjoint to the Lie algebra Ḡ can be functionally identified with the space Ḡ subject

to the nondegenerate symmetric product

(ā ⋉ l̄|r̄ ⋉ m̄) := res
λ∈C

(ā ⋉ l̄|r̄ ⋉ m̄)H0 ,

where we put, by definition, that

(ā ⋉ l̄|r̄ ⋉ m̄)H0 = (m̄|ā)H0 + (l̄|r̄)H0 (38)

for any pair of elements ā ⋉ l̄, r̄ ⋉ m̄ ∈ Ḡ .

Owing to the convolution (38), the Lie algebra Ḡ becomes metricized. If now to take arbi-

trary smooth functions f , g ∈ D(Ḡ∗), one can naturally determine two Lie-Poisson brackets

{ f , g} := (ā ⋉ l̄|[∇ f (l̄ , ā),∇g(l̄, ā)])

and

{ f , g}R := (ā ⋉ l̄|[∇ f (l̄ , ā),∇g(l̄, ā)]R), (39)
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where at any seed element ā ⋉ l̄ ∈ Ḡ∗ ≃ Ḡ the gradient element ∇ f (l̄ , ā) := ∇ f l̄ ⋉∇ fā ≃

〈∇ f (l, a), (∂/∂x, dx)⊺〉 ∈ Ḡ and ∇ f l̄ = 〈∇ fl , ∂/∂x〉, ∇ fā = 〈∇ fa , dx〉, and, similarly, the gra-

dient element ∇g(l̄, ā) := ∇gl̄ ⋉∇gā ≃ 〈∇g(l, a), (∂/∂x, dx)⊺〉 ∈ Ḡ∗ and ∇gl̄ = 〈∇gl , ∂/∂x〉,

∇gā = 〈∇ga, dx〉 are calculated with respect to the metric (38).

Let now assume that a smooth function h ∈ I(Ḡ∗) is a Casimir invariant, that is

ad∗∇h(l̄,ā)(ā ⋉ l̄) = 0 (40)

for a chosen seed element ā ⋉ l̄ ∈ Ḡ∗ ≃ Ḡ . Since for an element ā ⋉ l̄ ∈ Ḡ∗ ≃ Ḡ and arbitrary

f ∈ D(Ḡ∗) the adjoint mapping

ad∗∇ f (l̄,ā)(ā ⋉ l̄) = ([∇hl̄ , ā]⋉ (ad∗∇hl̄
l̄ − ad∗ā∇hā),

the condition (40) can be rewritten as

[∇hl̄ , ā] = 0, ad∗∇hl̄
l̄ − ad∗ā∇hā = 0,

from which one easily obtains that the Casimir functional h ∈ I(Ḡ∗) satisfies the system of

determining equations

〈∇hl , ∂/∂x〉 a − 〈a, ∂/∂x〉 ∇hl = 0,

〈∂/∂x,∇hl〉 l + 〈l, (∂/∂x∇hl)〉 − 〈∂/∂x, a〉 ∇ha − 〈a, (∂/∂x∇ha)〉 = 0.
(41)

For the Casimir functional h ∈ D(Ḡ∗) the equations (41) should be solved analytically. In

the case when an element l̄ ⋉ ā ∈ Ḡ∗ is singular as |λ| → ∞, one can consider the general

asymptotic expansion

∇h(p)(l, a) ∼ λp ∑
j∈Z+

(∇h
(p)
l,j ;∇h

(p)
a,j )λ

−j (42)

for some suitably chosen p ∈ Z+, which is substituted into the equations (41). The latter is

then solved recurrently giving rise to a set of gradient expressions for the Casimir functionals

h(p) ∈ D(Ḡ∗) at the specially found integers p ∈ Z+.

Assume now that h(y), h(t) ∈ I(Ḡ∗) are such Casimir functionals for which the Hamiltonian

vector field generators

∇h(y)(l̄, ā)+ := (∇h(py)(l̄, ā))+, ∇h(t)(l̄, ā)+ := (∇h(pt)(l̄, ā))+, (43)

where ∇h(y)(l̄, ā)+ := (∇h
(y)

l̄,+
⋉∇h

(y)
ā,+

) ∈ Ḡ+ and ∇h(t)(l̄, ā)+ := (∇h
(t)

l̄,+
⋉∇h

(t)
ā,+

) ∈ Ḡ+, are,

respectively, defined at some specially found integers py, pt ∈ Z+. These invariants generate

owing to the Lie-Poisson bracket (39) the following commuting to each other Hamiltonian

flows:

∂

∂y
(ā ⋉ l̄) = −ad∗

∇h(y)(l̄,ā)+
(ā ⋉ l̄),

∂

∂t
(ā ⋉ l̄) = −ad∗

∇h(t)(l̄,ā)+
(ā ⋉ l̄)

of an element ā ⋉ l̄ ∈ Ḡ∗ ≃ Ḡ with respect to the corresponding evolution parameters t, y ∈ R.

The flows (43) can be rewritten as

∂a/∂y = −

〈
∇h

(py)

l ,
∂

∂x

〉
a +

〈
a,

∂

∂x

〉
∇h

(py)

l ,

∂a/∂t = −

〈
∇h

(pt)
l ,

∂

∂x

〉
a +

〈
a,

∂

∂x

〉
∇h

(pt)
l ,

(44)
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and

∂l/∂y = −

〈
∂

∂x
,∇h

(py)
l

〉
l −

〈
l, (

∂

∂x
∇h

(py)
l )

〉
+

〈
∂

∂x
, a

〉
∇h

(py)
a +

〈
a, (

∂

∂x
∇h

(py)
a )

〉
,

∂l/∂t = −

〈
∂

∂x
,∇h

(pt)
l

〉
l −

〈
l, (

∂

∂x
∇h

(pt)
l )

〉
+

〈
∂

∂x
, a

〉
∇h

(pt)
a +

〈
a, (

∂

∂x
∇h

(pt)
a )

〉
,

where y, t ∈ R are the corresponding evolution parameters. Since the invariants h(y), h(t) ∈

I(Ḡ∗) are commuting to each other with respect to the Lie-Poisson bracket (39), the flows (44)

are commuting too. This is equivalent that the following equalities

[∇h
(y)

l̄,+
,∇h

(t)

l̄,+
]−

∂

∂t
∇h

(y)

l̄,+
+

∂

∂y
∇h

(t)

l̄,+
= 0, (45)

and

ad∗ā P̄ = 0,

P̄ = ad∗
∇h

(y)

l̄,+

(∇h
(t)
ā,+)− ad∗

∇h
(t)

l̄,+

(∇h
(y)
ā,+)−

∂

∂t
∇h

(y)
ā,+ +

∂

∂y
∇h

(t)
ā,+

hold for any ā ⋉ l̄ ∈ Ḡ. On the other hand, the equation (45) is equivalent to the compatibility

condition of three linear equations

∂ψ

∂y
+∇h

(y)

l̄,+
ψ = 0, 〈a, ∂/∂x〉ψ = 0,

∂ψ

∂t
+∇h

(t)

l̄,+
ψ = 0 (46)

for a function ψ ∈ C2(R2 × C × T
n; C), all y, t ∈ R and any x ∈ T

n. The obtained above results

can be formulated as the following proposition.

Proposition 6. Let a seed element ā ⋉ l̄ ∈ Ḡ∗ and h(y), h(t) ∈ I(Ḡ∗) are some Casimir func-

tionals subject to the product (·|·) on the holomorphic Lie algebra Ḡ and the natural coadjoint

action on the co-algebra Ḡ∗ ≃ Ḡ . Then the following dynamical systems

∂

∂y
(ā ⋉ l̄) = −ad∗

∇h(y)(l̄,ā)+
(ā ⋉ l̄),

∂

∂t
(ā ⋉ l̄) = −ad∗

∇h(t)(l̄,ā)+
(ā ⋉ l̄)

are commuting to each other Hamiltonian flows for evolution parameters y, t ∈ R. Moreover,

the compatibility condition of these flows leads to the vector field representation (46).

Remark 2. As it was mentioned above, the expansion (42) is effective if a chosen seed element

ā ⋉ l̄ ∈ Ḡ∗ is singular as |λ| → ∞. In the case when it is singular as |λ| → 0, the expression

(42) should be respectively replaced by the expansion

∇h(p)(l̄, ā) ∼ λ−p ∑
j∈Z+

∇h
(p)
j (l̄, ā)λj

for suitably chosen integers p ∈ Z+, and the reduced Casimir function gradients then are

given by the Hamiltonian vector field generators

∇h(y)(l̄, ā)− := λ(λ−py−1∇h(py)(l̄, ā))−, ∇h(t)(l̄, ā)− := λ(λ−pt−1∇h(pt)(l̄, ā))−

for suitably chosen positive integers py, pt ∈ Z+ and the corresponding Hamiltonian flows

are, respectively, written as

∂

∂t
(ā ⋉ l̄) = ad∗

▽h(t)(l̄,ā)−
(ā ⋉ l̄),

∂

∂y
(ā ⋉ l̄) = ad∗

▽h(y)(l̄,ā)−
(ā ⋉ l̄)

for evolution parameters y, t ∈ R.
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As in Section 3 the presented above construction of Hamiltonian flows on the adjoint space

Ḡ∗ can be generalized proceeding to the point product ḠS
1

:= ∏
z∈S1

Ḡ of the holomorphic Lie

algebra Ḡ endowed with the central extension, generated by a two-cocycle ω2 : Ḡ × Ḡ → C,

where

ω2(ā1 ⋉ l̄1, ā2 ⋉ l̄2) :=
∫

S1
[(l̄1, ∂ā2/∂z)1 − (l̄2, ∂ā1/∂z)1]

for any pair of elements ā1 ⋉ l̄1, ā2 ⋉ l̄2 ∈ Ḡ. The resulting R-deformed Lie-Poisson bracket (18)

for any smooth functionals h, f ∈ D(Ḡ∗) on the adjoint space Ḡ∗ to the centrally extended loop

Lie algebra Ḡ := Ḡ ⊕ C becomes equal to

{h, f}R := (ā ⋉ l̄, [∇h(l̄, ā),∇ f (l̄, ā)]R) (47)

+ ω2(R∇h(l̄ , ā),∇ f (l̄, ā)) + ω2(∇h(l̄ , ā),R∇ f (l̄, ā)).

The corresponding Casimir functionals h(p) ∈ I(Ḡ∗) for specially chosen p ∈ Z+, are defined

with respect to the standard Lie-Poisson bracket as

{h(p), f} := (ā ⋉ l̄, [∇h(p)(l̄, ā),∇ f (l̄, ā)]) + ω2(∇h(p)(l̄, ā),∇ f (l̄ , ā)) = 0

for all smooth functionals f ∈ D(Ḡ∗). Based on the equality (21) one easily finds that the

gradients ∇h(p) ∈ Ḡ of the Casimir functionals h(p) ∈ I(Ḡ∗), p ∈ Z+, satisfy the following

equations:

[∇hl̄ , ā]−
∂

∂z
∇hl̄ = 0, ad∗∇hl̄

l̄ − ad∗ā∇hā −
∂

∂z
∇hā = 0

for a chosen element ā ⋉ l̄ ∈ Ḡ∗. Making use of the suitable Casimir functionals h(y), h(t) ∈

I(Ḡ∗), one can construct, making use of (47), the following commuting Hamiltonian flows on

the adjoint space Ḡ∗ :

∂

∂y
(ā ⋉ l̄) = {ā ⋉ l̄, h(y)}R,

∂

∂t
(ā ⋉ l̄) = {ā ⋉ l̄, h(t)}R, (48)

which are equivalent to the evolution equations

∂

∂y
ā = −[∇h

(y)

l̄,+
, ā] +

∂

∂z
∇h

(y)

l̄,+
,

∂

∂t
ā = −[∇h

(t)

l̄,+
, ā] +

∂

∂z
∇h

(t)

l̄,+
(49)

and
∂

∂y
l̄ = −ad∗

∇h
(y)

l̄,+

l̄ + ad∗ā (∇h
(y)
ā,+

) +
∂

∂z
∇h

(y)
ā,+

,

∂

∂t
l̄ = −ad∗

∇h
(t)
l,+

l̄ + ad∗ā (∇h
(t)
ā,+

) +
∂

∂z
∇h

(t)
ā,+

.

(50)

The commutativity condition for these flows is split into two equations

[∇h
(y)

l̄,+
,∇h

(t)

l̄,+
]−

∂

∂t
∇h

(y)

l̄,+
+

∂

∂y
∇h

(t)

l̄,+
= 0, (51)

and

∂P̄

∂z
+ ad∗ā P̄ = 0,

P̄ = ad∗
∇h

(y)

l̄,+

(∇h
(t)
ā,+)− ad∗

∇h
(t)

l̄,+

(∇h
(y)
ā,+)−

∂

∂t
∇h

(y)
ā,+ +

∂

∂y
∇h

(t)
ā,+

for any ā ⋉ l̄ ∈ Ḡ. The obtained above results one can be formulated as the following proposi-

tion.
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Proposition 7. The Hamiltonian flows (48) on the adjoint space Ḡ∗ generate the separately

commuting evolution equations (49) and (50). The evolution equations (49) give rise to the

Lax type compatibility condition (51), being equivalent to some system of nonlinear heavenly

type equations in partial derivatives. Moreover, the system of evolution equations (49) can be

considered as the compatibility condition for the following set of linear vector equations

∂ψ

∂y
+∇h

(y)

l̄,+
ψ = 0,

∂ψ

∂z
+ 〈a, ∂/∂x〉ψ = 0,

∂ψ

∂t
+∇h

(t)

l̄,+
ψ = 0

for all (y, t, z; x) ∈ (R2 × S1)× Tn and a function ψ ∈ C2((R2 × C×S1)× Tn; C).

4.1 Example: the generalized Mikhalev-Pavlov heavenly type system

Let a seed element ā ⋉ l̄ ∈ Ḡ∗ be chosen as

ā ⋉ l̄ = ((ux − λ)∂/∂x + vx∂/∂λ)⋉ (wxdx + ηxdλ), (52)

where u, v, w, η ∈ C2(R2 × (S1 × T1); R). The asymptotic splits for the components of the

gradients of the corresponding Casimir functionals h(p) ∈ I(Ḡ∗), p ∈ Z+, as |λ| → ∞ have the

following forms:

∇hl̃ ≃ λp

(
1 − uxλ−1 + (−uz + (p − 1)v)λ−2 + (uy + (p − 2)(−uxv + κ))λ−3 + . . .

−vxλ−1 − vzλ−2 + (vy − (p − 2)vxv)λ−3 + . . .

)
,

∇hã ≃ λp

(
−wxλ−1 − wzλ−2 + (wy − (p − 2)(wv)x)λ−3 + . . .

−ηxλ−1 − (ηz + (p − 1)w)λ−2 + (ηy − (p − 2)(−uxw + vηx + ω))λ−3 + . . .

)
,

where p ∈ Z+ and

κx = vz + uxvx, ωx = wz − uxwx − vxηx. (53)

In the case when

∇h
(y)

l̃,+
:=

(
λ2 − uxλ + (−uz + v)

−vxλ − vz

)
,

∇h
(y)
ã,+ :=

(
−wxλ − wz

−ηxλ − (ηz + w)

)
,

and

∇h
(t)

l̃,+
:=

(
λ3 − uxλ2 + (−uz + 2v)λ + (uy − uxv + κ)

−vxλ2 − vzλ + (vy − vxv)

)
,

∇h
(t)
ã,+ :=

(
−wxλ2 − wzλ + (wy − (wv)x)

−ηxλ2 − (ηz + 2w)λ + (ηy + uxw − vηx − ω)

)
,
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the compatibility condition of the Hamiltonian vector flows (48) leads to the system of

evolution equations:

uzt + uyy = −uyuzx + uzuxy − uxyv − uzzv −κuxz,

vzt + vyy = vv2
x − v2

z − vvxy − vvzz − uyvxz + uzvxy − uzv2
x −κvxz,

−uxy − uzz = uxuxz − uzuxx + uxxv,

−vxy − vzz = v2
x + vxxv + uxvxz − uzvxx,

−uxt + uyz = −uxuxy + uyuxx + uxzv + uxxκ,

−vxt + vyz = −uxvxy + uyvxx + uxv2
x + vxzv + κvxx + 2vxvz.

(54)

Under the constraint v = 0 one obtains the set of equations (29)–(31). Thus, the following

proposition holds.

Proposition 8. The constructed system of heavenly type equations (54) and (53) has the Lax-

Sato vector field representation (51) with the “spectral” parameter λ ∈ C, which is related with

element ā ⋉ l̄ ∈ Ḡ∗ in the form (52).
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Гентош О.Є., Балiнський О.А., Прикарпатський А.К. Узагальненi центрально розширенi Лi-алгеб-

раїчнi структури та асоцйованi iнтегровнi рiвняння небесного типу // Карпатськi матем. публ.

— 2020. — Т.12, №1. — C. 242–264.

Вивчаються центрально розширенi Лi-алгебраїчнi структури та аоцiйованi iнтегровнi рiв-

няння небесного типу як потокiв на орбiтах коприєднаної дiї пiвпрямої суми алгебри вектор-

них полiв на торi та її спряженого простору. Показано, що ц потоки породжують сумiснi ве-

кторнi поля типу Лакса-Сато, з якими тiсно пов’язана нескiнченна iєрархiя законiв збереже-

ння, породжених вiдповiдними iнварiантами Казiмiра. Наводено типовi приклади таких рiв-

нянь i детально продемонстрована їх iнтегровнiсть в межах запропоновоної схеми. Як при-

клади ми отримали та описали новi багатовимiрнi iнтегровнi узагальнення бездисперсiйних

рiвнянь Михальова-Павлова та Алонсо-Шабата, для котрих генераторнi елементи мають осо-

бливу факторизовану структуру, що дозволяє поширити їх на випадок довiльного вимiру.

Ключовi слова i фрази: рiвняння небесного типу, iнтегровнiсть за Лаксом, динамiчна система

Гамiльтона, дифеоморфiзми тора, алгебра Лi петель, центральне розширення, Лi-алгебраїчна

схема, iнварiанти Казiмiра, структура Лi-Пуассона, R-структура, рiвняння Мiхальова-Павлова.


