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VASYLYSHYN T.V.

SYMMETRIC FUNCTIONS ON SPACES /,(IR") AND /,(C")

This work is devoted to the study of algebras of continuous symmetric polynomials, that is,
invariant with respect to permutations of coordinates of its argument, and of *-polynomials on
Banach spaces £, (IR") and £, (C") of p-power summable sequences of n-dimensional vectors of real
and complex numbers respectively, where 1 < p < +co.

We construct the subset of the algebra of all continuous symmetric polynomials on the space
£,(R") such that every continuous symmetric polynomial on the space £,(IR") can be uniquely
represented as a linear combination of products of elements of this set. In other words, we construct
an algebraic basis of the algebra of all continuous symmetric polynomials on the space £,(R").
Using this result, we construct an algebraic basis of the algebra of all continuous symmetric *-poly-
nomials on the space £,(C").

Results of the paper can be used for investigations of algebras, generated by continuous sym-
metric polynomials on the space £, (IR"), and algebras, generated by continuous symmetric *-poly-
nomials on the space £, (C").

Key words and phrases: polynomial, *-polynomial, symmetric polynomial, symmetric *-polyno-
mial, algebraic basis.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: taras.v.vasylyshyn@gmail.com

INTRODUCTION

Symmetric (invariant with respect to some group of operators) functions on Banach spaces
were studied by a number of authors [1-8, 10, 11, 15-21, 23]. In particular, in [15] it was con-
structed an algebraic basis (see definition below) of the algebra of all continuous symmetric,
i.e., invariant with respect to permutations of coordinates of its argument, polynomials on the
real Banach space £, of p-power summable sequences of real numbers, where 1 < p < +oo0.
In [8] it was generalized this result to continuous symmetric polynomials on real separa-
ble rearrangement-invariant sequence Banach spaces. In [11] it was constructed an algebraic
basis of the algebra of all continuous symmetric polynomials on the complex Banach space
£,(C") of p-power summable sequences of n-dimensional vectors of complex numbers, where
1 < p < +oo. Note that the knowledge of an algebraic basis of an algebra of polynomials is
important for the description of spectra (sets of maximal ideals) of completions of this algebra
(see, e.g., [1,4,5,7,9,17]).

x-Polynomials (see definition below) are generalizations of polynomials, acting between
complex vector spaces, which were firstly studied in [14]. In [13] it was shown that, in some
sense, *-polynomials have better approximation properties than polynomials. Symmetric *-
polynomials on the finite-dimensional complex vector space were studied in [16]. In particular,
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6 VASYLYSHYN T.V.

in [16] it was constructed the set of generating elements of the algebra of all symmetric *-
polynomials on the complex space of finite sequences of n-dimensional complex vectors.

In this work we construct an algebraic basis of the algebra of all continuous symmetric poly-
nomials on the real Banach space £,(IR") of p-power summable sequences of n-dimensional
vectors of real numbers, where 1 < p < +co. Also we construct an algebraic basis of the
algebra of all continuous symmetric *-polynomials on the complex Banach space £, (C").

1 PRELIMINARIES

Let IN be the set of all positive integers and Z be the set of all nonnegative integers.
Let S be the set of all bijections ¢ : N — IN. For n € N, let S, be the set of all bijections
c:{1,...,n} = {1,...,n}

1.1 Polynomials

Let X and Y be vector spaces over the fields K; and K, resp., such that K; C K; and
K;, K; € {R,C}. A mapping A : X" — Y, where m € I, is called an m-linear mapping, if A
is linear with respect to every of its m arguments. An m-linear mapping, which is invariant
with respect to permutations of its arguments is called symmetric. For an m-linear mapping
A:X" =Y, let A®) . X™ — Y be defined by

1
A(s)(xl, .. .,xm) = % Z A(xl’(l)/ .. .,xT(m)).
eSSy
The mapping AG) is symmetric and m-linear. It is called the symmetrization of the mapping A.
A mapping P : X — Y is called an m-homogeneous polynomial if there exists an m-linear map-
ping Ap : X™ — Y such that P is the restriction to the diagonal of Ap, i.e., P(x) = Ap(x,...,x)
——
m
for every x € X. Note that P is also the restriction to the diagonal of the mapping Agf), which
(s)

is the symmetrization of the mapping Ap. The mapping A} is called the symmetric m-linear

mapping, associated with P. By [14, Theorem 1.10, p. 6], the mapping Al(f) can be recovered by

the values of P by means of the formula

1
Al(f)(xl,...,xm) = S Z €1...emP(e1x1 + ...+ €mXm). (1)

€1,em==x1

For convenience, we define 0-homogeneous polynomials from X to Y as constant mappings.
A mapping P : X — Y is called a polynomial if it can be represented in the form

K
P=)_P, ()
j=0

where K € Z and P; is a j-homogeneous polynomial for every j € {0,...,K}. Let deg P be
the maximal number j € Z, such that P; # 0.
For, in general, complex numbers t1, ..., t;, let V;, +, be the Vandermonde matrix
1 # ti . tT—i
1t 5 ...t

1ty 3, ... tml
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The following proposition gives us the method of recovering of homogeneous components of
any polynomial P by its values.

Proposition 1 ([12]). Let P be a polynomial of the form (2). Let Ay, ..., Ak be distinct nonzero
real numbers. Then

K
Pi(x) = ;) wjs P(Asx),

forevery j € {0,...,K}, where wjs are elements of the matrix W = (w]-s)]- s—ox Which is the
inverse matrix of the Vandermonde matrix V),  A,-

Suppose X and Y are normed spaces with norms || - ||x and || - ||y respectively. Note that
an m-linear mapping A : X" — Y is continuous if and only if the value

1Al = sup [AGeL - xm) [l
llxlx<1,.... )l xmllx <1
is finite. Similarly, an m-homogeneous polynomial P : X — Y is continuous if and only if the
value
[Pl = sup [[P(x)]ly
[[xlx<1

is finite. By definitions of ||P|| and ||Ap||, and by formula (1),
mm
1Pl < A5 < 1Pl ®)

1.2 *-Polynomials

Let X and Y be complex vector spaces. A mapping A : X"t" — Y, where (m,n) €
7% \ {(0,0)}, is called an (m,n)-linear mapping, if A is linear with respect to every of first
m arguments and it is antilinear with respect to every of last n arguments. An (m, n)-linear
mapping, which is invariant with respect to permutations of its first m arguments and last n
arguments separately, is called (m, n)-symmetric. For (m, n)-linear mapping A : X" — Y, let
AG) : X"+ 5 Y be defined by

A(S)(xl,...,xm,xm+1,...,xm+n) = — Z Z A(xr(l),...,xT(m),xm+9(1),...,xm+9(n)).

The mapping A®) is (m, n)-symmetric and (1, n)-linear. It is called the (11, n)-symmetrization
of the mapping A. A mapping P : X — Y is called an (m, n)-polynomial if there exists an
(m, n)-linear mapping Ap : X"™*" — Y such that P is the restriction to the diagonal of Ap, i.e.,

p =A .
(x) = Ap(x,..., %)
m-+n

for every x € X. Note that P is also the restriction to the diagonal of the mapping Al(js),

which is the (m, n)-symmetrization of the mapping Ap. The mapping Ag,s) is called the (m, n)-

symmetric (m, n)-linear mapping, associated with P. By [22, Theorem 3.1], the mapping Agf)

can be recovered by the values of P by means of the formula

¢) 1 S P
Ap (X1, Xmtn) = Smtngig Z €1---Emtn Z 2n+1“1’

€1, mn==1 j=1

(4)

X P(aj(erxr + ...+ &m¥m) + €1 Xme1 + - o -+ EminXmin),
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where «; = 2/ (2n41) forj € {1,...,2n +1}.
For convenience, we define (0, 0)-polynomials from X to Y as constant mappings.
A mapping P : X — Y is called a x-polynomial if it can be represented in the form

K t
P=Y Y Py (5)
t=0j=0

where K € Z and P;;_;is a (j,t — j)-polynomial for every t € {0,...,K} and j € {0,...,t}.
Let deg P be the maximal number ¢t € Z, for which there exists j € {0,...,t} such that
Py #0.

Results from [16, Proposition 1] and [16, Proposition 2] imply the following proposition,
which gives us the method of recovering of components of any *-polynomial P by its values.

Proposition 2. Let P : X — Y be a *-polynomial of the form (5), where X and Y are com-
plex vector spaces. Let Ay, ..., Ax be distinct nonzero real numbers. Let ¢, ...,ex be complex

numbers such that €3, ..., ¢ are distinctand |eg| = ... = |ex| = 1. Then

t K
Piij(x) = ZX;J jie] ZowtsP(Aser>
= s=

for every t € {0,...,K},j € {0,...,t} and x € X, where wys are elements of the matrix
W = (wts)t,s:W/ which is the inverse matrix of the Vandermonde matrix V., and uj are
elements of the matrix U = (uj) j1=0K" which is the inverse matrix of the Vandermonde matrix
Va.

2.
%

Suppose X and Y are complex normed spaces with norms || - ||x and || - ||y resp. Note that
an (m, n)-linear mapping A : X" — Y is continuous if and only if the value

1Al = sup [ACxw - o) Xmn) [y

22l x <1 [ mn [ x <1

is finite. Similarly, an (m, n)-polynomial P : X — Y is continuous if and only if the value

[Pl = sup |[P(x)[ly

[[x[lx<1

is finite. Formula (4) implies the following inequality

(m + n)m—i—n

(s)
lAp”Il < min!

P[] (6)

1.3 Algebraic combinations

A mapping f : T — K, where T is an arbitrary set and K = R or C, is called an algebraic
combination of mappings f1,..., fm : T — K over K if there exists a polynomial Q : K" — K
such that

f(x) = Q(fi(x), -, fn(x))

for every x € T.
Aset{fi1,..., fm} of mappings fi,..., fu : T — Kis called algebraically independent if

Q(fl(x)r'~~rfm(x)) =0
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for every x € T if and only if the polynomial Q is identically equal to zero. If a set of mappings
{f1,--., fm} is algebraically independent and polynomials Q;, Q; : K" — K are such that

Qu(f1(x), -+, fn(x)) = Qa(f1(x), - -, fin(x))

for every x € T, then the polynomial Q; is identically equal to the polynomial Q,. Thus,
every algebraic combination of elements of an algebraically independent set of mappings is
unique. An infinite set of mappings is called algebraically independent if every its finite subset
is algebraically independent. A subset B of some algebra of mappings A is called an algebraic
basis of A if every element of A can be uniquely represented as an algebraic combination of
some elements of . Evidently, every algebraic basis is algebraically independent.

1.4 The space /,(K")

Letn € N, p € [1,4+00) and K = R or C. Let us denote £,(IK") the vector space of all

sequences x = (x1,Xy,...), where xj = (x](l), .. .,x](n)) € K" for j € IN, such that the series

oo n
Y |x](s) |P is convergent. The space /,(K") with norm
j=1s=1

o n (s) 1/p
Il = (1 171

j=1s=1
is a Banach space.

Definition 1. A function f, defined on {,(K"), is called S-symmetric (or just symmetric when
the context is clear) if f(x o o) = f(x) for every x € {,(K") and for every bijection o € S,
where x 00 = (Xy(1), X¢(2), - - -)-

For a multi-indexk = (ky,...,k,) € Z", let |k| = k1 + ...+ ky. For every k € Z" such that

|k| > [p], where [p] is a ceiling of p, let us define a mapping H,E]Kn) Ap(K") — Kby

HE @ = 5 TT )"

j=1 s=1
ks>0

Note that H ,E]Kn) is an S-symmetric |k|-homogeneous polynomial. We will use following result,
proven in [11].

Proposition 3 ([11], Proposition 2). For p € [1,+o0) and for every k € Z'} such that |k| > [p],

the polynomial H]ECH) on {,(C") is continuous and HH,ECH) | <1

Theorem 1. Polynomials H,ECn), where k € 7" are such that |k| > [p], form an algebraic basis
of the algebra of all S-symmetric continuous complex-valued polynomials on £,(C").

Note that Proposition 3 implies that for p € [1,+0) and for every k € Z" such that |k| >

[p], the polynomial H,E]R”) on /,(IR") is continuous and HH,E]RH) | <1
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2 THE ALGEBRAIC BASIS OF THE ALGEBRA OF ALL SYMMETRIC
CONTINUOUS POLYNOMIALS ON £, (IR")

Let n € IN and p € [1,4). For every continuous m-homogeneous polynomial P on
{p(R™), which is, in general, complex-valued (we need this assumption for the sake of the
applicability of results of the current section in section 3), let us define an m-homogeneous

polynomial P : £ p(C") — Cin the following way. Let Ag,s) be the m-linear symmetric mapping

associated with P. Let AI(;) 4p(C") x ... x £y(C") — C be defined by

1

AP G zm) = 1 e 1AL () (o), )
n= Jm=

where operators wy, wy : £,(C") — £,(IR") are defined by

wo(z) = (Rex&l), ) ,Rexgn)),(Rexgl),...,Rexén)),...),

(

w1(z) = ((Imxgl),...,lmxgn)), (Imxél),...,lmxén)),...)

forevery z = ((xgl),...,xg )) (xél),...,xén)),...) € £,(C"). Note that operators w; and w, are
(s)

linear, continuous and |[wo| = [|w; || = 1. It can be checked that A" is an m-linear symmetric
mapping. By the continuity of mappings Al(f), wp and wq, the mapping AI%S) is continuous. By
(7), taking into account ||wp|| = ||w1]| =1,

145" < 245 ®

(s)

Let P be the restriction of Al(;) to the diagonal. Since the mapping A}’ is continuous and m-
linear, it follows that the mapping P is a continuous m-homogeneous polynomial. By (3), (7)
and (8),
~ 2m)™
121 < 1481 < 2"AR) < 2 . ©)

It can be checked that for every m;-homogeneous polynomial P and for every m>-homoge-
neous polynomial P,, which acts from £, (R") to C, where my,m, € IN, we have PP, = D, P;.
For every continuous polynomial P : £,(IR") — C of the form (2), let

P=Py+D +...+ P

Proposition 4. Let I' be an arbitrary index set. For every v € T, let P, : {,(R") — C be a
continuous m.-homogeneous polynomial, where m,, € IN. Suppose the set of polynomials
{P, : « € T} is algebraically independent. Then the set of polynomials {P, : « € T} is
algebraically independent.

Proof. LetI'g be an arbitrary finite nonempty subset of I'. Let us show that the set of polynomi-
als {P, : v € Iy} is algebraically independent. Suppose

oqﬁ—i Z ; H <P7(x))lm:O (10)

u=101Tg—=2Z+ v€T)
©(l)=p  U(7)>0
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for every x € £,(R"), where ag,a; € C, ' € N, 5(I) = LCoer, I(y)my. Forp € {1,..., '}, let

Q= ¥ T (px)"”

I:To—2Z+ Y€l

w()=p  1(7)>0
for every x € /,(IR"). By Proposition 1, taking into account (10), agp = 0 and, for every u €
{1,...,4'}, the polynomial Q, is identically equal to zero, i.e., [|Qu|| = 0. By (9), |Qu| <

2u)*

i |Qul|- Therefore ”QH || = 0. Consequently, Qy is identically equal to zero, i.e.,

Y w1 <ﬁv(z)>lm:0

I:'To—Z 4+ €l
#(D=p  U7)>0
for every z € £,(C"). Since the set of polynomials {137 : v € T} is algebraically independent,
it follows that every coefficient «; is equal to zero. Thus, the set of polynomials {P, : 7y € T}
is algebraically independent.

Since every finite nonempty subset of the set of polynomials {P, : € I'} is algebraically
independent, it follows that the set { P, : 7 € T'} is algebraically independent. O

Theorem 2. Let P : £,(IR") — C be a continuous m-homogeneous S-symmetric polynomial.
Then, in the case 1 < m < [p], the polynomial P is identically equal to zero. In the case
m > [p], the polynomial P can be uniquely represented in the form

P(x) = Z N H (H;SRn)(x))l(k),

ITy—Z. kel
w(=m  1(k)>0

wherex € £,(R"),0; € C, Ty = {k € 2. : [p] < |k| <m} and 5(I) = Lyer,, [k|I(K).
Proof. Let P be a continuous m-homogeneous S-symmetric complex-valued polynomial on
¢y(R"), where m € IN. Then P is a continuous m-homogeneous complex-valued polynomial

on £,(C"). Let us show that the polynomial P is S-symmetric. Let z € £,(C") and ¢ € S. Let
us show that P(z o 0) = P(z). By (1), taking into account that P is S-symmetric,

1
Al(as)(moa,...,xmotf):zm ' Z €1...emP(e1x100+ ...+ epmxpyo00)

m: €1, Em==x1
1

= il Z 81...€mP((81X1+...+€mxm)oa') (11)
m: €1, fm==1
1

= il Z €1...emP(e1x1+ ... + €mXm) :Al(f)(xl,...,xm)

€1, fm==1
for every xi,...,xm € £,(IR"). By (7) and (11), taking into account the equalities wy(z o o) =
wo(z) and w1 (z 0 0) = w1 (2),

1

e ‘ZO it Ap <w]-1 (zoo),...,wj,(zo U))
Jm=

1 . .
LY it A <w]-1 (z)00,...,wj,(z) o (7)
jm=0

le i Ap (wy, (2), . w; (z)) = P(2).

jm:o

-

~
=
Il
S

P(zo0) = Ap(zoo,...,z00) =
N———
m

I
M-

-
=
Il

)

I
-
S
3

-
=
Il

=
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Thus, Pis S -symmetric. So, Pisan S -symmetric continuous m-homogeneous complex-valued
polynomial on £, (C").

Therefore, by Theorem 1, the polynomial P can be uniquely represented as an algebraic
combination of polynomials H]ECH), where k € Z' are such that |k| > [p]. Since every H,ECH)
is a |k|-homogeneous polynomial and |k| > [p], it follows that, in the case m < [p], the

polynomial P is identically equal to zero. In the case n > [p], the polynomial P is an algebraic
combination of polynomials H,ECn), where k € Z"_are such that m > |k| > [p], ie.,

Py = ¥ ow T (1 @), 1)

ITw—Zy  kely
w(=m  1(k)>0

forevery z € £,(C"),wherew; € C,T, = {k € Z" : [p]| < |k| < m}and »(I) = Lyer,, |k[I(K).
Since polynomials P and H ,E]Rn)
respectively, by (12),

are restrictions to the space £, (IR") of polynomials P and H,ECH)

P = ¥ a1 (HN )" (13

ITy—Z.  kely
w(l)=m  1(k)>0

for every x € £,(R"). By Theorem 1, the set of polynomials {HISCH) : k € T'y,} is algebraically
independent. Consequently, by Proposition 4, taking into account the equality H ,E]Rn) =H ,Ecn),

the set of polynomials {H,E]Rn) : k € Ty} is algebraically independent over C. Therefore, the
representation (13) is unique. 0

Theorem 3. Polynomials HIERW), wherek € Z', are such that |k| > [p], form an algebraic basis
of the algebra of all S-symmetric continuous real-valued polynomials on £,(IR").

Proof. Let P be a continuous S-symmetric real-valued polynomial on /,(R") of the form (2).
Let us show that P can be uniquely represented as an algebraic combination of some elements
of the set {H,E]Rn) : k € Z",|k| > [p]}. By Proposition 1, for every j € {1,...,degP}, the
j-homogeneous polynomial P; is continuous, S-symmetric and real-valued. Therefore, by The-
orem 2, if 1 < j < [p], then the polynomial P; is identically equal to zero, otherwise

R" 1(k)
W=y w1 (B W)
lr]*>2+ kel"]
w(l)=j  1(k)>0
for every x € £,(R"), wherea; € C,I; = {k € Z_ : [p] < |k| < j} and 54(I) = Lyer, [K|! (k).
Let us show that all the coefficients «; are real. Since the polynomial P is real-valued, it follows
that P;(x) — Pj(x) = 0 for every x € £,(R"), i.e.,

n 1(k)
2 Y Ima ] (H,ER )(x)) —0 (14)
l:r]‘—>Z+ kEr]‘
()= 1(k)>0
for every x € £,(IR"). By Proposition 4, the set of polynomials

(") kez, K = [p]}
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is algebraically independent over C, therefore it is algebraically independent over R. Conse-
quently, by (14), Im«a; = 0 for every coefficient «;, i.e., every a; is real. Thus, we have that for
every x € {,(R"), P(x) = Py in the case deg P < [p], and

deg P

®") () "
P =R+ Yy, ¥ w [ (HX®) (15)
w()=j  1(k)>0

otherwise. Since the set of polynomials {H,E]Rn) : ke, |k| > [p]} is algebraically indepen-

dent over IR, it follows that the representation (15) is unique. O

3 SYMMETRIC #-POLYNOMIALS ON £, (C")
Letn € N and p € [1, +0). Let the mapping ] : £,(C") — £,(IR*") be defined by

J(z) = ((Rezgl),lngl),...,Rez&"),lngn)), (Rezgl),lmzél),...,Rezé"),lngn)),...),

where z = ((zgl), . .,zi")), (zgl), .. .,zé")), ...) € £,(C"). Let us show that the mapping J is
well-defined and bijective. Since all norms on IR? are equivalent, it follows that there exist

constants C > 0 and ¢ > 0 such that

1
e/ I+ B < (107 + [L]P) 7 < /|6 + |6 (16)

for every (t1,t2) € R2. Therefore
p
<\/\Rez 2+ [imz®)| )

i i(‘Rez}s)}p—i— ‘Imz](s)‘p> <C

oy )
j=1s=1 j=1s=1
o n ( )
=L LI = Clelly
j=1s=1
Thus, for every z € £,(C") the sequence ] (z) belongs to the space £,(IR*") and ||](z )H;7 (R2m) <
CPHZHZ(Q)I ie.,
17(2) I, (reny < Clizlle, em)- (17)

Thus, the mapping | is well-defined. Evidently, | is injective. Let us show that | is surjec-
tive. Let x = ((xgl),xgz), .. .’x:Eanl)’ngn)), (xél),xéz), . .,xézn*l),xgzn)), ...) € £,(R?"). Let
(2n—1)

us construct zy € £,(C") such that [(zy) = x. Let z, = ((xgl) + ixgz),...,x1 + ixgzn)),

(xél) + ixéz), ., xézn*l) + ixézn)), ...). Let us show that z, belongs to £,(C"). By (16),

(i )’
(%(}XJ(ZS—U}M ‘xjgzs)ml/;?)”

- 1
<}x](25 1)‘P+ ‘x](zs)‘;?> _ C_p”x”Zp(IRZ”)'

(e 9]

ZZ}xZS b +1x

j=1s=1

||
e
M= (D=

IN
e

\.
[ = T
—_
wn
I
LN

-
Il
=

|
(o)
S
1
™
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Thus, z, belongs to the space £,(C") and ||zx ||£ ) < 5 ||x|]p

< (Ren) , i.e., taking into account the
equality J(zx) = x,

177Gl () —HXHe (R2n) (18)

for every x € £, (R?"). Hence, the mapping ] is bijective. Note that the mapping ] is real-linear,
i.e., it is additive and J(Az) = AJ(z) for every A € R and z € ¢,(C"). By (17) and (18), both
mappings ] and ]! are continuous.

Proposition 5. For every continuous S-symmetric (my, my)-polynomial P : £,(C") — C the
mapping P o ]! is a continuous S-symmetric (m; + my)-homogeneous polynomial, acting
from (,(R*") to C.

Proof. Let P : £,(C") — C be a continuous S-symmetric (17, m;)-polynomial. Let Al(f)
be the (mq, my)-symmetric (mq,my)-linear mapping, associated with P. Let the mapping
Bj: (£,(R¥"))"™ "™ — C be defined by

Bﬁ(xlr SR xm1+m2) AP(] (xl) . 1(xm1+m2));

where x1,..., X 4m, € Ep(]RZ”). Since ]! is real-linear and Ap is (my, m;)-linear, it follows
that By is an (m + my)-linear mapping. By (6) and (18),

HBﬁ” = Sup ‘Bﬁ(xlr---/xml—‘rmz)’

<1,...

Hxlugp(]Rbg /errllerzH[p(]R2n)<1

= sup |Ap(J 7 x1), oo T g my)) |

[[x1 H(p(]R2n>Sll---/melﬂﬂzH[F(]RZn)

< sup IARIT o)l ey - 1T Ryl )
HxlH/gp(]RZn>Sll---/melﬂnzHZM]RZn)Sl

< 4rl su ™ (—

= cmi+my p 1 Ep(]Rzn)"' my+my Ep(]Rzn)

Hleé/pGRzﬂ)S]‘/"'/H‘xml+n72Hé/paRzﬂ)Sl

[Apll _ (m1 4 mg)™T"2||P]|
cmtm = g lmp et

Thus, ||Bs|| is finite and, consequently, B is continuous. Let P be the restriction to the diagonal
of By. Then P is the (mq + my)- homogeneous polynomial. Since |P|| < ||B 5|, it follows that P
is contmuous Note that P = P o ] 1. Let us show that P is S-symmetric. Let x € (p(R*") and
o € S. Note that [ ~1(x oc) = J~1(x) o ¢. Therefore, since P is S-symmetric,

P(xoo)=P(J Y(xo0)) =P(J '(x)o0) = P(J'(x)) = P(x).
Thus, P is S-symmetric. 0

Theorem 4. The set of mappings {H]E]Rzn) o]: ke Z¥, k| > [p]} is an algebraic basis of the
algebra of all continuous S-symmetric *-polynomials, acting from £,(C") to C.

Proof. Let P : £,(C") — C be a continuous S-symmetric *-polynomial of the form (5). By
Proposition 2, taking into account the continuity and the S-symmetry of P, for every t ¢
{0,...,K} and j € {0,...,t}, the (j,t — j)-polynomial P;;_; is continuous and S-symmetric.
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Therefore, by Proposition 5, the mapping P;;jo | ~1 is a continuous S-symmetric t-homo-
geneous polynomial, acting from ¢,(IR*") to C. Consequently, by Theorem 2, the polynomial
Pitjo J~!is identically equal to zero in the case 1 < t < [p], and, otherwise, the polynomial
Piyjo] ~1 can be uniquely represented in the form

_ pi 2 1(k)
(Bp-jel @ = ¥ o I (B )
T —Z kel

%f(l):t l(k)>0

where x € (,(R*"), rxl(j’t_j) €eCTIy={kez¥: [p] <kl <t}ands(l) = Lyer, K]I(k).
Therefore, taking into account that ] is a bijection, the mapping P;;; is identically equal to
zero in the case 1 < t < [p], and

L o l(k)

i@ = % o T (" en@)
l:rt%Z+ kel
()=t 1(k)>0

for every z € £,(C"), otherwise. Consequently, P = Py in the case deg P < [p], and

B¢ G4-5) (R21) 1K)
PR =R+ Yy Y, ¥ o T (S one) (19)
t= ’—p-‘ ]:0 l:rt%Z+ kel

%t(l):f l(k)>0

for every z € £,(C"), otherwise. By Proposition 4, the set of polynomials {H,E]Rzn) : k€
Z%", k| > [p]} is algebraically independent. Since ] is a bijection, it follows that the set of
*-polynomials { H]EIRZH) o]: keZ¥, k| > [p]} is algebraically independent. Therefore, the
representation (19) is unique. O
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Bacyammn T.B. Cumempuuni pyrxyii na npocmopax £,(R") i £,(C") // Kapnarcbki MmaTeM. my6a.
—2020. — T.12, Ne1. — C. 5-16.

AaHa poboTa NpucBsTIeHa BUBUEHHIO aATebp HellepepBHIUX CMMETPUYHIX, TOOTO, iHBapiaHTHMX
BiAHOCHO ITepeCTaHOBOK KOOPAMHAT iXHiX apI'yMeHTiB, IOAIHOMIB i *-TTOAIHOMIB Ha 6aHaXOBMX IIPO-
cropax £, (R") i £,(C") BCix cyMOBHMX y CTeTleHi p IOCAIAOBHOCTEIA 11-BUMIPHIX BEKTOPIB AiiicHMX i
KOMIIAEKCHIX UMCeA BiATIOBiAHO, Ae 1 < p < 0.

CxoHCTpyi10BaHO MAMHOXMHY aAre6py BCix HellepepBHIMX CUMeTPUYHMX OAIHOMIB Ha ITPOCTO-
pi £p(R") TaKy, 0 KOXeH HellepepBHMII CUMeTPWIHMIT TIOAIHOM Ha TpocTopi £, (IR") moxe 6yTn
€AVHVM UMHOM IIOAAQHWI Y BUTASIAL AiHIVHOT KOMbiHalIil AOGYTKiB eAeMeHTiB ITiel MHOXMHN. [HITmMN
CAOBaMM, CKOHCTPYJOBAHO aATebpaidnmii 6asuc aarebpy Beix HellepepBHMX CHMMETPIYHIX IOAIHO-
MiB Ha ipocTopi £, (R"). BukopucToBytoun AaHmit pe3yAbTaT, CKOHCTPYOBaHO aArebpaiunmii 6asmc
aATebpu BCiX HeTlepepBHIX CHMETPUYHMX *-TIOAIHOMIB Ha mpoctopi £, (C").

PesyabTaTyi paHOI PO6OTM MOXYTDH 6TV BUKOPMCTaHI AASI AOCAIAXEHD aArebp, sreHepOBaHMX
HelepepBHMMI CYMETPUYHMMY TTOAiHOMaMy Ha mpocTopi £, (R"), i aarebp, sreHepoBaHMX Here-
PepBHMMY CUMETPUYHMMI *-TIOAIHOMaMM Ha poctopi £, (C").

Kontouosi cno6a i ppasu: TIOAIHOM, *-TIOAIHOM, CMMETPUIHIIL IOAIHOM, CUMETPUYHMIA *-TIOAIHOM,
aArebpaiunmit 6asnc.
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KRAVTSIV V. V.

ANALOGUES OF THE NEWTON FORMULAS FOR THE BLOCK-SYMMETRIC
POLYNOMIALS ON /,(C¥)

The classical Newton formulas gives recurrent relations between algebraic bases of symmetric
polynomials. They are true, of course, for symmetric polynomials on infinite-dimensional Banach
sequence spaces.

In this paper, we consider block-symmetric polynomials (or MacMahon symmetric polynomials)
on Banach spaces ¢ » (C%),1 < p < oo. We prove an analogue of the Newton formula for the block-
symmetric polynomials for the case p = 1. In the case 1 < p we have no classical elementary
block-symmetric polynomials. However, we extend the obtained Newton type formula for ¢1(C®)
to the case of EP(CS), 1 < p £ oo, and in this way we found a natural definition of elementary
block-symmetric polynomials on £, (C*).

Key words and phrases: symmetric polynomials, block-symmetric polynomials, algebraic basis,
Newton’s formula.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: maksymivvika@gmail.com

1 INTRODUCTION

Let X be a Banach space, and let P(X) be the algebra of all continuous polynomials de-
fined on X. Let Py(X) be a subalgebra of P(X). A sequence (Q;); of polynomials is called an
algebraic basis of Py(X) if for every P € Py(X) there is a unique polynomial 4 € P(C")
for some n such that P(x) = g(Qi(x),...,Qu(x)). In other words, if Q is mapping x €
X ~» (Q1(x),...,Qu(x)) € C", then P = go Q and this representation is unique. Subalge-
bras of polynomials with countable algebraic bases were considered by many authors (see e.
g.[4,8,9,11,12]). Typical examples of such kind of algebras are algebras of polynomials which
are invariant with respect to a (semi)group S of operators on X. If X has an unconditional basis
(en), we can consider the group S = S of all permutations of natural numbers IN acting on
X by

(0] (0]
g. X = Z Xn€y ~ Z xo—(n)En.
n=1 n=1

Seo-invariant polynomials on X are called symmetric. Symmetric polynomials and analytic
functions on £, were investigated in [1-3, 5, 6,8]. Linear bases of symmetric polynomials on ¢;
were considered in [7].

Let Ps(£,) be the algebra of all symmetric polynomials on /5. In [10], it is proved that poly-

nomials
(o]
k
Fe=)_xj,
=1

YAK 517.98
2010 Mathematics Subject Classification: 46]J15, 46E10, 46E50.
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k > [p] form an algebraic basis in Ps(£,), where [p] is the smallest integer, greater than p.
Polynomials F; are called power symmetric polynomials. In the case p = 1 we can consider
another natural algebraic basis in Ps(¢1), which is called the basis of elementary symmetric poly-
nomials, { G }32 4,

Gk: ‘ Z ‘ xilxiz...xik, (1)

11 <1<...<lp

The relation between power symmetric polynomials and elementary symmetric polynomials
can be given by the well-known Newton formulas (see, e.g., [17]):

In the case p > 1 we have no elementary symmetric polynomials, because the series (1) does
not converge for any k. But putting in the Newton formulas F; = 0 for k < p, we can define
elementary symmetric polynomials on £, by

p
G = Y. (1) 'FG,y.

It is easy to check that the sequence {G,(f ) }n>p forms an algebraic basis in Ps(£)).

There are other natural representations of S, in Banach spaces with bases. For example, if
X is a directs sum of infinite many of “blocks” which are copies of a Banach space X, then S,
acts permutating the “blocks”. For this case we can consider the algebra of block-symmetric
analytic functions consisting of invariants of this group. Note that this algebra is much more
complicated and in the finitely-dimensional case has no algebraic basis (see, e.g., [15,19]).

A generalization of the Newton formula for block-symmetric polynomials on ¢1(C?) was
proved in [13]. In this paper we propose a generalization of this formula for block-symmetric
polynomials on £, (C?).

2 MAIN RESULT
Let us denote by Zp(CS), 1 < p < oo, the vector space of all sequences
X = (X1,%X0, ., Xpm,--.),

(n]”

X
]

where x; = (x}l), . (S)) € C?® for j € N, such that the series OZO‘, i

j=1r=1
1/p
1= (E£47)
j=1r=

is a Banach space. A polynomial P on the space £,(C*) is called block-symmetric (or vector-

is convergent. The

space ,(C®) with norm

symmetric) if
P(x1,x2, N TR ) = P(xg(l),xg(z), .. .,xg(m), .. )

for every permutation o € Se, where x; € C° for all j € IN. Let us denote by Pys(£,(C°)) the
algebra of all block-symmetric polynomials on £,(C*).
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The algebra Pys(¢,(C®)) was considered in [14,16]. Note that in Combinatorics, block-
symmetric polynomials on finite-dimension spaces are called MacMahon symmetric polynomials
(see [18]).

For a multi-index k = (k1,ky, ... ki) € Z° letm = |k| =k + ko + ... + k.

In [14] it was proved that polynomials

S

Hiy(x) = Hy' %) = o TT (7)) @
j=1 r=1
k[=[pl
form an algebraic basis in Pys(£,(C°)), 1 < p < oo, where x = (x1,...,Xp,...) € £,(C°),
x]- = (XO), .. .,x](s)) e C.
In the case of the space ¢1(C?) there are elementary block-symmetric polynomials

VI

K () — RK1k2Ks () v 1) 1),.(2) (2) (s) (s)

RS (x) = Ry (x) = i<2<i Xjy oo Xy X Xy XX
1< <y
j1<---<jk2 (3)
Zl<"'<lks

lep kg 7o 7 ke

where (xl(l),xi(z), . .,xfs)) e C°.
Combining (2) and (3), we can get an analog of Newton’s formula for block-symmetric

polynomials on ¢; (C?).

Theorem 1. The following formula is true for the algebraic bases of symmetric polynomials

on (1(C?).
anl,kz,...,ks _ Z qur‘h,...,%Rkl7‘71*2*@2,...,]{57%
n — ] ki
lq|=1
kr>q,
2! H‘h/‘h,-..,% Rk1*q1/k2*q2,...,ksf%
g gt R L
ql=
kr>q, (4)
+ (—1)"72 Z @Hﬂlﬂz,...,qukl—%,kz—qz,___,ks_qs
|q|=n-1 ‘71!172!..,%! n—1 1
k"qu
'
_ I’l*l# k1,ko,... ks
+( ! kl!kz!...kS!Hn ,
i gy ) Rgllkzm"ks = 1 and if k, < g, for somer = 1,...,s, then

R]‘:V} —q1.k2—q2,....ks—qs =0.

Proof. Let us consider the polynomial P(t;x(") + t,x(?) 4 ... + t;x()), which is symmetric on
the space /1 with respect to simultaneously permutations of tlel) + tzxfz) +... 4+ tsxfs), i>1.
Let us denote by tx = t;x(1) 4 t,x(?) 4 ... + t,x(5). For the algebraic bases Fy(tx) and Gy (tx) of
this polynomial the Newton formula holds

Gy () = Fi(Fx)Gy_1(Fx) — B> (fx)Gy_a(Fx)

o i n—2 £ £ n—1 £ (5)
+ F3(£)Gps(Fx) — ...+ (=1)"2F,_1 () Gy (Fx) + (—1)" 1y (x).
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Each of Eolynomials Fu(tx) and G,,(fx) can be represented as a linear combination of polyno-
mials Hy %% (x) and REF2Ks (x) respectively. Indeed,
Gn(ix) = Gu(tixM + tx® 4+ 4 £x®))

= ) (flx(1)+fzx()+ At () @ 4 1x ),
i1<...<ip (6)
=Y R PRI (x)
p1t+p2+..tps=n
and

(M 4 x4 )y

1
o n! k1 k2 kS k1/k2/~~~/ks (7)
ky+ko+...Aks=n "1° 2!

Fy(fx) = Fy (e + 12 + . 4+ 1)) =

e

1

So each term of equality (5) can be represented by polynomials ny}’kz"“’ks and RP"P2P* Then
we obtain

i3] (&)Gn—l (tNx) =

1! ks ks prkuke.ks
mt ts? ... te Hy (x)

(k1+k2+...+k5—1

X ( Z tfltgz .. tstzl”iZ""'ps(x)>

p1t+p2t+..+ps=n—1

1! ky+py
1TP1 2+I72 k +p. kl,kz,...,ks P1,P2s--P
t ot HY (X)R,V727 (x),

| |
ky+ky+...4+ks=1 kilka!. . ks

p1t+p2t+..+ps=n—1

7!
tkl tkz tI;stlszf---,ks (x)>

F(£x)Gnr(tx) = AT

<k1+k2+...+k5—1’

X ( ) A tstzl’lzz""’ps(x)>

p1+p2+...+ps=n—r

r!
— Z T k 'tk1+P1tk2+P2 ) t§S+psHk1 ko, .. ( )RperZ/ /Pc( )
kitkot..tks=r 1020

p1tp2+...+ps=n—r
If we substitute this equalities and equalities (6), (7) into (5) and equate multipliers at the

all powers of t;,i =1, ...,s we obtain the required formula. O

Note that equation (4) is invertible and so we have

k. ks n—1 k1—q1,...ks—as
D M e
1....5. ‘q|n1q1 q

kr>q;'

n 1 Z th quh q1 ks—qs
lq]= z”“ - 4s!
kr>q,

Z ch, s gk 1q1,...,ks—qs+ (_1)n+1anél,...,ks.

n!
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Let us rewrite formula (4) using multi-index notations. We denote by k! = kylky!... k!
andby k —q = (ky — g1, k2 — q2, .. . ks — gs). Also, we say that k > q if and only if ky > ¢4,
ky > g2, ..., ks > gs. Then (4) can be expressed by

k _ q pk—q lq]! qpk—q -2 Iq]! q k—q
nRy = ), HIR, ' — ) = HIR '+ + (1) Y __TEQAJRl

I Ve
>q >q >q
(8)
| n ‘ |
+ (—1)”_1%H5 = X:(—l)]_1 &H?Rl;]_q, where n = |k|.
! = 1
k>q

Comparing formula (8) with the classical Newton formula we can see that their are coincide
ifs =1.

Let us turn out to the space ¢,(C®). Taking into account formula (2) we can see that by
definition, HX = 0 in Pys(¢,(C?)) if [k | < [p]. So, using (8), we can define elementary block-
symmetric polynomials on £,(C®) by

n—[pl , |
nRX = Yo (-1t |q—!'H]9Rln(]-q, where n=|k|> [p]. )
j=Trl ja= 1

Theorem 2. Elementary block-symmetric polynomials on £,(C®) defined by (9) form an alge-
braic basis of n-homogeneous polynomialsn > [p] in Pys(£,(C?)).

Proof. It is easy to see that equation (9) is invertible. So we have a bijection between polynomi-
als Hy! and R;!. Since {H, Fn=[p) is an algebraic basis in Pys(£,(C?)), so the set {R} buz[p 18
an algebraic basis in Pys(£,(C?)) too. O
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Kpasuis B.B. Ananoz opmynu Hoomona d1g 610urHo-cumempuunux noxinomie Ha £,(C") // Kapmat-
cbki MaTeM. y6A. — 2020. — T.12, Nel. — C. 17-22.

Kaacrnuni dpopmyan HeloToHa 3apae peKypeHTHI CITiBBIAHOITIEHHST MiX aaTebpaiurmmm 6asuca-
MU CMMEeTPWIHIMX TTOATHOMIB. Lli popMyAM 3aAMIIAIOTHCS TPABUABHMMI i AASI CMMETPUIHIX TTOAI-
HOMiB Ha HeCKiHUeHHOBMMIipHIX 6aHaXOBMX IPOCTOPaxX MOCAIAOBHOCTEIL.

B @it cTaTTi MM PO3TASIAAEMO GAOUHO-CMMETPWUHI oAiHOMY (abo cuMmeTpyuHi ToAiHOMa Mak-
MaxoHa) Ha 6aHaxoBux mpoctopax £,(C%), 1 < p < co. Mu aoBoammMo araror dpopmyan HeroToHa
AAST DAOUHO-CYIMETPUYHMX TTIOAHOMIB y BumaaKy p = 1. Y Bumaaky 1 < p HeMae KAaCHIHMX eAe-
MEHTapHMX OAOUHO-CMMETPUYHNMX IOAIHOMIB. ITpoTe MM IPOAOBXMAM OTpUMAHY (POPMYAY THITY
Hetorona ans /1 (C®) Ha Brmaaok £,(C*), 1 < p < oo, i, B TaKmif CII0Ci6, 3aTIpOMOHYBaAM TIPUPOAHE
O3HaUEHHS eAeMeHTAPHUX OAOYHO-CHMEeTPUYHIMX MOAiHOMIB Ha £, (C*).

Kontouosi cnosa i ppasu: CUMeTpUUHI MOAIHOMY, ODAOYHO-CHMETPUYHI MOAIHOMY, aArebpaidHt
6asnc, dpopmyaa Herorona.
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AZ1ZBAYOV E.I., MEHRALIYEV Y.T.

NONLOCAL INVERSE BOUNDARY-VALUE PROBLEM FOR A 2D PARABOLIC
EQUATION WITH INTEGRAL OVERDETERMINATION CONDITION

This article studies a nonlocal inverse boundary-value problem for a two-dimensional second-
order parabolic equation in a rectangular domain. The purpose of the article is to determine the
unknown coefficient and the solution of the considered problem. To investigate the solvability of
the inverse problem, we transform the original problem into some auxiliary problem with trivial
boundary conditions. Using the contraction mappings principle, existence and uniqueness of the
solution of an equivalent problem are proved. Further, using the equivalency, the existence and
uniqueness theorem of the classical solution of the original problem is obtained.

Key words and phrases: inverse problem, two-dimensional parabolic equation, Fourier method,
classical solution, overdetermination condition.

Baku State University, AZ1148, Baku, Azerbaijan
E-mail: eazizbayov@bsu.edu.az (Azizbayov E.l), yashar_aze@mail.ru (Mehraliyev Y.T.)

1 INTRODUCTION AND FORMULATION OF THE INVERSE PROBLEM

In the present paper, we consider an inverse boundary-value problem for a two-dimen-
sional parabolic equation in a rectangular domain. The main goal of this article is to prove the
existence and uniqueness of a classical solution of an inverse boundary-value problem.

The inverse problems arise in many different areas of mathematical modeling types, such as
mineral exploration, biology, medicine, seismology, desalination of seawater, movement of lig-
uid in a porous medium, financial market behavior, etc. Fundamentals of the theory and prac-
tice of research of inverse problems were established and developed in the pioneering works
of Tikhonov [18], Lavrent’ev [15], Ivanov [10], Romanov [17], Denisov [3,4]. Recently, there
have been many studies of inverse problems for 1D parabolic and other types of equations. A
more detailed bibliography and a classification of problems may be found in [1,2,6,7,11,12].

Problems of the solvability of inverse problems for a two-dimensional heat equation is ex-
tensively studied by many authors, see, for example, Ismailov [5], Ivanchov [8,9], Kabanikhin
[13], Kinash [14], Zaynullov [19], and others. But the statement of the problem and the proof
techniques used in this study are different from representations in these papers.

Motivated by these works, we study in this paper the existence and uniqueness of a classical
solution for the following inverse problem: in the domain Dt = Q_xy x [0, T], where Qxy =
{(x,y) :0 < x<1,0<y <1}, consider a two-dimensional parabolic equation

(%, ) — o(8) (e (%,,8) + 11y (x,,8)) = a(Ou(x,,8) + F(x,y,1), (x,y,8) € Dr, (1

YAK 517.95
2010 Mathematics Subject Classification: 35R30, 35K20, 35A09, 35A02.
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with the nonlocal condition

u(x,y,0) +ou(x,y, T) = ¢(x,y),  (x,y) € Quy, )

the boundary conditions

u(0,y,t) =ux(1,y,t) =0, 0<y<1,0<t<T, 3)
uy(x,0,t) = u(x,1,t) = 0<x<1,0<t<T, (4)

and the overdetermination condition
11
u(xo, Yo, t) + //K(x,y)u(x,y,t)dxdy = h(t), 0<t<T, 0<uxpys<l, (5)
00

where § > 0 is known number, (xo, o) € Qxy is some fixed point, 0 < c(t), f(x,y,t), ¢(x,y),
h(t) are given functions, u(x,y,t) and a(t) are unknown functions.

Definition 1. The pair {u(x,y,t),a(t)} is said to be a classical solution of the problem (1)—~5),
if the functions u(x,y,t) € C>*!(Dr) and a(t) € C[0, T] satisfy equation (1) in D, and the
conditions (2)—(5) in the classical (usual) sense.

To investigate the existence and uniqueness of the classical solution of problem (1)—(5), we
prove the following theorem.

Theorem 1. Suppose that 6 > 0, f(x,y,t) € C(Dr), ¢(x,y) € C(Qxy), K(x,y) € L1(Qxy),
h(t) € C0,T], h(t) # 0,0 < t < T and the compatibility condition

11
olxo,y0) + [ / K(x,y)g(x,y) dx dy = h(0) + 6h(T), 6)
0

holds true. Then the problem of finding a classical solution of (1)«5) is equivalent to the
problem of determining the functions u(x,y,t) € C>*'(Dr) and a(t) € C[0, T), satisfying
(1)<(4), and the condition

1 1
W(t) —c(t) (uxx(xo,yo,t) + uyy (X0, Yo, ) +//K(x,y)(uxx(x,y,t) +uyy(x,y,t)) dx dy)
1 1 0o (7)
— a(Oh(t) + f(x0, o, t) + / / K(x,y)f(x,y,)dxdy, 0<t<T.
0 0

Proof. Let {u(x,y,t),a(t)} be the classical solution of problem (1)—(5). Then from equation (1),
we have

11

d

7 (u(xo,yo,t) —i—//K(x,y)u(x,y,t) dx dy)
00

11
—c(t) (uxx(xo,yo,t) + 1yy (X0, Yo, t) —|—//K(x,y)(uxx(x,y,t) + uyy(x,y,t)) dx dy)
0 0
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11
=a(t) (u(xo,yo,t) —{—//K(x,y)u(x,y, t)dx dy)
00

(8)
—i—f(xo,yo,t)—i—//K(x,y)f(x,y,t)dxdy, 0<t<T.
Differentiating both sides of (6) with respect to t gives
J 11
7 (M(xofyolt) + //K(x,y)u(x,y,t) dx dy) =H(t), 0<t<T. )
00

From (8), taking into account (5) and (9), we arrive at (7).
Now, assume that {u(x,y,t),a(t)} is a solution to the problem (1)-(4), (7). Then from (7)
and (8), we get

11
ti(ﬁm#mﬂ+//K@#WW#JWMWh@)
00

- (10)
=a(t) (u(xo,yo,t) + //K(x,y)u(x,y,t) dx dy — h(t)) , 0<t<T.
00
Using (2) and the compatibility condition (6), we obtain the following relation
11
u(xo,40,0) + / / K(x,y)u(x,y,0)dx dy — h(0)
00
11
+9 (u(xo,yo, T) + //K(x,y)u(x,y, T)dxdy — h(T))
00
- (11)
= u(xo,Y0,0) + du(xo,yo, T —l—//K (x,y,0) +u(x,y,T))dxdy
00
11
— (1(0) +8h(T)) = g(x0,y0) + [ [ K(x,1)e(x,y) dxdy = (1(0) +h(T)) = 0.
00
It is clear that the general solution of equation (10) has the form
1 [t‘u(r)d"r
u(xo,yo, t) + //K(x, y)u(x,y, t)dxdy — h(t) = ce? , (12)
00

where c is an arbitrary constant.
Hence, using (11), we find

( - _}a(r)di’)
c|l1+de 0 =0. (13)
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By virtue of 6 > 0, from (13), we obtain that c = 0. Setting ¢ = 0 in (12), we conclude that

11
u(xo, Yo, t) +//K(x,y)u(x,y,t) dxdy —h(t) =0, 0<t<T.
00

Hence, the condition (5) is satisfied. The proof is complete.

O
2 SOLVABILITY OF THE INVERSE BOUNDARY-VALUE PROBLEM
We seek the first component u(x,y, t) of classical solution {u(x,y,t),a(t)} of the problem
(1)-(4), (7) in the form
(x,y,t) Z Z ug () sin Agx cos vy,
k=1n= (14)
A = g(zk—l), w = §(2n 1), kn=12,...,
where
11
ugn(t) =4 / / u(x,y, t)sin Agx cos yny dx dy.
00
Applying the formal scheme of the Fourier method, from (1) and (2), we have
e (£) + (AR +70)e(BDun(t) = Feu(tina),  0<t<T, (15)
Ui (0) + 0uy  (T) = Qs k,n=1,2,..., (16)

where

Fk,n(t; u,a) = fk,n(t) =+ a(t)uk,n(t>/

ffy%nc(s)ds ¢ t
’ Hic ,C(8)ds
TR L
- yinc(s)ds 0
1+ 5eT (17)
— [ 12 c(s)ds t
ge 0" — [ g c(s)
— - /Pkn T;u,a)e © dr,
— [ 12 c(s)ds
1+de 0 - 0

where
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Substituting the expressions uy ,(t) (k,n = 1,2,...) described by (17) into (14), to determine
the first component of the solution (1)-(4), (7), we obtain

-/ yinc(s)ds ¢ t

0 00 0 _ 2 d
u(ryt) =y Yo P T /Fk,n(T; u,a)e { o)l g
k=1n=1 —[ud c(s)ds
1+ de '
, (18)
_ 42 d
s 37 e |
— - /Pk,n(r; uae dt » sin Agx cos yny.
— [ ug c(s)ds
1+6e 0" 0
Further from (7), taking into account h(t) # 0, we get
11
o(t) = 0] {1 0) = (7, ) + [ [xpreunas i)
0 (19)

0§ £ st

k=1n=1

=
=

where
11
Pin = V%,n <sin AkXo €os Ynlo + / / K(x,y) sin Agx cos yny dx dy) .
0

0
Next, substituting the expressions uy ,(t) (k,n = 1,2,...) represented by (17) into (19), to
find the second component of the solution (1)—(4), (7), we have
1

1
a(t) = (1)) {h’(t) - (f(xo,yo,t> [ [ Ky oyt ax dy)
00

¢
Ofy% 1C(s)ds ¢ t

® - yznc(s)ds
—c(t) ) ) Prn - +/Fk,n(r;u,a)e T[ b dt

k=1n=1 e 5 (20)

1+de ©

T 2
PR [ 12,c(s)d
— T /FknruaeT at| pin
#i ,C(s)ds
14de 0" 0

Thus, the solution of problem (1)—(4), (7) was reduced to the solution by systems (18), (20)
with respect to unknown functions u(x, y,t) and a(t).

Proceeding from the definition of the solution of the problem (1)-(4), (7) the following
statement is proved.

Lemma 1. If {u(x,y,t),a(t)} is any solution of (1)—(4), (7) then the functions
11

U ( 4//u X, Y, t) sin Agx cos yuy dx dy, kn=12,...,
0
th

satisfy the system (17) on the interval [0, T].
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Proof. Let {u(x,y,t),a(t)} be any solution of problem (1)-(4), (7). Multiplying both sides of
the equation (1) by function 4sin Ayx cos v,y (k,n = 1,2,...) and integrating both sides with
respect to x and y from 0 to 1, and using relationships

1

1 11
4//ut X, Y, t) sin Agx cos vy dx dy = E<4//u (x,y,t)sin Agx cos vy dx dy) = u;(,n(t),
00 00

11
4// U (%, Y, £) + 1y (x,y, 1)) sin Agx cos v,y dx dy
00

11
— (A2 4+92) <4//u X, Yy, t sm)thcos'ynydxdy> — (A + 2 ua(t), kn=12...,
00

we get that the equation (15) is satisfied.

Similarly, from (2) we obtain that condition (16) is satisfied. Thus, uy ,(t), k,n = 1,2,...,1s
a solution to the problem (15), (16). Hence, it straightforward follows that the functions uy ,(t),
k,n=1,2,...,satisfy on [0, T] system (17). Thus the lemma is proved. O

Obviously, if

11
U (f) = 4//u(x,y, t) sin Agx cos yny dx dy, kn=1,2,...,
00

is a solution to system (17), then the functions

(x,y,t) Z Z Uy (1) sin Agx cos vy,

and a(t) is a solution of system (18), (20).
From Lemma 1 it follows the next assertion.

Corollary 1. Suppose that system (18), (20) has a unique solution. Then the problem (1)—(4),
(7), couldn’t have more than one solution, in other words, if problem (1)—4), (7) has a solution,
then it is a unique.

In order to study the problem (1)—(4), (7), we consider the following spaces. Let B%,T denote
the set of all functions of the form

u(x,y,t) ZZukn ) sin Agx cos Yy, Akzg(Zk—l), 'ynzg(Zn—l), kn=1,2,...,

considered in domain Dr, where the functions uy ,(t), k,n = 1,2,..., are continuous on [0, T],
and satisfy the condition

1
00 2
{Z Z (Pli,n ””k,n(t)l‘c[o,ﬂ)z} < 0.

k=1n=1
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The norm in the space BS’,T is defined as follows
1

)) 2
|lu(x,y,t ||B3 Z{ZZ<P‘kn||”kn ||COT>} :

We denote by E3 the topological product of leT x C[0, T]. The norm of the element z =
{u,a} is determined by the formula
lelley = 1u(x 9 D)llag, + 2@ leor-
It is known [16] that the spaces BS’,T and E3 are Banach spaces.
Now, consider the operator
®(u,a) = {P1(u,a), Dy(u,a)}

in the space E3., where
Dy (u,a) =1(x,y,t) Z Z il (1) sin Agx cos vy,

<I>2(u,a) = a(t),
and the functions i ,(t), k,n = 1,2,..., d(t) are equal to the right-hand sides of (17), (20)

respectively.

It is easy to see that
[ AgB(s)ds

1+4de o >,
13 < A2+ 9D (Ak+7n) = A3+ Afyn + VA + 73,

1

T T 1
/|fk,n(r>|dr < VT (/ fk,n(r)zdr) ,
' 11 !

|Picnl = (1+// K(x,y)] dxdy) Hen = Pl

00
Taking into consideration these relations, we have

1

{i Y (12 601 cm)z}% <3 (i > (4 |<ok,n|)2>2

n=1k=1 n=1k=1
+3( Y Y (Avaloral) > +3 (Z Y (Mevi | prnl) > +3 (Z Y (v l@nl) >
n=1k=1 n=1k=1 n=1k=1
2
+3(1+9) (O/nX:lkX:l )‘k |fkn dT) =+ (O/nX:lkzl( kTn |fkn( )|> T) (21)

T o o % . o %
+ (/ Z Z (Ak')’n | fen(T) ) + (/ Z Z ’Yn fkn(T))sz)
’ 0

n=1k=1

%
+ T la(t)[lcpo,m (ZZ :ukn [[ttien (£ ||COT>2> ]'

k 1
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13t || cjo,m

11
< U’l“ﬂl)qo,ﬂ{ (D) - (f<xo,yo,t>+ /] K(x,y>f<x,y,t>dxdy) N
clo,T

+plle®llciom (ZZV;f) [(Zl (A7 l@inl) > <Z (A2 | @knl) )

—1i—1 —1 n=1k=1

=

1

+ (f:lkio: Ak')’n’q)kn‘ > (i i(')’?z‘gok,n‘)2>

n=1k=1

T o T o
+(1+ VT (/Z Y. (A% fin(T 2dT> + (/Z Y (Afvn | fin(T )ZdT)
0 0

n=1k=1

(22)

2

+ (/Ti i (Akvi | fion (T )ZdT)Z + (/Ti i (V3 | fion (T dT)Z

0 n=1k=1 0 n=1k=1

+(1+5)T” ”C[OT] (ZZ ]’lkn”ukn HCOT)2> ]}

Assume that the data for the problem (1)—(4), (7) satisfy the following conditions:

(A) @(x,y), ox(x,Y), Pxx(x,Y), qu(x,y), Goxy(xz]/)/ G"yy(x/y) € C(Q_xy)z
Goxxy(xry)r Goxyy(xry)r Prxx (X, ), Goyyy(xrw S LZ(Qxy)r
9(0,y) = ¢x(Ly) = ¢xx(0,y) =0, 0 <y <1,
Py(x,0) = o(x,1) = @yy(x,1) =0, 0<x < 1;

B) f(xy,t), fr(x 1), fux(xyt), fy(xyt), fry(x,yt), fry(x,y,t) € C(Dr),
fexy (XY, t), fayy(x,9,1), frox(X,y,t), fyyy(x,y,t) € Lo(Dr),
fOyt) =fx(Lyt) = fux(Oy,t) =0,0<y <1, 0<t<T,
fy(x,0,t) = f(x,1,t) = fry(x,1,) =0,0<x <1, 0<t < T;

(C) 6 >0, K(x,y) € L1(Qxy), 0 < c(t) € C[0,T], h(t) € CH0,T], h(t) #0,0<t < T.
Then, from (21) and (22), respectively, we obtain
ey, Dllgs, < A1(T) + Ba(T) [a(t)llcior (v, )53, (23)

() llcjo,ry < A2(T) + Ba(T) [lat) [ cjo,ry llee(x, v, )13, » (24)
where
A1(T) =3 ||@xxx(x,y) HLZ(Qxy) +3 Hq’xyy(xrw HLZ(Qxy) +3 H(Pxxy(X,y) HLZ(QX]/)

+3 oy (x ¥ 1,0, T 1+ 5>\/?3< | foexx (x5, 9 D) |1, )
+3 || fayy (5 ¥, )|y oy + 3 ey (2w, Dy 0y

30 e (6, )Ly + 3 Lo 69D o) )-
Bi(T) = 3(1+ )T,
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aa(1) = |10 o, { 00 = (P30 + [ [ Koy i)
00

C[0,T]
1

00 00 2
+plle®)llcpor <k21k21 y,f) [quxxx(x, Dz + ey @),

+ | @xxy (6 DIy 0, F 1 @wy (5 W0, + 1+ 5)\/f< | faxx (%, ¥, ) 1, (D)
|y (v O o) + e (v D oy

By(T) = H [h(t>]1HC[o,T] ple® e (ki i yk2> 1+

1 e (69, )L aiog) + o 9D oy )

From inequalities (23) and (24) we conclude

(e, v, )y, + 13 [ cjo,ry < A(T) + B(T) la(®)llcjo,ry l(x, £)1lm3,, (25)

where
A(T) = Ay(T) + Ay(T),  B(T) = By(T) + Ba(T).

Let Kg denote the closed ball of radius R = A(T) + 2 centered at zero in E3.

Theorem 2. Let the conditions (A)-(C) and the condition
B(T)(A(T) +2)* < 1 (26)
be fulfilled. Then problem (1)—(4), (7) has a unique solution in the ball K.

Proof. Let us consider in the space E3. the equation
z =Pz, (27)

where z = {u,a}. The components ®;(u,a), i = 1,2, of operator ®(u,a) defined by the right
side of equations (18), (20), respectively. Now, consider the operator ®(u,a) in the ball Ky of
the space E3.

Similar to (25) we obtain that for any z,z1,zp € Kg the following inequalities hold

19zl s < AT) + B(T) [ p(t)  cpo,y 1, v, )l g < AT) + B(T)(A(T) +2)%, (28)

[ @21 — @zl < BIT)R( s (5, ,8) — a9, DIz, + lar(t) = ol cpoy ). (29)

Then by (26), from estimates (28) and (29) it is clear that the operator @z acts in a ball Kg
and satisfy the conditions of the contraction mapping principle. Therefore the operator ®z
has a unique fixed point {u,a} in the ball Kg, which is a unique solution of equation (27), i.e.,
{u,a} is a unique solution of the systems (18), (20) in the ball K.

The function u(x,y,t) as an element of the space E3 is continuous and has continuous

derivatives uy(x,y,t), uxx(x, Y, t), uy(x,y,t), txy(x,y,t), uyy(x,y,t) in Dr.
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From the equation (15) it is clear that

e, (1) + (Af + va)e(Bugn(t) = Fu(t;u,a), 0<t<T,

NI—

{ i i <Vk,n

n=1k=1

, 2
aOllcom) < V2l llnn 0,

ey 0+ Syl t) + POy )+ ey ) o, o
xy
Thus u¢(x,y, t) is continuous in Dr.
It is not hard to verify that equation (1) and conditions (2)—(4), (7) are satisfied in the usual
sense. Thus, the solution of the problem (1)—(4), (7) is a pair of functions {u(x,t),a(t)}. By
virtue of the Lemma 1, it is unique in the ball Kr. Theorem has been proved. ]

Thus, by Theorem 1 and Theorem 2, we arrive at the following main result.

Theorem 3. Assume that all conditions of Theorem 2 and compatibility condition

11
o(x0,90) + | [ Klx,y)p(x,y)dxdy = h(0) + 3h(T)
00

hold. Then problem (1)—5) has a unique classical solution in the ball Ky for sufficiently small
values of T.

Acknowledgements. The authors would like to thank the anonymous referees for their
careful reading of this paper and constructive suggestions that have improved the quality of
our work.
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Asis6arios E.I., Mexpanies FO.T. Henokanona obepHena kpatiosa 3adaua 0.1 0606UMipHO20 napabosiuHo2o
Pi6HIHHS 3 THmMeepatbHolo nepeosHauerow ymosoio // KapmaTtchki maTem. myba. — 2020. — T.12, Nel.
— C. 23-33.

B poboTi AocaiakeHO HeAOKaABHY 0bepHeHY KpalioBy 3apady AASI ABOBMMipHOTO IapaboAiuHo-
TO piBHSIHHSI APYTOrO HOPSIAKY Y MPSIMOKYTHIlM obaacTi. MeToro Li€l cTaTTi € BU3HAYEHHS HEBiAO-
Moro KoedpiltieHTa Ta po3B’sI3Ky BkaszaHoI 3apaui. Io6 aocaiamTy po3’si3HiCTE obepHeHOI 3apadi,
MU TIepeTBOPIOEMO OPUTiHAABHY 3aAady y AeSIKY AOMOMIXHY 3apady 3 TPUBIaABHMMM KpaliOBUMMI
yMoBaMIL. BUKOPMCTOBYIOUN IIPVMHIIMIT CTMCKAIOUMX BiAOOGpakeHb, AOBEACHO iCHyBaHHS i €AMHICTD
PO3B’sI3Ky AASI eKBiBaA€HTHOI 3aAadi. BUKOpMCTOBYIOUWM eKBiBaA€HTHICTh, OTpMMaHO TeopeMy IIpo
iCHyBaHHS i €AVHICTh KAACMYHOTO PO3B’SI3Ky OpUTiHAABHOI 3apa4i.

Kntouosi ciiosa i ppasu: obepHeHa 3apada, ABOBMMipHe mapaboaiuHe piBHsIHHS, MeToA Dyp’e, kKaa-
CUYHIIA PO3B 130K, Ilepeo3HauyeHa yMOBa.
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MERSENNE-HORADAM IDENTITIES USING GENERATING FUNCTIONS

The main object of the present paper is to reveal connections between Mersenne numbers M, =
2" —1 and generalized Fibonacci (i.e., Horadam) numbers w; defined by a second order linear
recurrence W, = pwy_1 + qWy—3, 1 > 2, with wy = a and wy; = b, where a, b, p > 0 and q # 0 are
integers. This is achieved by relating the respective (ordinary and exponential) generating functions
to each other. Several explicit examples involving Fibonacci, Lucas, Pell, Jacobsthal and balancing
numbers are stated to highlight the results.

Key words and phrases: Mersenne numbers, Horadam sequence, Fibonacci sequence, Lucas se-
quence, Pell sequence, generating function, binomial transform.
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INTRODUCTION

A generalized Fibonacci sequence (wy)y>0 = (wn(a,b; p,q))n>0 is defined by a second order
homogeneous linear recurrence

Wy = pwWy-1 + qwy—2, n>2,

with wp = a and w; = b, where 4, b, p and g are integers with p > 0, g # 0. Since these
numbers were first studied by A.F. Horadam (see, e.g., [11,12]), they are often referred to as
Horadam numbers. The Binet formula for w, is given by [11]

wy, = ar] + pry, n>0,

++/ P4 —/p*+4
where r; = VT 5 = VP 5 1

1 and r, denote the distinct roots of the quadratic equation

x> —px—q=0,

S i
2 2/ +4q 2 2/ +4q

1 n—1
it — r T
rn—n rn—n

YAK 511.176, 519.111.3
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The sequence can be extended to negative subscripts according to

1
W—yn = —5(own+1 —W_py2), n > 1.
Further results on Horadam sequences can be found in the survey paper [14]. In what
follows, we will make frequent use of the generating functions of (wy),>0. We know [15] that

the sequence wj, has the ordinary (non-exponential) generating function

a+ (b—ap)z

1—pz—qz2’ (1)

[ee)
w(z) = Y w,2" =
n=0

while for sequences w1 and wy,
a+ (bp —qa —ap?)z
1— (p?+29)z + g?2%’

b+ (apq — bq)z
— (P> +29)z+ g°2*

()

[ee)
wy(z) = Z Wy 112" =
n=0

wa(z) = ) w2 = 7 (3)
n=0
The Horadam sequence generalizes many other number and polynomial sequences, for
instance, the Fibonacci sequence F, = wy,(0,1;1,1), the Lucas sequence L, = w,(2,1;1,1), the
Pell sequence P, = wy(0,1;2,1), the Jacobsthal sequence |, = w,(0,1;1,2), the Mersenne sequence
M, = wy,(0,1;3, —2), the balancing numbers B, = w,(0,1;6, —1), and so on. The first few terms
of each sequence are stated below.

| nJof1][2][3[4 ][5 [6 ] 7 [ 8 [ 9 [ 10 [ 11
F, loJ1[1]2| 3] 5 [ 8 | 13 21 34 55 89
L, [2]1]3] 4] 7 | 11 | 18 | 29 47 76 123 199
P, |0[1]2[5 12| 29 | 70 | 169 | 408 985 2378 5741
Jo [O[1][1[3] 5 [ 11 [21] 43 85 171 341 683
M,|0[1[3]7|15] 31 [ 63 | 127 | 255 511 1023 2047
B, |0]1]6]35|204 1189 | 6930 | 40391 | 235416 | 1372105 | 7997214 | 46611179

The sequences (F,)u>0, (Ln)n>0, (Pn)u>0, (Jn)n>0, (Mn)n>0 and (By),>0 are indexed in
the On-Line Encyclopedia of Integer Sequences [19] (see entries A000045, A000032, A000129,
A001045, A000225 and A001109, respectively).

In the present paper, we derive some connection formulas between Mersenne numbers and
the Horadam sequence.

Recall that Mersenne numbers M,, belong to the Horadam sequence family. They are given
by the explicit form

M,=2"-1, n>0.

Mersenne numbers are popular research objects because of their interesting properties. For
instance, Mersenne numbers are numbers with the following representation in the binary sys-
tem: (1), (11)2, (111),, (1111),, (11111),, .... Also, the Mersenne number sequence contains
primes, the so called Mersenne primes of the form 2" — 1. A simple calculation shows that if
M, is a prime number, then 7 is a prime number, though not all M,, are prime. Mersenne
primes are also connected to perfect numbers. The search for Mersenne primes is an active
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field of research (see [18], among others). More information about Mersenne numbers and its
generalizations can be taken from the papers [1,3-6,9, 10, 13, 16,20] and references contained
therein.

We conclude this section with some generating functions, which will be needed in the
proofs. Using (1)-(3) we easily obtain non-exponential generating functions of the sequences
M, My, +1 and My, as follows

(4)

> z
= M n -,
m(z) EO Yy

> 1+2z
=Y Mypiz' = ————, 5
my(z) P w12 = 54 (5)
i 3z
= n = 0. 6
m2(2) EOMZHZ 1—5z +422 (©)

Finally, the exponential generating functions of the sequences M,,, My, +1 and Mj, can be
derived as

o0 n
u(z) = ’;)Mn% = 2¢% sinh(%) , (7)

> z" 5, 3z > z" 5, 3z
M1 (Z) = X%)Mzn_i_la = 2¢2 Slnh<7> + 642, “l/lz(Z) = HX:OMZHE = 2¢2 Slnh<7> .
n= =

1 MERSENNE-HORADAM IDENTITIES USING ORDINARY GENERATING FUNCTIONS

Our first result provides a relation between Mersenne and Horadam numbers using its
ordinary generating functions. The method of proof is the same as in [7] and [8]. We note that,
n

in what follows, we will used the standard convention that }_ a; = 0 for n < 0.
k=0

Theorem 1. Forn > 0, the following formula holds
n—1
Wy = a+ (b— )My + Y ((p =30k + (9 + 2)w, 1 1) My.
k=1

Proof. By (1) and (4), we get

z . 2 4 . 2 2 oy a+(b—ap)z
m(z)_l 3242z =(1—pz—qz°)+ (pz+ gz 3z—|—22)——w(z
a+(b—ap)z+ (p—3)zw(z) + (g +2)2%w(z)

+(p—3)z+(g+2)2% =

4

w(z)

and thus zw(z) = am(z) + (b — ap)zm(z) + (p — 3)zw(z)m(z) + (g + 2)z2%w(z)m(z).
Expanding both sides of the last equation as a power series in z yields

z Z wpz" =a Z M,z" + (b —ap) Z M,z 1
n=0 n=0 n=0

+(p—3)z Y wpz" Y Muz"+ (q+2)2% Y wuz" Y My2".
n=0 n=0 n=0 n=0
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Using the formula for multiplication of two power series

Z ayz" Z byz" = Z Z agb,_z", (8)
n=0 n=0

n=0k=

we then obtain

i w,z" =4 i M,z" + (b —ap) i M, _1z"
n=0

n=0 n=1
(e 9] n (o] n
3) Y. Y wukMZ T+ (g 4+2) Y Y wy Mz,
n=0k=0 n=0k=0
az+ Y wy_1z" =az+a ) My2" + (b—ap) Z M, _1Z"
n=2 n=2 n=2
oo n—1 00 1—
3) ). ) wp k- 1Miz" + (g +2) Z Z Wy k-2 Myz".
Comparing the coefficients on both sides, we obtain
n n—1
Wy = aMy1 + (b—ap)My+ (p —3) Y wy M+ (9 +2) Y wy_ 1My
k=0 k=0

n—1 n—1
=a(2M,, + 1)+ (b—ap)M, + (p —3) Z Wy Mg+ (p —3)aM,, + (9 +2) Z Wy j—1 My

k=0 k=0
n—1
=a+ (b - a>MH + Z ((P - 3)wnfk + (q + 2)wnfk71)Mk/
k=1
as desired. 0

Example 1. By choosing suitable values ona, b, p and g, one can obtain the following identities
valid forn > 0:

n-1 n—1
Fo=My— Y (2F—3F 1) My, Lyp=2—M;— Y (2L, —3Ly——1) My,
k=1 k=1
n—1 n—1
Py=M;— Y (Puk—3Pui-1)Mi, Ju=My—=2) (Jnk — 2Jn—k-1) Mg,
k=1 k=1
n—1
B, = M, + (3ank + ankfl) M.
k=1

In a similar manner, we can use the generating functions (2), (5) and (3), (6), respectively,
to prove two other relations between odd (even) indexed Horadam and Mersenne numbers.
These relations are contained in the next two theorems, those proofs we leave to the reader.

Theorem 2. Forn > 1, the following formula hold

Won+1 + 2wan—1 = 3b + (bp* + apq + bq — b)Mpy

n—1 (9)
+ Y (P +29 = 5)pwy(n_i) + (47 + qp* — 59 + 4)way_)—1) Mok 1.
k=1
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Example 2. Formula (9) yields

n—1

Fong1+2F—1 =3+ Mpy—1 — ) <2F2(n,k) - FZ(nfk)fl> Mak—1,
k=1
n—1
Lopt1+2Lop—1 =3+3Mp1— ) <2L2(nfk) - Lz(nfk)fl) Mpy1,
k=1
n—1
Pyyy1+2Ppy—1 =3+4Mp,_1+2) (Pz(nfk) + 2P2(n7k)71> M1,
k=1
Jons1+2J2n-1 =2+ My,
n—1
Bont1+2Boy—1=3+34My, 1 +2 ) <87B2(n7k) — 13BZ(nfk)71) Mpy1.
k=1

Theorem 3. Forn > 0, the following formulas hold

b+qga—
wyy =a+ BT v, 4 2 Z 2429 — 5wty + (4 — 47) Wy (n_k—1)) Mok

3

Example 3. It follows from (10) that

1 n—1
Ban = 5May = 5 ¥ (2Bui) = 3Fagu—k1) ) Mot
3 3 &
1 1=
Lon = 2+ Moy — 3 y (2Lt = BLagu—i—1) ) Maks
=1
2 11
Pow = 3Mon + 3 ; ( (n—k) T 3Pa(—k— 1)) Moy,
1
]211 - Man
1 n—1
Ban = 2Moy + 3 Y <2932(n—k) + 3Bz(n—k—1)> M.
k=1

Note that formula (11) is known (see [4]).

(10)

(11)

We finally remark, that Theorems 1, 2 and 3 can be generalized to sums of certain products

of w, and M,; see [7] and [8] for details.

2 MERSENNE-HORADAM IDENTITIES VIA EXPONENTIAL GENERATING FUNCTIONS

Let us first consider the fundamental Fibonacci sequence u, = w,(0,b; p, q). In this section,
we derive connection formulas between u, and Mersenne numbers M,, involving binomial

coefficients.

Let u(z), u1(z) and uy(z) be the exponential generating function of the sequences uy, 13,1

and u,,. Then we have
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2 zZ" 2b pz Az

u(Z) = ngounﬁ = Ke"— Slnh<7> P (12)
a " 2b(p?+q) P, . pAz

ul(Z) = r;)uZHJrla = Te Z “ginh T

p2+2 q+pA

b p +2q pb
—277A<(P +29—ph)e T (P +29+pp)e )
n
Z 2nz = %ep 2z smh<p—A2> ,
n! 2
where A = /p? + 4q; see [15].

Theorem 4. Forn > 0, the following identity holds

b (p-3A\"& [ 24 \*
w5 (020) L) ) .

Proof. Using (7) and (12), we have

u <§> Z‘u( ) (LA*%)Z.

From the formula above we now obtain

i z" b & zZ" & (p 3>”z” b & Mk<p 3>”k z"
Upy——=—3Y M;,—- — =) == — | L=—-=
HX::O " Al An;o " ! HX::O 20 2) ! A,;)k; 1\2a 2 (n—k)!
b & n\ (p 3\"F
aLL () (Bs)
n=0k=0
and after simplification we have (13). O

Example 4. Letn > 0. Then formula (13) gives

e () E ) (BB e =S () (D)
(1-3v2)

2)" I (n 12 +24/2 ¢ _ (3-6V2)" & (n 16 + 4+/2 ¢
22 ,g(k)(_ 17 >M"’ T Z<k><_ 21 )M"'

k=0

Pn:

Theorem 4 highlights the following issue. If we define the sequence a, as

2A "
an = (P—3A> M,

A —3A\ "
bn:E<p 2 > Un,

is the binomial transform of a,, where the binomial transform and its inverse transform are

given by [2,17]
by, = Z <Z> ay & ay = Z <Z> (—1)" by

k=0 k=0
The inverse relation immediately gives the next identity.

then the sequence
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Theorem 5. Forn > 0, we have

A" /3N — p\ & 2 \*
M, = . 14
— (20) () () a0

Example 5. Formula (14) yields

no k
M, — /5 (#) y <Z> (#) E, (15)

k=0

s ()L (1)L Mn:f(é f) i()(”i”)

s (22 £ 1) (222

k=0

Note that formula (15) may be rewritten in terms of the golden ratio ¢ = 1+‘/— as follows

We also have the following summation identity.

Theorem 6. Let A and B be arbitrary complex numbers. Then for n > 1 it is true that

i < )AkB” Ky %é(z) (AA)k <Ap+2§—3AA>n—kMk.

Proof. It is known [17] that if a,, is an arbitrary sequence of numbers with exponential generat-
ing function F(z), then

_ - . i _ Bz
S(z) = ’;)Sn(A,B,a)n! = e¢7*F(Az),
where
" /n
Su(A,B;a) = < )AkB”_kak
k=0 k
Hence,
d zZ" b Ap+2B ANz
SM(Z) = Y;JSH(A, B, u)m = KZe 2 ZSlnh<T> ,
> z" 34128 Az
Sm(z) = ’;SH(A,B;M)E =2 2 smh< 5 )
and finally
[e] n & _ n
Z ABws =y, <AA,AP+2B 3AA;M> =
=0 n! A =0 2 n!
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We give some examples of the above summation identity. However, we restrict the list of
examples to the pair (F,, My). If (A, B) = (1,1), then

£ (=L (osra-ver(3) .

k=0 k=0

n
Since Y. (})Fx = Fon, we can restate the identity as (7 = —1/¢)
k=1

_ B & (e—n\*
an—q)_quo ) a ) M
If (A,B) = (—1,1), then

Fo— 20" g e (Z) < ¢ 1 )kMk

»—1n = 20 —1

This identity may be compared with the one from Example 8, where we have shown that

o= B0l B (1) (2L )

Our last example is (A, B) = (1, —1/2). In this case, we get the relation

k)i:o (}) -1t = 5% k; () (3) v

£ (mer £0) ()

k=0 k=0
Theorem 7. Forn > 0 it holds that

b (3p—5A\" & (n 24 \*
w=3 (P57) L) (50m) Mo

A [(5A-3p\" & (n 6 \*
Mz”‘?( 2A >,§0<k> <5A—3p> e

Proof. The first formula follows from the relation u (32)

or

and

): .
and an application
of formula (8). Moreover, the first formula shows that u,

n
24
of Moy, <m>
The second formula is a rearrangement of the inverse binomial transform relation. O

n
<3p_%> is the binomial transform

Theorem 8. Forn > 0 it holds that

b (3p—5A\" & (n 24 \F b (p+A\"
w3 (750) B0 (5rm) a5 (557

k=0

A [5A-3p\" & (n 6 \* \
v =5 () 5 (1) (a0sp) e

and
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Proof. To prove the first formula we use
o (5) = & (ot ions),

The second formula is once more an application of the inverse binomial transform, where
we used that

5A —3p ”i n\ (3A+3p\* _ (58 —3p\” S A R
20 &= \k) \5a—3p 2A 5A —3p '

O
Theorem 9. Forn > 0 we have
b 3p2+6q—5pA>” n <n> < 2pA )"
S M
Han A< 6 k; k) \3p2+6q—5pn)
and ) , .
A (5pA —3p —6q> e <n> ( 6 )
M2 = - < Usg.
b 2pA k;l k) \5pA —3p? — 6q
Proof. The first formula follows from the relation
2
MZ(Z) = %6£me¥)2]"2 <%Z>
and an application of formula (8). The second formula is a rearrangement of the inverse bino-
mial transform relation. g

A proof comparable to the one given for Theorem 4 yields the following relation between
numbers uy,.1 and My, . 1. In this case we use the relations

3p?+6q-5ps . ((pAZ

2 i) = 20% e (2

2 2 _
P +22q+pAZ p-+2q pAZ

— (2(p* +9) + b(p* +29— pA))e +b(p*+2q9+ pA)e 2

and

—3p2—6q+5pA
2(p* + q)p(2) = 2pAuy (—A> eI
+ (2(p* +q) + b(p* + 29 — pA))e™ — b(p* +2q + pA)e”.
Theorem 10. Forn > 0

2 2 non k
. p°+gq (3p°+6g—5pA n 2pA
Uppy1 = b oA ( G k;l k) \32+6q —5phA M4

3PP A= pA (PP 4294 pANT L P29+ pA (P2 429 — pAN”
2pA 2 2pA 2

and

_(pA)' (5pA —3p? —69\" & (1 6 k
M2”+1_b(p2+q) 2 k; k) \5pa —3p2 —6q) "2

pP+2q—pA 0 pPH29+pA

+ 4",
2(p*+9) 2(p*>+9)
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3 MERSENNE-LUCAS IDENTITIES VIA EXPONENTIAL GENERATING FUNCTIONS

In this section we establish connections between the fundamental Lucas sequence
vn = wn(2, p; p,q) and Mersenne numbers M,,.

s () B0 ()

Oy = (p;‘%)n i (Z) (M, +2) (pEAMY. (16)

k=0

Theorem 11. Forn > 0

and

Proof. It is known that the exponential generating function of the sequence v, can be given as

00 n
=) Oy = 2e%* cosh(éz>. (17)
= n! 2
Using (7) and (17) we obtain
@) = 3D = 3 M2 3o sinn(2) 4o cosn()
Wz —nion T n+17y = 3ez sinh(3 ) +e2 cosh(

Therefore,

i (2M,21 — 3M,,) Z—l = (5) ()2
n=0 :

To complete the first part, observe that 2M,,,1 — 3M,, = M,, + 2. To get (16) we may apply
the argument of the inverse binomial transform. O

When v, = L, is the Lucas sequence, then
_(9—2n\"\~ (n k
e (5 £ (o

and

L, = (25 — ¢) i()( 17>k(Mk+2).

21 —¢

(L) - (55

we observe that an equivalent version of the last identity is

=21" + (27 — ¢)" i <Z> ( Py )kMk- (18)

k=1 2n—¢

In view of

We also have the following summation identity.
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Theorem 12. Let A and B be arbitrary complex numbers. Then for n > 0 it is true that

i (Z) AFB" gy = Z (Z) (AD) <AP +2§ _3AA>nk(Mk+z).

k=0 k=0

Proof. The proof is very similar to that one given in the last section and omitted. O

As examples, we will state the companion results for v, = L, from the previous section. If
(A,B) = (1,1), then

é (Z) =) (Z) (V5)F(1— VB)" <;>nk(Mk +2).

k=0

This gives the identity

=2+ o0 5 (1) (%52) e

k=1

If (A,B) = (—1,1), then the result is

Lo=29"+ 291" 1 () -1 (2-1)

which should be compared with (18).
Finally, for (A, B) = (1, —1/2) we get the relation

= (n —(n—k) nel—ngh 1yn (1 n—k 3 ok
Y )2 Ly = (—1)"2'""52 +52 ) . (1) > My
k=0 k=0
or ‘
S () (o)L =25t 4 3st 3 (M) (2
k;(J( 2L =2-52+3 Szk;(k)( 3> M;.

The results of this section also highlight some other hidden relations, since ([4], Proposi-
tion 2.4)

jn, if niseven,

Mn + 2 —
3J,, ifnisodd,

where (J;)n>0 is the Jacobsthal and (j, ),>0 is the Jacobsthal-Lucas sequence.
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MaTeM. myba. — 2020. — T.12, Nel. — C. 34-45.

Y poboTi BcTaHOBAEHI POPMYyAN 3B'I3KY MiX umcramu MepcerHa M, = 2" — 1 Ta y3araabHe-
‘M ancaamy @iborauvdi (umcaramm ['oparama) wy,, SKi 3aA0BOABHSIIOTE AiHiliHe peKypeHTHe CIIiB-
BiAHOIIIEHHSI APYTOTO HOPSIAKY Wy, = PWy_1 + qWy—2, Ae 1 > 2, wy = a, w; = b, aucraa, b, p > 0
iq # 0 e miavmm. ITpy IbOMY MM BUKOPMCTOBYEMO BiAITOBiAHI CITIBiAHOIIIEHHS MiX 3BMUYATHVMU Ta
€KCTIOHEHITIHIMIY TeHepaTpucaMyt 060X UMCAOBMX IIOCAIAOBHOCTeN. 30KpeMa, HaBeAeHi IPMKAaAL,
sIKi cTocytoThest umcen dibonaudi, Atoxka, [Teans:, SIkobcrans Ta 36araHCOBAHMX UMCEA.

Kontouosi crosa i ppasu: Ymcaa Mepcerna, mocaiaoBHicTs 'opasama, mocaiaosricTs diboHaTwi,
mocAia0BHiCTD Afoka, TocAiaoBHICTD [Teanst, reHepaTpuca, 6iHOMiaAbHe IepeTBOPEHHSI.
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(L)

KHATS” R.V.

SUFFICIENT CONDITIONS FOR THE IMPROVED REGULAR GROWTH OF ENTIRE
FUNCTIONS IN TERMS OF THEIR AVERAGING

Let f be an entire function of order p € (0,+c0) with zeros on a finite system of rays
{zrargz = ¢;},j€{l,....m}, 0 < ¢ < <...< ¢y < 27 and h(¢) be its indicator. In
2011, the author of the article has been proved that if f is of improved regular growth (an entire
function f is called a function of improved regular growth if for some p € (0,4+0), p1 € (0,p),
and a 27-periodic p-trigonometrically convex function h(¢p) # —co there exists a set U C C con-
tained in the union of disks with finite sum of radii and such that log|f(z)| = |z|°h(¢) + o(]z|f1),
U # z = re'? — o), then for some p3 € (0,p) the relation

/r log |f (fe'?)] |f§te’4’)| dt = %ph(qo) +o(r?), r— +oo,
1

holds uniformly in ¢ € [0,271]. In the present paper, using the Fourier coefficients method, we
establish the converse statement, that is, if for some p3 € (0,p) the last asymptotic relation holds
uniformly in ¢ € [0,27], then f is a function of improved regular growth. It complements simi-
lar results on functions of completely regular growth due to B. Levin, A. Grishin, A. Kondratyuk,
Ya. Vasyl’kiv and Yu. Lapenko.

Key words and phrases: entire function of completely regular growth, entire function of improved
regular growth, indicator, Fourier coefficients, averaging, finite system of rays.

Drohobych Ivan Franko State Pedagogical University, 24 Franko Str., 82100, Drohobych, Ukraine
E-mail: khats@ukr.net

1 INTRODUCTION

It is well known ([13, p. 24]) that an entire function f of order p € (0, +00) may be repre-

sented in the form
° z
f@) == E (WJ /
n=1 n

where A, are all nonzero roots of the function f(z), A € Z is the multiplicity of the root at
the origin, Q(z) = Y./_; Qxz* is a polynomial of degree v < p, p < p is the smallest integer
for which Y% ; [A,|7P~! < +c0 and E(w,p) = (1 — w)exp(w + w?/2 + -+ + wP/p) is the
Weierstrass primary factor.

Let f be an entire function of order p € (0, +0). The function

. log | f(re'?
h(g) = hs(@) = limsup %ﬂ, ¢ € [0,27],

r—»00

YAK 517.5
2010 Mathematics Subject Classification: 30D15, 30D20, 30D30.
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is called the indicator of f ([13, p. 51]). The indicator is a continuous 27t-periodic p-trigonomet-
rically convex function (see [13, pp. 53-54]). A set C C C is called a C%-set ([13, p. 90]) if it can

be covered by a system of disks {z : |z —a| < s;}, k € IN, satisfying Y sy =o(r)asr — +oo.
lag|<r

An entire function f of order p € (0, +o0) with the indicator h(¢) is said to be of completely
reqular growth in the sense of Levin and Pfluger ([13, p. 139]) if there exists a C%-set such that
log |f(re'?)| = r*h(g) +o(r*), C° % re'? — oo, uniformly in ¢ € [0,27). In the theory of entire
functions of completely regular growth (see [13, pp. 139-167]) the following theorem is valid.

Theorem A ([13, p. 150]). In order that an entire function f of order p € (0,+oc0) with the
indicator h(¢) be of completely regular growth, it is necessary and sufficient that uniformly in
¢ € [0,27] one of the following relations hold:

r1 tel? P
J5(9) ::/1 L‘ft(e )‘dt:%h((p)—l—o(rp), r — 400,

r d 0
9) = [ T(0)F = Th9) +007), 1 oo

Similar results for entire functions of p-regular growth were obtained by A. Grishin [2]
and for meromorphic functions of completely regular growth of finite A-type ([11, p. 75]) by
A. Kondratyuk [11, p. 112] and Ya. Vasyl’kiv [14] (see also Yu. Lapenko [12]).

In [5,16] the notion of entire function of improved regular growth was introduced, and
a criterion for this regularity was obtained in terms of the distribution of zeros under the
condition that they are located on a finite system of rays.

An entire function f is called a function of improved regular growth ([5, 16]) if for some p €
(0,400) and p; € (0,p), and a 27r-periodic p-trigonometrically convex function h(¢) # —oo
there exists a set U C C contained in the union of disks with finite sum of radii and such
that log |f(z)| = |z[Ph(¢) + o(|z|?), U Z z = re!? — co. If an entire function f is of im-
proved regular growth, then it has the order p and indicator /(¢) ([16]). In the case when
zeros of an entire function f of improved regular growth are situated on a finite system of rays
{zrargz =19}, j€{l,...,m},0 < ¢ < ¢ <... < Py < 27, the indicator & has the form
(see [16])

m
h(g) =) _hi(g), p€(0,+0)\N, (1)
j=1
where (@) is a 27r-periodic function such that on [y}, ¢; + 277)
TTA;
. — ] W — .
hi() Sin1p cosp(p —¢; —m), A;€[0,+00).

In the case p € IN, the indicator / is defined by the formula ([5])
3
Trcos(pp +05) + ) hi(e), p=p,
h(g) = j=1 (2)
Qpeospp, p=p—1,

where 07 € C, tp = [57/p + Qpl, 0f = arg(d¢/p + Q) and h;(¢) is a 27-periodic function such
that on [y}, ¢; + 271)

A.
hi(p) = Aj(m — @ + ;) sinp(p — ;) — ?] cos p(g — ).
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At present, many different conditions are known that are necessary and sufficient for the
improved regular growth of entire functions (see [1,3-10,15-17]). In view of this, it is natural to
establish an analog of Theorem A for the class of entire functions of improved regular growth.
In this direction, the following results were obtained in [6, 8].

Theorem B ([8]). If an entire function f of order p € (0,+o0) is of improved regular growth,
then for some p; € (0, p), one has

7P
I¢(g) = ?h(q’) +0(r2), 1= +oo,

uniformly in ¢ € [0,271].

Theorem C ([6]). If an entire function f of order p € (0, 4+o0) with zeros on a finite system of
rays {z :argz = ¢;}, j € {1,...,m},0 < 1 < ¢p < ... < ¢ < 27, is of improved regular
growth, then for some p3 € (0, p) the relation

0
THo) = hlg) +00P), 1= +oo 3)

holds uniformly in ¢ € [0,27t], where h(¢) be defined by (1) and (2).

However, the problem of finding the converse of Theorems B and C remained open. The
aim of the present paper is to prove the converse of Theorem C. Our principal result is the
following theorem.

Theorem 1. Let f be an entire function of order p € (0,+o0) with zeros on a finite system of
rays {z :argz = ¢;},j € {1,...,m},0 < 1 < ¢p < ... < ¢y < 27 and h(¢) be its indicator.
If for some p3 € (0, p) the relation (3) holds uniformly in ¢ € [0,27t] with h(¢) defined by (1)
and (2), then f is a function of improved regular growth.

2 PRELIMINARIES

Let f be an entire function with f(0) = 1 and (A,),en be the sequence of its zeros. For
ke Z and r > 0, we set

L —ikarg Ay, L "n (t,f)
ng(r, f) = )L%:S,e kargAn. Ni(r, f) := /0 %dt,
* ’ Nk(trf)
Ni(r,f) = | ——==dt, n(r, g, f) = 1,
‘ /O t A <r, Zarg)\nztp
N(r, s ) = /Orn(t,zp;ﬁ it N*(r, 1 f) = /Of N(t,;p;f) it

1 2. . 1 2.
ci(rlog|f1) = 5 [ e log | f(re) [ dp,  culrJp) =5 [ eI dp,

In the proof of Theorem 1, we use the following auxiliary statements.

Lemma 1 ([5, 16]). An entire function f of order p € (0, 4o0) with zeros on a finite system of
rays{z :argz = ¢;},j € {1,...,m},0 < ¢y < ¢ < ... < ¢y < 27, is a function of improved
regular growth if and only if for some py € (0,p) and eachj € {1,...,m}

n(t, p;; f) = At +-o(t), t — 400, A; € [0,400), 4)



SUFFICIENT CONDITIONS FOR THE IMPROVED REGULAR GROWTH OF ENTIRE FUNCTIONS ... 49

and, in addition, for p € N and some p5 € (0,p) and o € C, one has
Y A =6p400P), 1 — oo (5)
0<|Au| <1

In this case, the indicator h(¢) be defined by formulas (1) and (2).

We remark that, for p = p + 1 equality (4) holds with A; = 0, because Y,y [An| Pl < 4o
(see [5, p. 19]).

Lemma 2. If an entire function f of order p € (0, +0) satisfies the conditions of Theorem 1,
then for some p3 € (0,p) and each k € Z, one has

Y
Celr, ) = iy +o(r™), 7=+ (6)
k2
Ni(r, f) = ck (1—p—> ;—l—o(r%) r — 400, (7)
where
Ck i= -~ /Zn e *h(p)dp = L iA‘e_ik% Aj € [0, +00) (8)
27 Jo 2= r BjE /

ifp € (0,400) \ N, and

_P iA.e—ikle k| £ p =
-k ’ P="r
Tfeief 1
=42 45

0, [k|l#Ap=p+1,

Q . _
(5 k=p=p+1,

A, k=p=p, ©)

ifp € N.
Proof. Under the conditions of the lemma, by using (3), for some p3 € (0,p) and each k € Z,
we get

cr(r, J5) = i/zneik‘l) <ﬁh( ) —|—0(rp3)> dp =c¢ ” +o(r), r— 4o

AN f o 27-( 0 p q) (P - kp 7 7

where ¢y is defined by formulas (8) and (9) (see [6,7,9,10]). Thus, relation (6) holds. Let us
prove relation (7). Using relations (see [14, pp. 39, 43], [11, pp. 107, 112], [6, p. 13])

Ck(?’,]}) _ /7 Ck(t’10g|f|) dt,

t
N, ) = el log 1)~ [ /Ck“"g'f“ u kez, r>o,

we obtain

r r tc
Ny = [ SD gy ey [ gy ez, s

Then, using (6) and passing to the limit as r — +o0, we get
(3 r p—1 2
NE(r, f) :ckr—+o(rp3)—k2/ dt/ < L o(uP 1)) du=c, <1—k—2> +o(r).
p 0 p=/ P
Lemma 2 is proved. O
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Lemma 3. Let f be an entire function of order p € (0, +00) with zeros on a finite system of rays
{zrargz=9;},je{l,...,m},0< ¢ <o < ... <Py < 27. In order that the equality

A.
N*(r,;; f) = p—zjrp +o(r®), r— +oo, Aj€0,+00), (10)

holds for some p3 € (0,p) and eachj € {1,...,m}, it is necessary and sufficient that, for some
p3 € (0,0) and kg € Z and each k € {ko, ko +1,...,ko+ m — 1}, relation (7) with cy, defined

m .
by (8) and (9) be true. Besides, we have ) A]-e’lpll’f =0,ifp € N.
j=1

Proof. Necessity. Since (see [11, p. 127])
m .
n(r,f) = Y e ®in(r, i f), kez,
j=1
then
ik [ f) ik,
N, ’ = zklP]/ : dt = lklp}N yWir ),
o f) = e [ Lee NG yi)
m .
N¢(r,f) = Yo e ™iN*(r,y;; f), k€Z.
j=1

Using (10), for some p3 € (0,p) and each k € Z we obtain relation (7) with ¢, defined by (8)

m .
and (9). In this case, ) A]-e*lpll’f =0,ifp € N.
j=1
Let us prove the sufficiency. Without loss of generality, we can assume that k) = 0. Then, by

analogy with [7, p. 1957] (see also [10, p. 118], [11, p. 127]), for k € {0,1,...,m — 1} we get

N (r, f) = N*(r, 91, f) + N*(r, 92, f) + ..+ N*(r, s ),
Ni(r, f) = e VIN*(r, o; f) 4+ e V2N (1,0, f) + ... + e PN (r, P f),

i, f) = e DRINE (g f) 4 e DRNE (5, go; f) 4 4 e T DIRNE (7, 5 ).

This is a system of linear equations for the unknowns N*(r, ¥i; f),j€A{l,...,m}. Its determi-
nant is the nonzero Vandermonde determinant

1 1 1

D_ e~ e Y2 . e~ 1Pm 20,

e~ im=1)p1  o—i(m=1)pp = p=i(m=1)py

Therefore, the functions N*(r, ¢;; f), j € {1,...,m}, can be represented as linear combinations
of the functions Ny (r,f), k € {0,1,...,m — 1}. Using (7), we obtain relation (10), where by
the Cramer’s rule A; = psz /D,j € {1,...,m}, and Dj is the determinant formed from the
determinant D by replacing the j-column with the corresponding column (co, ¢y, ...,Cm—1),
Ck := %"(1 — ’p‘—;), k€{0,1,...,m—1}. Lemma 3 is proved. O
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1/ 27(j—1)
Remark 1. Letp € (0,+00) \N, p, = (n+ 10’;”) P {An i n € N\{1}} := ULy {pne’ i

n e N\{1}}, m € N\ {1} and (7, p. 1958])

@ =TT (15 ) ew ()p:% (A—)g) p=1lol

n=1 =1

Then foreachj € {1,...,m}, we obtain (see [7, p. 1959])

i o 0
N* <r, 2r(j—1) 1);f> :r_2+O<—r ) r — +oo.
m 1Y logr

Therefore, relation (10) is not true for any p3 € (0, p). Furthermore,

2z 2rt(j—1) ) m < P )
Ny(r,f)=) N'(r,——=;f )| ==r"4+0(— |, r— +oo.
=X (r i) = S+ 01

Thus, relation (7) is not true for k = 0. Moreover, since

m . —27ki
2= - 1—e _
e m —W—O, kE{l,,m—l},
j=1 1—etm
we conclude that
o a2n-1)
nk(r,f) — Z Ze_lk m — 0’
pn=r j=1

foreachk € {1,...,m — 1} and all r > 0. Therefore, relation (7) holds for any p3 € (0,p) and
eachk € {1,...,m—1}.

Lemma 4. Let f be an entire function of order p € (0, +00) with zeros on a finite system of rays
{zrargz=1q¢;},j€{l,...,m},0 < ¢ < o < ... < Py < 271. In order that the equality (4)
holds for some py € (0,p) and each j € {1,...,m}, it is necessary and sufficient that for some
p3 € (0,0) and eachj € {1, ..., m} relation (10) be true.

Proof. Indeed, using Lemma 3 from [15, p. 143] twice, we obtain the required statement. O

3 PROOF OF THEOREM 1

Let the conditions of Theorem 1 be satisfied. Then, by Lemmas 2—4, the relations (6), (7)
and (4) hold. Let us prove the equality (5) for p € IN. Since (see the proof of Lemmas 2 and 3)

rex(t, Tt o
c(t, J¢) dt, Ne(r.f) = Y e ™iN(r,p; f), keZ,

ce(rlog f) = Ni(r, f) + 2 |

and ([4, p. 101])

0 = \°
stiost) = jor o T (1) (%)) kma-ren

2P 0<|Ay|<r
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m .

then, using formulas (4), (6), (7), (9) and the identity ) A]-e*lpll’f =0,p=p €N, for some
j=1

ps € (0,p) we get

= \ P
— An
Y, A =20rPcy(r,log|f]) —pQp+1F Y, <_>

0<|Ay|<r o<iial<r \ T

r t, t m . r
=@rP@Mnﬂ+&£fi#ﬁm)—m%+r”Zéﬂ%ﬁwwwwj>
j=1

m . r . r t,Jt
=20 (Z e [ L’lff’f) dt+p2/0 —Cp(t]f) dt) —pQp

j=1 0

L2 i e~ iPYj (rpn(r, i f)—p /Or =t g f) dt)

j=1
=201~ P(]Ze ZP‘/’//O(A 1 4o(t47 1)) dt 4 p? / ( 1 4o (t03™ 1)) dt)

—pQp + 20 Zleipq;j <Ajr2p + o(rP1HP) — p/o (Ajth—l + o(tF+HP71)) dt)
]:

p m .
=20r F (% Y Aje i 4 corf 4 0(rP4) + o(rp3)> —pQp
=1

m .
L2 Z oY (%ﬂp + O(rp4+p)>

j=1
—p(tye" — Q) +0(rF) + (1) = b5 +0(1#F), 1 = +oo.

Hence, equality (5) holds for p = p with 67 = p(Tfeief — Qp). In the case p = p + 1, condition

(5) follows from (4) (see [5, p. 23, Remark 2]). Thus, according to Lemma 1, the entire function

f is a function of improved regular growth. This completes the proof of Theorem 1.
Combining Theorem 1 with Theorem C, we obtain the following theorem.

Theorem 2. In order that an entire function f of order p € (0,+0c0) with zeros on a finite
system of rays {z : argz = ¢;},j € {1,...,m},0 < 1 < ¢ < ... < Py < 271, be of improved
regular growth with the indicator h(¢) defined by (1) and (2), it is necessary and sufficient
that for some p3 € (0, p) the relation (3) holds uniformly in ¢ € [0,27].

Remark 2. For eachm € IN \ {1;2} there exists an entire function f of order p € (0, +oc0) \ IN
with zeros on a finite system of rays {z : argz = ¢;}, ¢; := 2mlj— 1),] € {1,...,m}, such that
uniformly in ¢ € |0, 27| the relation (3) is not true for any p3 € (O p) and f is not a function of
improved regular growth.

Indeed, let f be an entire function of order p € (0, +c0) \ N, defined as in Remark 1. Then
(see [7, p. 1959])

| — 0 0
m plogt log t

foreach j € {1,...,m}. Thus, relation (4) is not true for any ps € (0,p), and, according to
Lemma 1, the entire function f is not a function of improved regular growth. Further, for each




SUFFICIENT CONDITIONS FOR THE IMPROVED REGULAR GROWTH OF ENTIRE FUNCTIONS ... 53

j€A{l,...,m}, we obtain ([7, p. 1959])

co(r,log|f]) :]§N<r,72n(j_1>;f> = —YP+O<%>, r — +oo0.

m
Furthermore, (see [6, p. 11], [7, p. 1959])

ex(r,log |f]) = ¢ x(rogIf), k< —1,

1 k PN 3 R VT
ce(rlog fl) = 5 1 [(r) —(%)]ge B <k,

U<t Hn

and : N i\ 2 e
ci(rlog f]) = =5 {y{; (u_) +V,§r<7) }j_le n, k>ptl,
where (see Remark 1)
fe‘”‘% _ {O, keN, k+#m,
=1 m, k=m.
In view of this, since

r
ck(r, J§) :/0 7Ck(t'l?g|f|) at, keZ, r>0,

7P

m
co(r, ]}) = Pr" + O(logr

Ji(e) = Y. a(r, Jpe™ = co(r, T+ Y el(rJpe™, ¢ € (0,27,
kez kez\{0}

)I r%—i_oo/

we conclude that the relation (3) is not true for any p3 € (0,p).

Acknowledgment. The author would like to thank anonymous referee for valuable com-
ments and careful reading.
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Xaup P.B. Aocmamui ymosu nokpauyeHoeo pecyigpHo20 3pocants yiaux QyHKyiil 6 mepmiHax ix ycepe-
onennq // Kapmatcebki maTtem. myba. — 2020. — T.12, Nel. — C. 46-54.

Hexait f — mina dyrkuist mopsiaky p € (0,400) 3 HyAsSIMM Ha CKiHYEHHI CUCTeMi TPOMEHiB
{zrargz = ¢j},j€{l,....m},0 < ¢ < ¢ < ... < ¢ < 271 h(p) — il iHaMKaTop. Y
2011 poui aBTOp 1Ii€] CTATTi AOBiB, IO SKIIO f € (PYHKIIEIO MOKPAIIEHOTO PETYASIPHOTO 3pOCTaHHS
(mira pyHEKIis f Ha3MBaeThCS (PYHKITEIO IOKPAIIEHOTO PETYASIPHOTO 3POCTAHHS, SKIIIO AAST ACSKIX
p € (0,400), p1 € (0,p) i 27T-1IEPiOANYIHOI P-TPUrOHOMETPUYIHO OIYKAOI pyHKIII /(@) # —oo icHye
muOoxyHA U C C, sKa MiCTUTBCS B 06’€AHaHHI KPYTiB i3 CKiHUeHHOIO CyMOIO paaiyciB, Taka, IO
log |f(z)] = |z|°h() + o(|z|f1), U # z = re!? — o), To arst aesikoro p3 € (0, 0) CriiBBiAHOIITEHHST

/r log |f ()| |f§te’4’)| dt = ﬁh(qo) +o(r’3), r— +oo,
1 4

BUKOHYEThCsI PiBHOMIpHO 3a ¢ € [0,27]. B AaHilf po6oTi, BUKOPMCTOBYIOUM MeTOA KoedilieHTiB
Dyp’e, MM BCTAHOBAIOEMO OGepHEHe TBEPAXKEHHS, a caMe, SIKIIIO AAST Aesikoro p3 € (0,p) ocTarkHe
ACYIMITTOTMYHE CIIiBBIAHOIIIEHHSI BUKOHYETHCSI piBHOMIPHO 3a ¢ € [0,277], To f € dpyHKIIi€Io OoKpa-
LIEHOTO PeTyASIPHOTO 3pocTaHHs. lle AOIOBHIOE aHaAOriuHi pe3yabTaTu b. Aesina, A. I'pymmHa,
A. Konaparioka, f1. Bacuabkisa Ta 0. Aamerka mpo ¢oyHKIIIT IAKOM peryAsipHOTO 3pOCTaHHSI.

Kntouosi croea i ppasu: mira YHKIIIS HIAKOM PEryASIPHOTO 3pOCTaHHS, ITira (PYHKITisI OKpaIlle-
HOTO PEryASIPHOTO 3pOCTaHHs, iHAMKaTOp, KoedpirieaTn Dyp’e, yceperHeHHsI, CKiHUeHHa cucTeMa
TPOMEHIB.
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ZERO PRODUCT PRESERVING BILINEAR OPERATORS ACTING IN SEQUENCE
SPACES

Consider a couple of sequence spaces and a product function — a canonical bilinear map asso-
ciated to the pointwise product — acting in it. We analyze the class of “zero product preserving”
bilinear operators associated with this product, that are defined as the ones that are zero valued in
the couples in which the product equals zero. The bilinear operators belonging to this class have
been studied already in the context of Banach algebras, and allow a characterization in terms of
factorizations through ¢"(IN) spaces. Using this, we show the main properties of these maps such
as compactness and summability.

Key words and phrases: sequence spaces, bilinear operators, factorization, zero product preserv-
ing map, product.

Faculty of Art and Science, Department of Mathematics, Marmara University, 34722, Kadikdy /Istanbul, Turkey
E-mail: ezgi.erdogan@marmara.edu.tr

1 INTRODUCTION

Let us fix a couple of Banach spaces having a characteristic operation involving couples of
vectors for giving an element in other Banach space. For example, the pointwise product of
functions from L and L?' for obtaining an element of LY, or the internal product in a Banach al-
gebra. Let us call “product” this bilinear map. Bilinear maps factoring through such a product
preserve some of its good properties, and so it is interesting to know which bilinear operators
satisfy such a factorization. This general philosophy is in the root of some current develop-
ments in mathematical analysis, mainly in the Banach algebras and vector lattices setting (see
for example [1,5,7,12] and references therein).

In this paper we analyze the class of bilinear maps factoring through a product in a dif-
ferent context. We study the main characterizations and properties when the operators act in
couples of classical Banach sequence spaces (¢¥ (IN)-spaces). The essential result (Theorem 1)
shows that the factorization is equivalent to a certain “zero product preservation” property.
Concretely, bilinear maps satisfying this property are the ones that are 0-valued for couples of
elements whose products are equal to zero.

Let us explain the relation of our class of maps with some notions and results that can be
found in the current literature. Alaminos J. et al have studied zero product preserving bilinear
maps defined on a product of Banach algebras and C*-algebras to get a characterization for
(weighted) homomorphisms and derivations. They have obtained a class of Banach algebras
A that satisfy the equality ¢(ab,c) = ¢(a,bc), a,b,c € A, for every continuous zero product
preserving bilinear map ¢ : A X A — B. By adding some conditions to the algebra, they have

YAK 517.98
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proved that ¢(ab,c) = ¢(a, bc) gives a factorization for the bilinear operator ¢ as ¢(a,b) :=
P(ab) for a certain linear map P : A — B [1]. Recently, Alaminos J. et al have shown in [2] that
there are some Banach algebras that do not satisfy the equality ¢(ab,c) = ¢(a, bc) such as the
algebra C'[0, 1] of continuously differentiable functions from [0, 1] to C, although the operator
@ is zero product preserving map. In particular, this shows that any bilinear operator cannot
be factored through the product.

In the meantime, some authors have studied the zero product preserving property for the
bilinear maps acting in vector lattices and function spaces with the name orthosymmetry. This
term is firstly used by Buskes G. and van Rooij A. to give a factorization for bilinear maps
defined on vector lattices and they obtained the powers of vector lattices by orthosymmetric
maps, see [6,7]. Recently, Ben Amor F. has studied the commutators of orthosymmetric maps
in [4] and investigated an expanded class of orthosymmetric bilinear maps that are related
to symmetric operators given by Buskes G. and van Rooij A. The interested reader can see
the reference [5] for a detailed information about the orthosymmetric maps acting in vector
lattices.

In a different direction, factorization of zero product preserving bilinear maps for the con-
volution product acting in function spaces has been studied by Erdogan E. et al (see [10]).
Recently, Erdogan E. and Gok O. have studied a class of bilinear operators acting in a pro-
duct of Banach algebras of integrable functions and showed a zero product preserving bilinear
operator defined on the product of Banach algebras that factors through a subalgebra of abso-
lutely integrable functions by convolution product (see [11]). Moreover, Erdogan E. et al have
obtained a class of zero product preserving bilinear operators acting in pairs of Banach func-
tion spaces that factor through the pointwise product and they have given characterizations
by means of norm inequalities for these bilinear maps [12].

The aim of this paper is to give a new version of the factorization results given in the men-
tioned studies for the zero product preserving bilinear operators defined on the product of
sequence spaces. We center our attention on bilinear operators B defined on the product of
Banach spaces E and F satisfying the zero product preserving property

x®y = 0implies B(x,y) =0, (x,y) € EXF,

where ® is defined using the pointwise product of sequences, showing that they are exactly
the ones that factors through ®.

This paper is organised as follows: Section 2 is devoted to giving some preliminary results
on products and factorization through them. In Section 3, the main result of the paper on
factorization of zero product preserving on sequence spaces is proved (Theorem 1). Using it,
compactness and summability properties of product factorable operators are investigated and
some applications are given.

2 PRELIMINARIES: PRODUCTS AND BILINEAR MAPS

We use standard notations and notions from Banach space theory. The sets of natural num-
bers and integers are denoted by IN and Z, respectively. For a Banach space E, B will denote
the unit ball of E. We write x4 for the characteristic function of a set A. Operator (linear or
multilinear) indicates continuous operator. The space of all linear operators between Banach
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spaces X, Y is denoted by L(X, Y), and we write B(X x Y, Z) for the vector space of all bilinear
Z-valued operators, where Z is also a Banach space.
For a positive real number p, ¢ (IN) is the space of all complex valued absolutely p-sum-

o 1/p
mable sequences. It is a Banach space with the norm ||(x;)||, = < Y |xi]? ) for p > 1, and
i=1

¢*(IN) shows the Banach space of all bounded sequences endowed with the norm ||(x;) |l =
upyen il

If y is a measure and 1 < p < oo, we write LP () for the Lebesgue space of classes of p-a.e.
equal p-integrable functions.

We call a continuous operator (weakly) compact if it maps the closed unit ball to a relatively
(weakly) compact set.

A Banach space E has Dunford-Pettis property if every weakly compact linear operator
T : E — F is completely continuous (that is, it maps every weakly compact set A € E into a
compact set with respect to the norm topology of the Banach space F).

A linear operator T : X — Y is said to be (p, q)-summing (T € I1,,4(X,Y)) if there is a
constant k > 0 such that for every x4,...,x, € X and for all positive integers n

n

<éHT(xi)H§)1/p <k sup <Z |<xi,x’>|‘7>1/q_

x'€Byr i=1

For the summing operators we refer the reader to [9].

Throughout the paper we will use the term product for a specific bilinear map, typically
with some special properties and being canonical in some sense. However, the only assump-
tion on such a product is that it is a continuous bilinear map. We will need stronger properties
for the products that are presented in [12] by Erdogan E. et al.

Definition 1. Consider a bilinear operator ® : X x Y — Z, (x,y) ~» ®(x,y) =: x ® y, where
X, Y, Z are Banach spaces. We say that the bilinear operator ® is a norm preserving product (n.p.
product for short) if it satisfies the inclusion By C ®(Bx x By) and

lx@yllz =inf {|x|xlly'lly: ¥ € X,y €Y, x0y =x" @y},
forevery (x,y) € X x Y.
Now let us give some examples of bilinear operators that are n.p. product or not.

Example 1. Let (), %, it) be a complete o-finite measure space and let (E, ||.||g) be a Banach
function space over y. (For the definition of Banach function space we refer to [14, Def 1.b.17]).
We will write E(P), p > 1, for the p-convexification of the Banach lattice E in the sense of
[14, Ch. 1.d] (see also the equivalent notion of pth power in [17, Ch.2] for a more explicit
description). In the case that E is a Banach function space, E\P) is also a Banach function space
with the norm ||f|| ) = |Hﬂi’|]1}5/;7 for f € E (see [16, Prop.1]).

Let us consider the bilinear operator defined by the (ji-a.e.) pointwise product ® : E() x

E@W — EW, (f,g) ~ f-g, where % + % = % forl <r < p,q < . We claim that this bilinear

map is a norm preserving product. Indeed, consider f € Bpi), h := |f|"/Psgnf € E() and
g:=|f""1 ¢ E@, where sgnf denotes the sign function of f. By the definition of the norm of
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e B y PP 1/p _ r/p
the p-convexification, it follows that ||h|p,) = ||||f|"/sgnf ; = A" = Ifllge < 1.

Similarly, (|8 zq) = HerE/(f < 1. Therefore, By € ©(Bg(,) X Bp()) is obtained.

Let us show now that ||l - g|| ¢y = inf{||1|| co» |18 || gy = B € EW, ¢ cEW, h-g=H-g'}
forh € EP) and g€E (). Indeed, by the generalized Holder’s inequality we have thath - g €
E" and ||k - Slleey < g 1€l (see [16, Lemma 1]). Since this inequality holds for all
couples (I',g") suchthatf =h-g =h'-g', weobtain ||h-g|| ;o) < inf{||W'||||g'|| :h-g=H-g'}.
Conversely, consider an arbitrary element f € E\). Then f has the following factorization:

b= |fI"/Psgnf € EW), g = |f"/1 € EW and - g € E). Moreover, ||l = ||f||}/}) and
/ g ,
181l = I £1I5) - Therefore [[hl| g 81l o) = ILFIES G = £l This proves

Hf”}g(r) = ||k ‘gHE(r> > inf{Hh/HE(w”g/HE(q) th-g= H 'g/}r

and so ® is an n.p. product.

Note that if we consider E = L () we obtain that the pointwise product is an n.p. product
from LP(pu) x L1(p) to L"(u). In particular, if p is the counting measure on IN, the pointwise
product ® : (P(N) x ¢1(N) — ¢"(IN) is an n.p. product (for a more detailed information
see [16, Lemma 1] or [17, Lemma 2.21(i)]).

Example 2. Let E, F be normed spaces and E ® F denotes their algebraic tensor product. Pro-

jective norm 7t and injective norm ¢ on E ® F are calculated by 7t(z) = inf { Y xillllyil c z =

Yo X ®y1~}, and ¢(z) = sup {(x’ ®y,z): x' € B,y € Bp/}, respectively (see [8, Section
2,3]). It is well-known that any reasonable tensor norm a on the tensor product E ® F satisties

the inequality e < a < 7. For every (x,y) € E x F, it is seen that by the definitions of these
norms

e(x@y) <a(x@y) < n(xey) <inf{|X[lly]: ¥ @y =x®y}.

Besides, for every simple tensor x ® y it is known that for any reasonable tensor norm a
we have a(x ® y) = ||x||ellyllr (see [8 §12.1]). Then, any reasonable tensor norm satisfies
the equality involving the norm in Definition 1. But the tensor product does not satisty the
inclusion, since clearly it is not surjective. So, it is not a norm preserving product.

Example 3. Let us define the following seminorm on X ® L(X,Y). Ifz = }.{; x; ® T; is such
that} i, Tj(xj) = yz € Y, we define

m m
Te(z) = inf{rc(z’) 12/ =) xj®T], such that ) Ti(x}) = VZ}-
p =1

That is, 7. is the quotient norm given by the tensor contraction ¢ : X®L(X,Y) — Y de-
fined as ¢(z) = ¢ 2;7:1 Z;l:1 X ® T]-) = Z;l:1 o(x;, Tj) = ;7:1 Tj(x;j) associated to the following
factorization.

X x L(X,Y)

®l ‘

X&L(X,Y) =Y.
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The description of this seminorm can be found in [18]. It defines a norm if we construct a
quotient space X® ,L(X,Y) by identifying the equivalence classes of the projective tensor pro-
duct X&-L(X,Y) with the range of cin Y, i.e. ¢c(X®L(X,Y)) C Y. Thus, forz = i1 % ®T;
and z' = Y"1 x; ® T}, z ~ 7' if and only if }J", Tj(x}) = L’ Tj(x;j). The norm of a class
2] ={z' 1z~ 2}, forz = 1L x; ® T, is given by

Te(z) = inf{7t(z) : z ~ 2'}.

Let us show that e is a norm preserving product.

FixT € L(X,Y) and x € X and consider y, = T(x); clearly the inequality ||y.| < ||T||||x|
holds. Now, consider another tensorz = Y_!' ; x; ® T; such thaty, = Y/ ; Ti(x;). Since ||y.|| =
|2 TiCxo)ll < X0y T3 il we obtain that [ o TI| = lyz|| < 7 (2).

In the opposite direction, fory € Y there are elements Ty € L(X,Y) and xy € X such that
To(x0) = y and ||y|| = ||Tol/||x0l|- To see this, just take a couple (xo, x;,) of norm one elements
xo € X and x{; € X’ such that (xp, x)) = 1. Now define Ty(x) := (x,x})y, x € X, and note
that ||Ty|| = ||y||. Therefore, if z = xo ® Ty, we have thaty = y.. So, this gives in particular
that By C e(Bx x By(x,y)), since 7te(z) < [ly:||. Together with the inequality in the previous
paragraph this also gives ||xo ® To|| = ||yz|| = 7e(z). More precisely, we have proven that

Hx ° T”y = inf{HxOHxHToHL(le) x0 € X, Ty € L(X,Y), xeT =xpe T()}
forallT € L(X,Y) and x € X. Thus, e is a norm preserving product.

Since to find the factors of a Banach space is a current problem in the mathematical liter-
ature, there are found more examples of the norm preserving products including the Banach
function spaces (see [13,15,19]).

Let X, Y, Z be Banach spaces. A bilinear operator B : X x Y — Z is called ®-factorable
for the Banach valued n.p. product ® : X x Y — G if there exists a linear continuous map
T : G — Z such that B factors through T and ® (see [12, Definition 1]).

In this case, the following triangular diagram

Xx)f—B>Z

.

G

holds. In the paper [12], Erdogan E. et al have proved a necessary and sufficint condition for
®-factorability by a summability requirement as follows.

Lemma 1 (Lemma 1, [12]). The bilinear operator B : X x Y — Z is ®-factorable for the n.p.
product ® if and only if there exists a constant K such that forall x1,...,x, € Xandyy,...,yn €

Y we have
n
‘ Z Xi ®Y;
i=1

Example 4. Consider a bilinear continuous operator B : ¢>(N) x (*(N) — ¢*(N). Let us
use the result above for characterizing when B is ®-factorable with respect to the pointwise
product. It was shown in the first example that the pointwise product ® from ¢*(IN) x ¢?(IN)

Z B(xi/ yl)
i=1

< K|
Z

o
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to 1(IN) is an n.p. product. Let (a,b) = (L, KX (k) L1 BriX {m}) € (2(N) x £2(N). Then
the image of this element under pointwise product is

(9]

a®b= Z Z X{k} © X{m}) Z “kﬁk?({k}-
k=1 m=1

Thus, for the finite sets of sequences ay, .. .,a,, by, ..., b, we have

Zaz Ob; = Z Z “zkﬁzk%{k} = Z <Z ‘sz.sz)X{k}
i=1k=
The ¢'(IN) norm of this sequence is [zllay = Lizi | St aixPic|- By Lemma 1, we
obtain that the bilinear operator B factors through the pointwise product if and only if there is
a constant K for all finite sequences (a;)"_,, (b;)"_, C £*(IN) such that

Y B(ai, b)
i=1

Let us consider now a more specific bilinear operator B : £>(IN) x ?(IN) — ¢(IN): a diago-
nal multilinear operator. Recall that a bilinear operator B € B(¢?(IN) x ¢?(IN), ¢1(IN)) is called
bilinear diagonal if there is a bounded sequence ¢ = ()i such that B(a b) = Yelq SraxBrX (xy-
By Holder inequality, it is easily seen that B € B({>(N) x ¢*(N), ¢} (IN)) if and only if ¢ €
(*(N). For arbitrary finite sequences (a;)"_,, (b;)"_; C ¢*(IN), we obtain

H i B(a;, b;)
i

Therefore, it is seen that every bilinear diagonal operator is factorable through ©. Remark
that a bilinear diagonal operator satisfies that B(a,b) = 0 whenever a ©® b = 0. We will prove
in what follows that this is also a sufficient condition for factorability of bilinear operators
defined on the topological product of sequence spaces.

[ee]

ikBik |-

zkﬁsz{k}H < |8k loo Z ) Zﬂézkﬁzk zkﬁzk

i=1k=

3 THE POINTWISE PRODUCT IN SEQUENCE SPACES

Let us center our attention in this section in a particular product that is important in math-
ematical analysis. It is given by the pointwise product of sequences, functions and generalized
sequences belonging to Banach lattices. In order to give a full generality to our results, we will
consider several extensions of the bilinear map given by the pointwise products.

In the case of sequences, we will consider the following notion. The reference product is
the pointwise product of sequences, thatis ® : /F(IN) x #/(IN) — ¢"(N), a®b =a-b =
(a;ib))2, € '(IN), that is well-defined and continuous by Holder’s inequality. This is clearly
an n.p. product, as have been explained in the previous section. Also, it has commutativity
and associativity properties.

The following notion is crucial in this paper.

Let X, Y, Z be Banach spaces. We say that a bilinear continuous operator B: X x Y — Z is
zero “product”-preserving if it is 0-valued for couples of elements whose product equals 0.

1 1
Theorem 1. Let — + — = - for1 <r < p,q < oo. Consider a bilinear operator B : (¥ (IN) x

¢1(IN) — Y. The following assertions are equivalent.



ZERO PRODUCT PRESERVING BILINEAR OPERATORS ACTING IN SEQUENCE SPACES 61

(1) The operator B is zero ®-preserving, i.e. B(x,y) = 0 whenever x ® y = 0.

(2) The operator B is ®-factorable. That is, there is a linear and continuous operator T :
¢"(N) — Y such that B =T o ®, and so we have the factorization

(P(N) x £1(N) ——Y

R A

(N,

Proof. Let us show that there is a linear continuous operator T such that B := T o © whenever
the operator B is a zero ®-preserving. Define the map T, : (F(IN) ©® ¢1(IN) — Y, Tu(z) :=
B(z ® Xf1,2,.n1: X{1,2,.,ny) for alln € N, where z € £/(IN) ® £7(IN); note that z © x{12,. 4} €
(P(N), and X143 € ¢7(IN), and so T, is well defined for each n € IN. The linearity of T,
is a consequence of the linearity of the bilinear operator B in the first variable. To show the
boundedness of the map T;,, we give an equivalent formula for this operator. Since X1, .1 =
Y_i—1 X{i} by the properties of characteristic function, we have

n

Tu(@a®b) =B@©bO X, ap X{12.0}) = 3 B@ObO X2, 1 X{i})-
i=1
The pointwise product of a = (a;)>, € (/(N) and b = (Br);>; € LI(N)isaOb =
(akBr)iz1 = k-1 ®kPrX{k}- By the continuity of B, the image of the couple (a,b) € (P(IN) x
¢1(IN) under the bilinear operator B is

B(a,b) = B< Y mXk Y ﬁm%{m}) =Y Y BuB(Xgky X(m))-
k=1 m=1 k=1 m=1

Since Xk} © X{m) = 0(k # m) and by the zero ®-preservation of the operator B, we have
B(a,b) = Y371 axBrB(X (k}, Xk})- Thus,

(e 9]

n
Tu(a®b) =) Bao®boxpo, ayXii}) = < Z akBrX (ky © X{1,2,. n}/X{z})

i=1 é =
LE

I M:

axBrB(X (k) X 1iy)-

Using the zero ®-preservation property once again, we obtain

Tu(a®b) = Z aiBiB(Xfiy, X{iy) —B<2“151X{},ZX{}> —B<2“1X{}rxﬁzX{})

l_

By the boundedness of the bilinear operator B, it follows that

sup || Tyzly = sup HB< Y Xy ) 50{{4) HY
ZEB[;V(]N) (a,b)EBé,p(N)XBM(N) i=1 i=1
z=a®b
n
< sup Y lwiBil I B(xgiy, x i) lly < eo.

(ll,b)EB[p(H\U XBM(N) i=1
z=a0b
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This shows that T, is (uniformly) bounded, n € N, and therefore (T;)S_; is a bounded
sequence of linear operators acting in ¢'(IN), since ¢"(IN) = ¢/(IN) ® ¢7(IN). Indeed, note that
since ® is an n.p. product, we have that it is surjective and preserves the norm, and so for
every z € {"(IN) we find adequate a € /#(IN) and b € ¢7(IN) such thatz = a ® b.

The sequence {T,(a ® b)};>; is a Cauchy sequence for every a € ¢/(IN) and b € (1(IN),
and it is convergent by completeness of the Banach space Y. Indeed, since a ® b € ¢"(IN), then

for every e > 0, there is an N € IN such that

HZ 0] . HZﬁzx{z}

Using again that B(x{;}, x{j;) = 0if i # j, we obtain

Vn > N.

(N W

m

ITutab) = Toa @)y = B ml lﬁix{i}'_; x|,

+
<18i] 33wl I 22 5
Let us define now the limit operator T : ¢"(IN) — Y of the operator sequence {T},}, that
is T(a®b) = limy—e0 Tn(a ©®b). It is easily seen that T is well defined and linear. Since
Tu(a ® b) converges for every a © b € ¢'(IN), then it is bounded for every a ® b. By the Uniform
Boundedness Theorem, it follows that T is continuous. Therefore, we obtain

<& Vm>n>N.
#1(N)

n
B(a,b) = r}g{}o;‘xiﬁiB(X{i}rX{i}) = lim T,(a©b) = T(@@Ob).
Besides, the image of an element is independent from its representation. Indeed, for the ele-
ment x = a; ® b; = ay ® by, we obtain
T(ay ©by) = lim B(a1 © b1 O X{12,.m} X{12,...m})
= lim B(a2 © b2 © X{12,..m} X{12,..,m}) = T(a2 © ba).

Hence we obtain the factorization of the bilinear operator B through the pointwise product as
B=To®.

For the converse, assume that the map B is ©®-factorable. Then, by Lemma 1 given in
[12] (see also page 59) it is obtained that there is a positive real number K such that, for all
X1,...,Xp € (P(N) and yy, ..., yn € ¢1(IN), the following inequality holds

B Xi, Yi .
i; (xi, i) )

Clearly, this inequality implies zero ©-preservation of the bilinear map B. This finishes the
proof. O

'Qyi

Now we will give a generalization of our results. Consider two Banach spaces E and F that
are isomorphic -as Banach spaces- to ¢/(IN) and ¢7(IN), respectively, and the isomorphisms
are given by the operators P : E — (/(N) and Q : F — ¢7(IN). We define the product
®P><Q :EXF — ﬂ(N) by

Opxo(x,y) =P(x) ©Q(y), x€E, yeF.
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To make this definition more understandable, let us illustrate it by the following diagram

®PxQ

ExF '(IN).

P(N) x ¢1(N)

In this situation considered above of the product ®pxo = P(.) ® Q(.), a bilinear map
B: E x F — Yis zero Opyg-preserving if

Opxg(x,y) =0 implies B(x,y) =0

forall x € E and y € F. Namely, the map B is said to be zero ®p, g-preserving if B(x,y) = 0
whenever P(x) ® Q(y) =

1 1 1
Theorem 2. Let; + 7 = torl <r < p,q < oo. Let the Banach spaces E and F be isomorphic
to (P (IN) and ¢1(IN) by means of the isomorphisms P and Q, respectively. Consider a Banach

valued bilinear operator B : E x F — Y. The following assertions imply each other.

(1) The operator B is ©pyq-factorable. That is, there exists a linear continuous operator
T:¢"(IN) = Y such that B= T o ®py, and the following diagram commutes.

ExF B Y
PxQ T
; |

OP(N) x 6N - " (N).

(2) There is a positive real number K such that, for every finite set of elements {x;}!' ; € E
and {y;}!_, € F, the following inequality holds

xi) © Q(yi)

(']/z‘ (N

(3) The operator B is zero ®py o-preserving, that is, x ®pyxq y = 0 implies B(x,y) = 0.

Proof. Let us prove that (3) implies (1). Under the conditions of the theorem, consider the
bilinear map B = Bo (P! x Q1) : /P(IN) x £9(IN) — Y. We have that forall x € Eand y € F,
X ®pxoy = P(x) ® Q(y) = 0 implies that 0 = B(x,y) = B(P(x), Q(y)) = 0. That is, since P
and Q are isomorphisms, we have that foralla € /?(IN) and b € ¢1(IN), a © b = 0 implies that
B(a,b) =

We are in situation of using Theorem 1 for B. So we have that there is a linear operator
T : ¢'(N) — Y such that B = T o ®. By the definition of B, we obtain B = Bo (P x Q) =
To®o (P x Q), the required factorization.

The equivalences among the three statements of the theorem follow directly using Lemma
1in [12] and this factorization. O
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We will say a bilinear map B : X x X — Y is symmetricif B(f,g) = B(g, f) for every couple
(f,g) e XxX.

It is easily seen that any ®-factorable bilinear map B : ¢/(IN) x ¢’(IN) — Y factorized
through ¢"(IN) for 2r = p is symmetric, since B(a,, b,) = T(a, ©® by) = T(by © an) = B(by, a,)
holds for all (a,)$>_, (bn)5_; € £7(IN) by the commutativity of the pointwise product.

Now, we will give symmetry condition for general product.

Corollary 1. Let the Banach space X be isomorphic to (¥ (IN) for p > 2. Then any zero ®pxp-
preserving bilinear map B : X x X — Y satisfies the symetry condition, that is B(x,y) =
B(y,x) forallx, y € X.

Proof. Since the map B is zero ©py p-preserving, it is ©p p-factorable. Then, for r = p/2 there
is a linear continuous map T : ¢"(IN) — Y defined by B(x,y) = To®o (P x P)(x,y) =
T(P(x) ® P(y)). By the commutativity of the pointwise product we get the symmetry

B(x,y) = T(P(x) © P(y)) = T(P(y) © P(x)) = B(y, x).
O

Remark 1. The extension of the result given in Theorem 1 from the case of ® to the case of
Opx@ products implicitly shows a fundamental fact about factorization through the point-
wise product. The requirement “a ® b = 0 implies B(a,b) = 0” can be understood as a
lattice-type property: indeed, note that for sequences a and b in the corresponding spaces,
a ®b = 0 if and only if a and b are disjoint, and so we can rewrite the requirement of being
zero ®-preserving as “if |a| A |b| = 0, then B(a,b) = 0”. Since P and Q are just (Banach space)
isomorphisms, we have shown that the property is primarely related to the pointwise product,
and not to the lattice properties. The result is particularly meaningful if we consider P and Q to
be the isomorphisms associated to changes of unconditional basis of (¥ (IN) and ¢1(IN) whose
elements are not in general disjoint.

Remark 2. Consider the bilinear map B : E x E' — Y, where E’ denotes the topological dual of
E. This bilinear map can only be ®py o-factorable through the sequence space (*(IN). Indeed,
let P denote the isomorphism between E and ¢F(IN) (p > 1). Since the duals of isomorphic

/ 1 1
spaces are isomorphic, it follows that E' is isomorphic to (¢F(N))" = ¢F (N) for; + P =1by
the isomorphism P’ that is adjoint map of P. Therefore B can only be ®p, p:-factorable and in
this case it is factorized through ¢! (IN).
3.1 Compactness properties of zero ©p, o-preserving bilinear maps

Theorem 2 provides a useful tool to obtain the main properties of zero ®p, o-preserving
bilinear maps. It is already clear that (weakly) compactness of the factorization map T is
necessary and sufficient condition for the (weakly) compactness of the zero ©p g-preserving
map B by the definition of the norm preserving product. Indeed, for a zero ®p o-preserving
map B,

B is (weakly) compact <= B(Ux x Uy) is relatively (weakly) compact
= B(Uppn) X Upny) is relatively (weakly) compact
< T(Up () is relatively (weakly) compact
<= T is (weakly) compact.

Now, we will give more specific situations.
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1 1 1
Proposition 1. Let — + — = - forl <r < p,q < 0. Suppose that there are isomorphisms P

p
and Q such that the bilinear operator B : E x F — Y is zero ®px g-preserving. Then
(i) B(E x F) is a linear space;
(ii) if P and Q are isometries, then B(Bg X Bp) is convex;

(iii) ifr = 1 and Y is reflexive, then B(Bg X y) is a relatively compact set for every y € F as
well as B(x x Br) is relatively compact for every x € E;

(iv) ifr > 1, then B(Bg x Bf) is relatively weakly compact;
(v) if1 <s<r<ooandY = ¢*(IN), then B(Bg x Bp) is relatively compact.

Proof. Consider the factorization for B givenby B =T o (P ® Q).

(i) Since ® is an n.p. product and B factors through it by Theorem 2, we have that
B(Ex F) = T(/P(N) ® ¢1(IN)) = T(¢"(IN)), that is, the range of a linear map. So it is a
linear space.

(i) Clearly, A = P ® Q(BE x Br) = BNy © Bu(ny = Byr) is a convex set, and so T(A) is
also convex.

(iii) Note that there is a sequence b = Q(y) such that A = P ® Q(Bg,y) is equivalent to
Bppny ©b C ¢'(IN). Recall that 1 < p,q < co. Note also that T : /1(IN) — Y is weakly compact
by the reflexivity of the range space Y. Since A is a weakly compact set in ¢! (IN) we have that
T(A) is relatively compact by the Dunford-Pettis property of £} (IN).

(iv) Since B(Bg x Bp) = T(P(Bg) ® Q(Br)), and P(Bg) ® Q(Bg) is equivalent to the unit
ball of the reflexive space ¢"(IN), we get the result.

(v) Recall that by Pitt’s Theorem (see [9, Ch. 12]), every bounded linear operator from ¢ (IN)
into £°(IN) is compact whenever 1 < s < r < co. The factorization gives directly the result. [

3.2 Zero Opyp-preserving bilinear operators among Hilbert spaces

In this section, assume that E, F and Y are separable Hilbert spaces. Our first result shows a
summability property of zero product preserving bilinear maps, and is a direct consequence of
Grothendieck’s Theorem. It also provides an integral domination for B. The second corollary is
obtained as a result of the Schur’s property of /! (IN) (recall that a Banach space has the Schur’s
property if weakly convergent sequences and norm convergent sequences are the same) and it
is again an application of the compactness properties of the bounded subsets of /! (IN).

Corollary 2. Let Hy, Hy and H3 be separable Hilbert spaces. Let B : H] x Hy — Hj3 be a zero
Opxg-preserving bilinear operator. Then

(i) forevery xi,...,x, € Hy,y1,...,yn € Hy there is a constant K > 0 such that

<K

4

< x) © Qyi), z >

)B Xi, i)

z EB % () i=

(ii) and there is a regular Borel measure 1] over By~ such that

1By <K [ 1(Px)©QW),)dn(), x € H, y€ Hy



66 ERDOGAN E.

Proof. Let us consider the zero ®py g-preserving bilinear map B : Hy X Hy, — Hj. Since any
separable Hilbert space is isomorphic to the sequence space ¢?(IN), we can define a bilinear
map B = B(P~! x Q1) : ¢3(N) x 2(N) — Hjs. The zero ®pyg-preserving property of
B implies the ®-preserving property of the map B. Therefore, by Theorem 2 we have the
factorization B := T o ®, where T : /1(IN) — Hj. One of the results of Grothendieck’s Theorem
states that every linear operator from ¢!(IN) to a Hilbert space is 1-summing. It follows that,
for every x1,...,x, € Hy, y1,...,yn € Hp there is a constant K > 0 such that

n
3
i=1

- [(Px) @ Q). 2|

‘B(xir]/i) = éHE(P(%‘ (vi) H <K

ZGB (°°(N) i=1

The second inequality of the corollary given above is clearly seen by Pietsch Domination The-
orem (see [9, Theorem 2.12]). This theorem states that every 1-summable operator has such a
regular Borel measure. Thus, we get a regular Borel measure 77 over By satisfying

IB(x,y)|| = IB(P(x), Q)| <K / (y),2)]dn(z)

Bioo(
for x € Hy, y € Hs. O

Corollary 3. Let Hy, Hy and H3 be separable Hilbert spaces. Let B : Hy X Hy — Hj3 be a zero
Opxg-preserving bilinear operator. Then

(i) for every couple of sequences (x;)$° | in Hy and (y;)$>, in Hy such that (P(x;) © Q(vi))%,
is weakly convergent, we have that (B(x;,y;)), converges in the norm;

(i) for Sy C Hy and Sy C Hj such that P(S1) ® Q(Sz) C ¢}(IN) is relatively weakly compact,
we have that B(S1 x Sp) is relatively compact.

We can obtain some (weaker) summability results if we consider the range space Y with
some cotype-related properties. It is known that a Banach space has the Orlicz property;, if it
is of cotype 2 (see [8, 8.9]). Recall that a Banach space is said to have the Orlicz property if the
identity map initis (2, 1)-summing. It follows that for any zero ©p o-preserving bilinear map
B : E x F — Y whose range space Y has the Orlicz property, we get a domination as follows:
for f1,...,fn€ Eand g1,...,gn € F,

(X IBtsalR) " <k sup || Ees(P(f) © Q)

ge{-11}  i=1

Let us finish the paper with an application by using convolution maps defined on sequence
spaces and function spaces.

3.3 Application: convolution maps

Consider any bilinear map B : L?[0,27] x L2[0,27] — Y such that B(f,g) = 0 when-
ever f, ¢ € L?[0,27] are such that f ©®~,~g = f@ g = 0, where ~ denotes the Fourier trans-
form. Plancherel’s well-known theorem states that the Banach space L?[0,27] is isometri-
cally isomorphic to £2(Z) by the Fourier transform. Therefore, the bilinear map B is zero
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O~x~-preserving. The class of these bilinear maps was investigated by Erdogan E. et al in [10]
by the term *-continuous map and they gave a factorization for B such that

B:Tovo(ao(’\x’\) =Tox,

where ” is the inverse Fourier transform.

Now, we will give a more specific example. H and H? stand for the holomorphic functions
on the unit disc ID and Hardy space of the functions, respectively. Recall that Hardy space 2
consists of the functions whose all Fourier coefficients are zero with negative index, besides,
it is closed subspace of L2[0,27r] which is isomorphically isomorphic to the sequence space
¢2(IN) by Fourier transform. It is possible to represent any holomorphic function f € H as a
Taylor polynomial f(z) = Y7 ,a,z". This representation is given by the Fourier coefficients
for the elements of 2 whenever f € H2.

Arregui and Blasco defined the u-convolution of the holomorphic functions f and g in
H given by f(z) = Y oax2" and g(z) = Y obnz" as f x, g(z) = You(an, bn)z", where
u : C x C — Cis abilinear continuous map (see [3, Definition 1.1.]). If we consider the bilinear
map u defined as u(ay,, by) = a, © by, then we get f %, g(z) = Y _o(an © by)z". Therefore, it is
seen that u-convolution defined on H? x H? to H? is a zero ®~,~preserving, since f ®~,~g =
f(n) ®g(n) = 0 implies f %, ¢ = 0 for all f, g € H2. By Theorem 2, it follows that there is a
linear map T : ¢1(IN) — H2 such that f , g = T(f(n) ®§(n)) = ¥ x,z", where (x4)5q is
the sequence in £!(IN) obtained by the pointwise product f(1) ® g(n). Also, by Corollary 1 it
is obtained that u-convolution is a symmetric map.
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Epaorau E. Bininitini onepamopu, ujo 36epieatomo Hyv08uti 006ymok, Ha npocmopax nocaidosHocmeti //
Kapmarcpxi marem. my6a. — 2020. — T.12, Nel. — C. 55-68.

PosrasiHeMO Tlapy MpOCTOpPiB ITOCAIAOBHOCTeN i pyHKIIIO A06YTKY (KaHOHIUHe 6iAiHiliHe Bia-
obpakeHHs, acolilioBaHe 3 IIOTOYKOBMM MHOXEHHSIM), IIIO Ai€ Ha HbOMY. MU aHaAi3yeMo Kaac 6i-
AlHIVHIX omepaTopiB, 0 “36epiraloTh HyABOBMIT A0OYTOK”, acOLiiOBaHWMIA 3 IIMM AOOYTKOM, BU-
3HAUEHNX TaKMM YMHOM, III0 BOHM AOPIiBHIOIOTH HYAIO Ha IlapaX, B SIKMX AOOYTOK AOPIiBHIOE HYAIO.
biaiHilfHi omepaTopy, 0 HaAeXaTh IIbOMY KAacy, BXXe AOCAIAXYBAAMCS B KOHTEKCTi 6aHaXOBMX
aArebp, BOHM MOXYTh 6yTU OXapakTepyu3oBaHi B TepMiHax dpaxropusaril ¢ (IN) mpocropis. Buxo-
PMCTOBYIOUN I1e, MU AEMOHCTPYEMO OCHOBHI BAACTVMBOCTI IIMX Bia06GpakeHb, TaKi sSIK KOMIIAKTHICTB i
CYMOBHICTb.

Kntouosi csi08a i ¢hppasu: MpocTOpy MOCAIAOBHOCTeI!, 6iAiHINHI onepaTopw, dpaKTopusaris, 36epi-
raloyJe HyABOBMIT AOOYTOK BiaOGpakeHHsI, AODYTOK.
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INTRODUCTION

An n-dimensional submanifold M in an m-dimensional Riemannian manifold M is pseudo-
parallel [1,2], if its second fundamental form ¢ satisfies the following condition

R.c=LQ(g,0), (1)

where R is the curvature operator with respect to the Van der Waerden-Bortolotti connection
V of M, L is some smooth function on M and Q(g,0) isa (0,4) tensor on M determined by
Qg ) (Z,W;X,Y) = (X NgY).0)(Z,W). Recall that the (0, k +2)-tensor Q(B, T') associated
with any (0, k)-tensor field T, k > 1, and (0, 2)-tensor field B, is defined by

Q(B,T)(X1,Xa, ..., X, X,Y) = (X ApY).T)(X1, Xa, ..., X)

(2)
=-T(XApY)X1,Xo,..., X)) — ... — T(X1,X2,..., Xk_1, XA Y)Xy),

where X Ap Y is defined by
(XABY)Z = B(Y,Z)X — B(X, Z)Y. 3)

In particular, if L = 0, M is called a semi-parallel submanifold. Pseudo-parallel submanifolds
were introduced in [1,2] as naturel extension of semi-parallel submanifolds and as the extrin-
sic analogues of pseudo-symmetric Riemannian manifolds in the sense of Deszcz [7], which
generalize semi-symmetric Riemannian manifolds. On the other hand, Murathan et al. [11]
defined submanifolds satisfying the condition

R.c=LQ(S,0), 4)
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where S is the Ricci tensor of M. The kind of submanifolds are called Ricci generalized pseudo-
parallel. Recently, many authors studied pseudo-parallel and Ricci generalized pseudo-parallel
submanifolds on various spaces, where the ambient manifold M has constant sectional curva-
ture, we refer for example to [2,5,10-12,14]. An integral submanifold of maximal dimension
M" of an S-manifold M?"** is called Legendrian and it plays an important role in contact ge-
ometry. The study of Legendrian submanifolds of Sasakian manifolds from the Riemannian
geometry point of view was initiated in 1970’s. Legendrian submanifolds like their analogues
in symplectic geometry, i.e. Lagrangian submanifolds. In [12], authors showed that a pseudo-
parallel integral minimal submanifold M" of an S-space form M?"*3(c) is totally geodesic if
Ln— 3(n(c+3s) +c—s) > 0.

In this work, we mainly prove that if a Legendrian normally flat submanifold M of an
S-space form M?"*5(c) is pseudo-parallel (resp. Ricci generalized pseudo-parallel) then it is
semi-parallel or totally geodesic (resp. minimal or L = —L1-).

1 PRELIMINARIES

We remember some necessary useful notions and results for our next considerations. Let
M" be an n-dimensional Riemannian manifold and M"™ an m-dimensional submanifold of M".
Let g be the metric tensor field on M" as well as the metric induced on M™. We denote by V the
covariant differentiation in M" and by V the covariant differentiation in M™. Let TM (resp.
TM) be the Lie algebra of vector fields on M" (resp. on M™) and T+ M the set of all vector
fields normal to M™. The Gauss-Weingarten formulas are given by

VxY =VxY+0o(X,Y), VxV=—-AyX+ VsV,

X,Y € TM, V € T+M, where V- is the connection in the normal bundle, ¢ is the second
fundamental form of M"™ and Ay is the Weingarten endomorphism associated with V. Ay
and o are related by g(AyX,Y) = ¢(c(X,Y), V) = ¢(X, AvY).

The submanifold M™ is said to be totally geodesic in M" if its second fundamental form is
identically zero and it is said to be minimal if H = 0, where H is the mean curvature vector
defined by H = L trace(v) [13].

We denote by R and R the curvature tensors associated with V, V and V= respectively.

The basic equations of Gauss and Ricci are

S(RX,Y)ZW) = g(R(X,Y)Z,W) + g(¢(X, Z),0(Y, W)) — g(o(X, W), (Y, 2)),

gR(X,Y)N,V) =g(R (X, Y)N,V) — g([An, Av]X, Y),

respectively, X,Y,Z,W € TM, N,V &€ TM.
The covariant derivative Vo of the second fundamental form ¢ is given by

Vxo(Y,Z) = Vx(o(Y,2)) —o(VxY,Z) —o(Y,VxZ).

The operators R(X, Y) from the curvature of V and X A Y can be extended as derivations
of tensor fields in the usual way, so

(R(X,Y).0)(Z,W) = RH(X,Y)(c(Z,W)) —(R(X,Y)Z,W) —0(Z,R(X,Y)W). (5)



LEGENDRIAN NORMALLY FLAT SUBMANIFOLS OF S-SPACE FORMS 71
Putting B=g¢, T = ¢ in (2) and (3), we get

Qg ) ZW;X,Y) = ((XAY).0)(ZW) =—c(XANY)Z,W) —0(Z,(XNY)W) ®)
—3Y, Z)o(X, W) +¢(X,Z)o(Y,W) —g(Y, W)o(Z,X) + (X, W)o(Z,Y).
Let M2"+5 be a (2n + s)-dimensional Riemannian manifold endowed with an ¢-structure (that
is a tensor field of type (1,1) and rank 2n satisfying ¢> + ¢ = 0). If moreover there exist on
M2nts global vector fields §1,...,¢s (called structure vector fields), and their duals 1-forms
N,..., s such thatforall X,Y € TM and «, B € {1,...,s} (see [8])

1a(Ep) = Oups PCa =0, Ma(9X) =0, P?X = =X +Y " 1(X)%a, (7)

then there exists on M a Riemannian metric g satisfying

8(X,Y) =g(eX, @Y) + Y _ na(X)1a(Y), 8)

and
1 (X) = 8(X,8u), 8(pX,Y) = —g(X, 9Y), )

forall « € {1,...,s}, M is then said to be a metric g-manifold. The @-structure is normal if
Ny +2) 51 Ca ®dn, = 0, where Ny, is the Nijenhuis torsion of ¢. B

Let ® be the fundamental 2-form on M defined for all vector fields X, Y on M by ®(X,Y) =
2(X, 9Y). A normal metric ¢-structure with closed fundamental 2-form will be called K-
structure and M?"*5 called K-manifold. Finally, if di; = ... = dijs = ®, the K-structure is
called S-structure and M is called S-manifold.

The Riemannian connection V of an S-manifold satisfies [3]

6;{4’,‘,,( =—pX, v €{1,...,s},

(Vx)Y =Y o (8(@X, Y)& + 1(Y)9?X), X,Y € TM,

where V is the Levi-Civita connection of g.

A plane section 7 is called an ¢-section if it is determined by a unit vector X, normal to the
structure vector fields and ¢X. The sectional curvature of 7t is called an ¢-sectional curvature.
An S-manifold is said to be an S-space form if it has constant ¢-sectional curvature c and then,
it is denoted by M?"*5(c) (n > 1) and its curvature tensor has the form [9]

R(X,Y)Z = c+3s

{2(0X, 92)97Y — 3(9Y, 92)9?X }
* —{g(qu Z2)pX —g(9X, Z)pY +28(X, ¢Y)pZ }

4
" ﬁi_l{ S(2)62Y — (Vs (2)97X

(10)

+8(9Y, 0Z)1a(X)Es — 89X, 9Z)1a (V)5 |,

forall X,Y,Z € TM.
When s = 1, an S-space form M(c) reduces to a Sasakian space form M(c) and s = 0
becomes a complex space form.
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2 PSEUDO-PARALLEL LEGENDRIAN SUBMANIFOLDS OF AN S-SPACE FORM

Let M" be an n-dimensional submanifold of an S-space form M2'*5(c). If 1,(X) = 0,
a € {1,...,s}, for every tangent vector X to M, then we say M is a Legendrian submanifold.
Recall that a submanifold M of M is an anti-invariant submanifold if ¢(TM) C T+M. So, a
Legendrian submanifold is identical with an anti-invariant submanifold normal to the struc-
ture vector fields ¢y, ..., ¢s. Actually, a Legendrian submanifold is special an integral subman-
ifold. Therefore, from (8) and (9) we obtain

89X, oY) = g(XY), na(X) = 8(X,8u) =0,
forany X,Y € TMand a € {1,...,s}. Then we have the following known Lemma (see [4]).
Lemma 1. Let M" be a Legendrian submanifold of an S-manifold, then
Az, =0,
ApxY = ApyX, (11)
foralla € {1,...,s} and X, Y € TM.
The previous Lemma implies immediately the following result.

Lemma 2. Fora Legendrian submanifold M" of an S-manifold M?'**, the following equations
8(0(X,Y), 9Z) = g(0(X, Z), 9Y), (12)
ApxY = —o(X,Y) = Ay X (13)
hold forall X,Y,7Z € TM.
Moreover, from (7) and (13) we obtain
PAxY = 0(X,Y) = pAyvX. (14)

Using (14), (9) and the Gauss equation, we have

R(X,Y) = R(X,Y) — [Apx, Agy]- (15)
We recall that the submanifold M is said to have flat normal connection (or trivial normal con-
nection) if R+ = 0. If M has normal connection flat then we call it to be normally flat.
Then, making use of (14), (5) and (6), if M is normally flat, the pseudo-parallelity condi-
tion (1) turns into

—AgwR(X,Y)Z — ApzR(X, Y)W = L{ — g(Y, Z) ApxW + (X, Z) Ajy W

(16)
—8(Y, W)ApxZ + g(X, W) Ay Z}.

So, a Legendrian normally flat submanifold M" of an S-space form M?'*5(c) is pseudo-pa-
rallel if and only if the equation (16) holds.

In particular, if L = 0 in (16) the M is said to be semi-parallel.

As a parallel submanifold, Vo = 0 (in particular, totally geodesic submanifold o = 0) is
semi-parallel it is obvious that also is a pseudo-parallel submanifold.

The following two propositions are the analogous results to [5, Prop. 3.1, Prop. 3.2] in case
of pseudo-parallel Legendrian submanifold of an S-space form, respectively.
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Proposition 1. Let M" be a pseudo-parallel Legendrian submanifold of an S-space form
M?"+5(c). If there is another smooth function L' satisfying (1), then L = L' at least on M — K,
whereK = {p € M /o, = 0}.

Proof. If L and L’ are two functions that satisfy (1), we get (L — L") Q(g,0) = 0. Choose an
orthonormal basis {ey,...,e,} of T,M, p € M. We have

(L—L")Q(g o) (e, erseie) = (L —L')[(e; Aej).ol(ex, e)
= (L—L"){ —glej ex)o(ei er) + glei ex)o(ej e)
— glej e)o (e, e) + glei, e)o (e ef) }
= (L—L"){ —dpo(ei,er) + (e, er)
— 60 (ex, e;) + 0y (e, ej) } = 0.

Fori =k # j = [ we get
(L— L’){(T(e]-,e) o(ej,e))} = 0.
Fori =k =1 # j we get
(L—L")o(e;,ej) = 0.

If L(p) # L'(p), p € M, then
oleie) =0, ole,e)=0o(ee),  Vije{l,... n}
Moreover, since i # j and from (12)
g(o(ei e), pej) = g(o(ei €)), pei) =0,

g(o(ei ei), pe;) = g(o(ej ej), pei) = go (e ef), pej) =0,
g(o(eie),Ca) = 8(@Apeei, Ca) =0,  Vae{l,...,s}.

So, we obtain g(c(e;,e;), N) =0Vi € {1,...,n},VN € T+*M and since {¢e1, ..., pen, &1,..., s}
is a basis of T M for a Legendrian submanlfold M, then ¢ = 0. Consequently

{pe M, L(p) # L'(p)} € K.
This proves the proposition. O

Proposition 2. Let M" be a pseudo-parallel Legendrian normally flat submanifold of an
S-space form M?"*$(c), then for any vector fields X,Y € TM we have

R(X,Y)pH = L{g(¢H, X)Y — g(¢H,Y)X},
where H is a mean curvature vector.

Proof. Let {ey,...,e,} bean orthonormal basis of TM and Z unit vector field of T, M for p € M.
YU € TM, (16) can be rewritten as

S(R(X,Y)Z, Apwl) + g(R(X, Y)W, AyzU) = L{g(Y, Z)g(Apx W, U)
—8(X, Z)8(Apy W, U) +g(Y, W)g(ApxZ,U) — g(X, W)g(Apy Z,U)}.
(17)
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If we put W = U = e; in (17), we obtain

S(R(X,Y)Z, Age,ei) + 8(R(X,Y)e;, Agzei) = L{g(Y, Z)g(Ayxei i) — §(X, Z)g(Agyei, e;)
+8(Y,ei)8(ApxZ,e;) — (X, e1)8(ApyZ,e;) }.
Assuming that {A,...,A,} are the eigenvalues of A,z corresponding to frame {ey, ..., e, }.
Using (11) in the above equation, we have
—3(R(X,Y)Ageei, Z) + Aig(R(X, Y)ej, ;) = L{g(Y, Z)g(Ageei, X) — §(X, Z)g(Age,ei, Y)
+8(Y,e)g(Agzei, X) — (X, e1)g(Apzei, Y) }
= L{g(Y, Z)8(Age,ei, X) — (X, Z)g(Age,ei, Y)
+Aig (Y, ei)glei, X) — Aig(X, e)g(ei, Y) }-
So that
—8(R(X,Y)Agpeei, Z) = L{g(Y, Z)g(Age,ei, X) — §(X, Z)g(Ageiei, Y) }.
From (13), we get
n
¢(R(X,Y)pH,Z) = —% Z;g(R(X, Y)Ageei, Z) = L{g(Y,Z)g(9H, X) — g(X, Z)g(¢H,Y)}.

1

0

3 MAIN RESULTS

Theorem 1. Let M" be a Legendrian normally flat submanifold of an S-space form M2+ (c)
with ¢ < s, then M" is pseudo-parallel if and only if it is semi-parallel or totally geodesic.

Proof. Since M" is a Legendrian submanifold and from (10) we have

R(x,v)z = L2 er, 2)x ~ g(x,2)7}, (18)
forany X,Y,Z € TM, so that
~ _c+3s

R(X,Y)pH {g(Y, pH)X — ¢(X, @H)Y},

where H is the mean curvature vector. As R+ = 0 and from (18), the Ricci equation reduces to
[Apx, Apy] = 0, so from (15) we get R(X,Y)pH = R(X,Y)¢pH, thus

c—+3s

R(X,Y)pH = {g(Y, oH)X — g(X, q)H)Y}.

Using the above equation and Proposition 2, we obtain

(C +35 L) {g(Y, oH)X — g(X, goH)Y} —0, (19)

this implies that L = —£3 or H = 0.
When L = —%35, if c = —3s,i.e. L = 0, that is, M is semi-parallel. If c # —3s,s0 L # 0,
then from (16), (10) and (11) we have

—8(Y,Z)ApxW + (X, Z) Apy W — g(Y, W) Ayx Z + §(X, W) Apy Z = 0. (20)
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Thus by using (20) and Proposition 1, we have o = 0, i.e. M is totally geodesic.
Now, assuming that L # —‘Hfs , then from (19), H = 0. By substituting (18) into (16) we
obtain

¢+ 3s
(L - ) { — (Y, Z)Agx W + (X, Z) Ay W — g(Y, W) Apx Z + g(X, W)Aq)yZ} = 0.
Putting X = W = ¢; and summing overi = 1,...,n,as H = 0we get L = CJZ?’S or AyyZ =0

(i.e. M is totally geodesic), forall Y, Z € TM.

On the other hand, if we suppose that L = . Notice that in [12] the authors gave a
necessary condition for a minimal pseudo-parallel integral submanifold M" (of an S-space
form M?"+5(c)) to be totally geodesic is Ln — 1[n(c + 3s) +c —s] > 0. Hence, in this case M
is totally geodesic. Conversely, if M is semi-parallel or totally geodesic obviously it is trivial
pseudo-parallel. O

c+3s
4

From (19), we easily prove the following result.

Corollary 1. Let M" (n > 1) be a Legendrian normally flat submanifold of an S-space form
M?"F5(c), with ¢ # —3s. If M" is semi-parallel then it is minimal.

In [12], the authors have shown that for a minimal Legendrian submanifold M" of an
S-space form M?"+5(c), if it is semi-parallel and satisfies n(c + 3s) + ¢ —s < 0, then it is
totally geodesic. Therefore, by Corollary 1 we have the following assertion.

Corollary 2. Let M" (n > 1) be a Legendrian normally flat submanifold of an S-space form
M?2"¥5(¢), with ¢ < —3s. If M" is semi-parallel then it is totally geodesic.

Theorem 2 ([4]). Let M™ (m < n) be a minimal anti-invariant submanifold of an S-space form
M?"+5(c) normal to the structure vector fields. Then the following assertions are equivalent.

1. M™ is totally geodesic.

2. M™ is of constant curvature k = %.

3. The Ricci tensor S = % (m —1)(c + 3s)g.

4. The scalar curvature p = tm(m — 1)(c + 3s).

By the hypothesis of flat normal connection, M" is of constant curvature k = <2, in view

of Corollary 1 we get

Corollary 3. Let M" be a Legendrian normally flat submanifold of an S-space form M?'+3(c)
with ¢ # —3s. If M" is semi-parallel, then the following statements are equivalent.

1. M" is totally geodesic.
2. The Ricci tensor S = 1(n —1)(c + 3s)g.

3. The scalar curvature p = 3n(n —1)(c + 3s).
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It is well known that the equation of Ricci shows that the triviality of the normal connection
of M into space form M"*4(c) (and more generally, for submanifolds in a locally conformally
flat space) is equivalent to the fact that all second fundamental tensors are mutually commute,
or that all second fundamental tensors are mutually diagonalizable (see [6]).

So, for any p € M there exists a local orthogonal frame {e;} of M" such that all the second
fundamental form tensors are mutually diagonalizable, then

AN(ei> = )\ZNEZ'

for any unit normal vector field N and AN are the principle curvatures of M with respect to N.
Next, we assume that M" is a Legendrian normally flat submanifold of an S-space form
M?"+5(c), with ¢ # —3s. In this case, from (10) and (15) we have

R(X,Y)Z =R(X,Y)Z = ¢ 233 {g(Y,Z)X - g(X,Z)Y} 1)

for any vector X,Y,Z € TM. For an orthonormal frame {ey, ..., e, } of M, the Ricci tensor S of
M is defined by S(X,Y) = Y7 ; g(R(e;, X)Y, e;). So, from (21) we have

S(X,Y) = c+3s

(n—1)g(X,Y). (22)
Putting B= S, T = cin (2) and (3), we get

Q(S,0)(Z,W; X,Y) = — S(Y, Z)o (X, W) + S(
—S(Y, W) (Z, X) + S(

X, Z)o (Y, W) )
X, W)o(Z,Y).

From (14), (5), (11) and (23), the condition (4) turns into

—AgwR(X,Y)Z — AgzR(X, Y)W = L{ — S(Y, Z) ApxW + S(X, Z) Ay W

(24)
—S(Y,W)ApxZ + S(X, W) ApyZ}.

So, a Legendrian normally flat submanifold M" of an S-space form M?"*(c) is Ricci general-
ized pseudo-parallel if and only if the equation (24) holds.

Theorem 3. Let M?"™5(c), ¢ # —3s, be an S-space form of constant ¢-sectional curvature c

and M" be a Legendrian normally flat submanifold of M?"*3(c). If M" is Ricci generalized

pseudo-parallel, then either M" is minimal or L = ﬁ

Proof. Let M be a Ricci generalized pseudo-parallel, since M is a Legendrian normally flat
submanifold, we choose an orthonormal basis of TPLM of the form {e, 1 = @ey,..., e0n =

@en, 41 =C1,. .., 6m4+s = Cspand forany i,j € {1,...,n},a € {1,...,s} denote A?H by the
principle curvatures with respect to the normal vector field ¢e;, i.e.

i
Age () = A e;. (25)
In this case the mean curvature vector can be written as

1 -

i nej

H" ]_E.ElAi .
1=
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In view of (24), setting X =¢;, Y = ej, Z = ex, W = ¢; we obtain

—A(PEIR(EZ', ej)ek — AgoekR(ei/ 6]')61 = L{ — S(ej, 3k>Agoe,'el + S(BZ‘, ek)Aq)eljel

(26)
— S(e]-, el)A(Peiek + 5(61', el)Aq,e].ek}.
Substituting (22), (25) into (26) and for any e,, € TM, we get
c+3s : i
_ArnnHRijkm - )‘?n+kRz‘jlm = T(” — 1)L{ = A0 + A7+]5ik51m 27)
— N80 + A S0}
where g(e;,ej) = é;;and 1 <1, j,k,I,m < n. Since,
¢+ 3s ¢+ 3s

Rijm = —— {5jk5im — OikOjm }, Rijim = —— {5jl5z'm - 5il5jm}, (28)

by the use of (28), equation (27) turns into
A (8ikBim — Sixim) — A  (818im — 6i0jm)
= (n = D)L{ = A" 6301 + A} 8081m — AT 65180 + AL 60km -
Hence, if we put k =i, m = j, we get

Ny
=M (65 — 8udyy) — AT 641604 — Sudp)

. . (29)
= (n— 1)L{ — Ay 16y8:05 + AP 18,0 — NiH6;8: + AlT556y ),
because it follows from (11) that
)\;-H_] = g(A¢ej€i, 61') = g(Aqgeiei, €]> = )\?+i(5ij .
Summingoveri =1,...,nand j = 1,...,n in (29) respectively, we have
HH = ”—_1LA7+I. (30)

On the other hand, by substituting (21) and (22) in (24), we obtain
[(n =1)L = 1{—g(Y, Z)ApxW + g(X, Z) ApyW — g(Y, W) AyxZ + (X, W)AyyZ} = 0. (31)

By setting X = ¢;,Y = ¢;, Z = ¢, W = ¢; and substituting (25) into (31), for any e,, € TM we

get ‘ .
[(n — 1)L — 1{A; 7 0 — AT 8501m + A 88m — AP 6110k } = 0.

In the same way, we put k = i, m = j in the above equation

[(n — 1)L — 1{AT 605 — AP 636505 + AT 6,05 — AiH6,0;;} = 0. (32)
Furthermore, by summing overi =1,...,nand j = 1,...,n in (32), we obtain

[(n—1)L —1](n — 1)AI = 0.
Asn > 1we have
[(n—1)L — 1AM = 0. (33)

Comparing (30) and (33), we deduce that if L = 0 then H"t! = 0 for any1 <1 <mn,ie Mis
minimal. If L # 0, then %H”” = 0, which implies H"*! =0 or L = Ll a

(n— n—
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CONSTRUCTION OF THE FUNDAMENTAL SOLUTION OF A CLASS OF
DEGENERATE PARABOLIC EQUATIONS OF HIGH ORDER

In the article, using the modified Levy method, a Green’s function for a class of ultraparabolic
equations of high order with an arbitrary number of parabolic degeneration groups is constructed.
The modified Levy method is developed for high-order Kolmogorov equations with coefficients
depending on all variables, while the frozen point, which is a parametrix, is chosen so that an
exponential estimate of the fundamental solution and its derivatives is conveniently used.

Key words and phrases: degenerated parabolic equations, modified Levy’s method, Kolmogorov’s
equation, fundamental solution, parametrix.
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INTRODUCTION

A fundamental solution of the inverse Cauchy problem for degenerate parabolic equations
of second-order variables with smooth coefficients was constructed first by M. Weber [10]. Un-
der the same conditions on the coefficients, a fundamental solution of the Cauchy problem
was constructed in [5], in the case of Holder coefficients for second-order equations with two
degenerate groups. The Levy method was modified in [7], and in Banach spaces in [8], for the
second order Kolmogorov systems with one degeneracy group [4]. The Kolmogorov equation
of high order has features that make it easy to use the Levy method for constructing a fun-
damental solution. The parametric method was applied to a degenerate parabolic equation
of high order with one group of parabolic degeneracy variables in [2,3,9] and with two de-
generate groups in [1] and with four degenerate groups for Kolmogorov type systems of the
second order in [6]. We modified the Levy method with respect to the properties of a fun-
damental solution of high-order Kolmogorov-type equations with coefficients dependent only
on t, in particular a selected point which is a parameter so that an exponential estimate of the
fundamental solution and its derivatives is conveniently used.

1 DESIGNATION, TASK STATEMENT AND MAIN RESULTS

_ p
Let us denoteby nj € N,j = 1,p,ny > ny > --- > np, ng = j;lnj, x = (x1,...,xp),

Xj = (x]-l,...,x]-n],), Xj € R",x € R™, & = (él/---lép)lgj = (gjl,...,é]'nj), §] € R", & € R™,

YAK 517.956.4
2010 Mathematics Subject Classification: 35K70.

@ Malytska G.P., Burtnyak 1.V., 2020



80 MALYTSKA G.P., BURTNYAK I.V.

j j
. )y . Y
x(0) = (x1,...,%) € Rk=1nk, &) = (81,...,8) € Rk=1nk,]’ = 2,p. T'(a) is Euler’s gamma
function and B(a, b) is Euler’s beta function.
0 u—wfv
' 4

U oy ,
§]+2xk( T;{) ( §]1+Zxk1(] k)"' §]n~|—2xkn G—h)!

_1\14 2b
fn@mxgnz(me@ﬂa—ﬂzﬂ,q:%tqbeN

(i) - #0) (t—1)" —(j-1+%) -
pj<t,x ,T,C )z (t—1) ,J=2,p,

-1
_E+ -~
Xj =G k;xk (j —k)!
_ )Pk
&t 1) = (gl,éz G1(t—1),. §P+Z nr kgk(t(P%)k)!>.

We investigate the Cauchy problem for the equation

p—1nj41
oru (£, x) Z Z xmaxjﬂyu (t,x) Z a (t,x)Dy,u (t,x), (1)
j=1 p=1 |k|<2b
with the initial condition
u(t,x) P =up(x), 0<t<t<T, (2)

where T is a fixed number, and operator

—1)kgfat

k k (
— E ax (t,x)Dy,, Dj, = ,
1 1 kq L
|k|<2b dxy'...0xy,

k| = ki +--+ky,, (3)

is uniformly parabolic in the sense of Petrovsky in the strip Ijg ) = (f,x), x € R",0 <t <T.
Let us suppose that

1) ax (t,x), dxax (t,x), j = 2, p, are continuous and bounded in Iy 7,

2) there are constants « € (0,1], v € (0,1], such that for any x € R™,¢ € R™ and t € [0, T]

p
lag (t,x) —ar (t,0)] < 1 (\xl =G+ ) |y _éf‘> /
=

(b%) = (£8)| <crlx—gl’,  j=2p.

Theorem 1. If conditions 1)-2) are satistied, then equation (1) has a fundamental solution of
the Cauchy problem (1)~(2) Z(t,x; T,&) att > T and the following estimations hold:

Poop(s—1)+1

- X Ng+|Mg
txro|<ae-o =5 * "Toxg,

ms—OatS#], —1]—217/

p
|| 2b(s—1)+1
—— % L 2 s

041 Z(t, 7, 8)| < Ay (t—T) =2 D (t,x;1,8),
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|mi| <2b, x € R™, € R™, 0 <71 <t<T, where

CI)thg ZAS (14_%)]"(%)]—'1(1%—%)
X exp {—Com(t, x1,7,61) — 27 2P¢, ZP] <t xV ‘: )}

=

and positive constants A, Ay, ¢o depend on ng, 2b, c1,«,r, and the constant of parabolicity of

the operator (3) is  sup |ax(t,x)| and a* = min(a,r).
(t,x)el—I[o,T]

Proof. To prove the theorem, we write equation (1) in the form

p—11j41
oru (t, x) Z wa mﬂ” (t,x) Z ay (t,¢ ( tT))Dk u(t,x)
j=1pu= |k|=2b (4)
+ Y [a(tx) —ag (K€ (HT)DEu (b x)+ Y ap (b x)DE u(t,x).
|k|=2b |k|<2b

Let us denote by Zy(t, x; T, ; ¢ (¢, 7)) the fundamental solution of equation

p—1mj+1
oru (t, x) Z Z XjuOx;, it (£, X) = Y a(tE(, 7)) Dk u(tx). (5)
j=1p=1 |k|=2b

Fundamental solution Zy(t, x,; 7, ;¢ (¢, T)) of equation (5) is constructed in [5], where ¢ is
fixed. For derivatives of Zy(t, x; T, ;¢ (t, 7)) the following inequalities are performed

- z 200D (11,4 m )
0% Zo(t, x;7,8;¢ (7)) < Cu(t—1) ==

4 . .
X exp —Co ZP] <tr x(])/T/ g(])) +P1 (tr X1,7T, 51) ’

j=2

(6)

0
]

=Y Mmjy, t > 7,Cy > 0.
k=1

where |m| =

Fundamental solution Z(t, x; T, {) of equation (1) will be sought in the form

t
Z(t,x;7,8) = Zo (£, %,7,5;¢ (7)) +/T dﬁ/RnO Zo(t, x; B, v;v (8 B) @ (BT, 8)dy,  (7)

where ¢ (t,x; T, ¢) is an unknown absolutely integrable on R™ function at f > 7.
We substitute (6) into equation (1) with respect to the function ¢ (t, x; 7, ¢), then

t
P (txT,8) = K(bxT,2)+ [ K626 w78y ®

where
K(bxt,d)= Y (a(tx) —a (4,8 (4,70)D5 Zo (1,350, 5E (1,7)
Ik|=2

+ ) @ (t,x)quZO (t,x;7,8¢(LT)).

|k|<2b
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The solution of equation (8) can be represented by a Neumann series

p(t,x;T,8) =) Ki(tx1,3), (9)

n=1

where

t
Kt xt,8) =K (tx18); Ki(txt,8) = / ap / K(t,x;,7)Kn—1 (B, 7; T, §) dry. (10)
T R"0

Let us show the convergence of series (9) and the required estimation of the function for
the Levy method ¢ (¢, x; 7, ) and its increments.

Using the following lemma, which generalizes Lemma 2 and Lemma 1 in [3] for equation
(1), we can obtain estimates for K, (¢, x; 7,¢) and K (¢, x; T, §).
Lemma 1. For any points (t,x), (B,¢), (t,y), 0 <t < B <t x € R"™ e R yeRM,
b € N, 2b > 2 the following inequality holds

p . . 4 . .
o1 (t,x1,B,81) + Y pj (t,x(]),ﬁ,ﬁ(”) +p01 (B, ¢, T y1) + Y pj (/3,5(7),T,y(’))
j=2 j=2

p (11)
> 272}7 ( p] (t, x(f),r,y(7)> +p1 (t, X1, T,y1)> .
j=2
The proof of Lemma 1 is based on the inequalities
oy (t,x(”),ﬁ,(j(”)> +0p (/3,5(’7), T,y(P))
) p—1 ) . 1 AN (12)
>2" < Xp—Yp+ ), [xk(t_ﬁ)p_ + k(B —T)F" ] (p_k),'(t—r)_”+ _2b> .
j=1 :
From (12) we can get
p—1 . q
( Xp—Yp + kZ {xk(t — B+ (B - T)p_k] (p—kn~H (¢ r)‘i’“_zb)
=1
p—1
>27" ( Xp—Yp+ ) [xk (t— B "+ & (- T)p_k] (p—k)H~
- (13)

_ - q
x1 (B~ r)(Pp 1:;)(!1? -p' (t— r)vﬂz—i)

N i ([‘xlﬂ — il (B~ T>”_1] (p—kn)'(t- r)—P“—z—iy_
=

X

Applying (12) to the first part of (13) (p — 2) times, we have

[

p—1
xp—yp+ Y (a(t—= B+ (BT )N(p-K)H~!

k=1

q
(t— T)p“z—lb)
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oy "” _ Cp1-1N\4
> 2720 D, (1,5, 7,y ) = 1 (Jx = &l (B=0" ) (p=1) 7 (=) 7

u=1
—17 j—1 , 1| (B—T)P~ -1 ?
Z Z X = G + Y, wg (= BV (G =R | s (b))
o R i (r—7!
(14)
Taking into account the inequalities (11)—(14), we get
-1 np j—1 ] ‘ B
¥ )2 (xm—cw}:xky (= (G- E- T (-7
j=2 u=1 k=2 ( )
. 1 p
x <t—r>”ﬂ%> —22 % (b=l B— 0" ((p -1y (e -0 PE)
u=1
We will collect all of the terms that contain x, 1 — &, 1
ny p—2
Pp—1 (ﬁ/ x(pil)/ ,Br C(pfl)) - 272(’771) Z < xpfly - gpfly + Z xk(t - ,B)pilik
1 CpiqonNg A
v _ _ p+1
X ((p —1— k)') (:B T) (t 5) 2b> > y=;p+1 < Xp—1u gf’*lﬂ
p—2 (t—p) Pk " T 2p—1) (16
+ Xjy————— t AR IS 1—27°P"
IR e T () ) L )

q
X ( (t—r)_”+2_21b> :

Repeating all inequalities (12), (16) for the terms 0; (t,x(j),ﬁ, C(j)> +pj <ﬁ, C(j),r,y(j)> ,
j = 1,p — 1, and adding their together we have

P . )
o1 (t,31,B,81) + o1 (B, Ty + 1 (ot x), B,E)) +p; (8,6, 7,y ))

j=2
p , ;
> -2 Y p; (t,x(f),T,y(7)> +po1(tx1,T,01) |-
j=2

Lemma 2. The following estimations are performed for reproducing kernels:

P (1+2b(—-1
-y ( (2]b ))n] 1+nux

|[Kin (,%;7,8)| < At —1) T

17)
X exp {p1 (t,x1,B, &) —272P"¢ ZPJ < ]'),T,(:(]')> } )

atm < m* — [i ((1+2b(j—lxl))nj+2b)
j=1

+1
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-1
. 1 ak al
|Km+l (t/ X; T, C)| S A%Jr k|:O| B (% 1+ 219) (t — T) 2b

p . .
X exp {—cp1 (t,x1,B,¢1) — o—2p(m+) Z < x0T, g(])) },

(18)

atm+1>m*.
From (17), (18) it follows the convergence of a series (9) following for ¢ (t,x; T, ¢)

P (142b(j=1))n;+2b—a
-

90 (tx%7,8)| < At —1) - @ (t,x;7,E) . (19)

Let us prove the existence of derivatives dx, ¢ (t, x;7,§) , j = 2,p,att > T.

Under the assumption 1), there are continuous derivatives aij (t,x;7,8), ] = 2, p satisfy-
ing the estimations

oK (t,x; 7T, (’j)) < Aexp{—c <Zp] (t xU), ¢, gl ) +p1 (t,xl,T,(_;"l))}
J

(20)
o f (Zb(slengl)nsijf(lZ;a )

X (t—1) =1 , t>T.
To prove the existence of derivatives 9, K (t,x;7,¢) , j = 2, p, we use the following property of
the fundamental solution of equation (5) with § (t, T) = y, where y is a parameter

=114

oru (t, x) Z Z xmaxﬂyu (t,x) Z (t,¢(t,1)) Df{lu (t,x).
j=1p= k|<2b

Property 1. If a; (, ) have continuous bounded derivatives by the parameter y up to the order

r, then there are continuous derivatives by v, 0} 8;”1 Z0 (t,x;7,¢;y), s €0,r,and

P; <t x() é()) + 01 (t X1,7T, §1>>}

'[\1‘3

0y, 0’ Zo(t X T,C; y)‘ < Cmexp{—c(

2

/= (21)
LG
% (t _ T) =1 2b 2b
Let us consider dy, K (t,x;B8,7), 4 =1,np. Then
ox, K (t,x;B,7) = Z (Ox,,ak (£, x) — Ok (8,7 (£, B)))
Ik|=2b
x DY\ Zo (B, ;7 (,B) + Y (ax (£ (£,8)))D%, Zo (t, ;8,77 (£, B))
Ik|=2b )
+ Z (llk (t/x) — dg (t/,)/ (tlﬁ>))axpyD§1ZO (t/x’.ﬁ’ VY (t’lB)>

|k|=2b

—+ Z axwak (t, x) Dﬁle (t/ X; ,Br Yy (t/ :B)) .

|k|<2b
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Let us rewrite (22) by a convenient form for applications

I, K (1, :8,7) = ) (Ox,,ax (£, %) — 0y ar (£, (£, B)))
Ik|=2b

x DX Zo (t, % 8,77 (£, B)) — 01, ( Y. (ak(tx) ak(tlv(tlﬁ)))

Ik|=2b

x DY, Zo (t, % B,7;v (tB) + Y (ax (t,x) —ax (t,7 (£, B)) (23)
Ik|=2b

x Dy DAZo (%8, 07 (66)) 7=y + X (ak (2)),, D5 Zo (68,77 (8, B)
|k|<2b

+ Y @m0y, DX Zo (658,77 (4,B)) [y=y — Y ax (£, x)D},94,,Z0 (t, % 8,77 (£ B)),
|k|<2b |k|<2b

where y = 1,n,, 7 = (’)/1, .. .,'yp,l,Tp) . Using the images (23), estimates (6) and (21) and

integrating by parts of the terms with d,,, , we can get dx, K> (£, x;T,¢) = ;llin(l) fot*h B [rno Ox,y
%

K(t,x; B,v) K (B, 7T, 8)dv.

From the estimations of reproducing kernel (18), estimations of derivatives of the ker-
9ako (4, 57,8)| < Arexp{ —ca(1-¢) (p1 (11, 7,00)

P (1+26(~1)n;
— X gy P (1-at) /20
+27% EPJ (t 0,7, ¢ ) +P1(frx1,T,61)>}(f—T) = att > 7. By

m (t,x;T,¢) for any m

nel (20) and Lemma 1, we obtain

the method of mathematical induction we can prove the existence d
and evaluation

P ‘ .
Ox,, Kim (t,x; T, 5)’ < Am(e)exp {—ca(1 —em)(p1(t, x1,7,&1) +27"P Zp]- <t,x(]),r, 5(]))

| j=2 (24)
+o1 (X, T, 8)}(E—T1) o

xw

[e ]
Taking into account the estimation (24), we can estimate the series 8xW‘Km (t,x; 7,¢)bya
m=1
converging series:

P (142b(j—1))n;

v : - Y 2 -p—(1-a*m)/2b
Z axpme (t, X, T, g) < Z Am(t _ T) j=1
m=1 me1

p . .
er {_CZ ) (Cmpl (t,x1,T,81) + 272" (o1 (t,x1,7, 1) + Y 0 (f,x(”,r,é‘(])))}
=2 (25)
>(< k 2k kDC*
b -1
+ZA0< ( >FAO> (t—T1)2T ( 2b>

p . .
T {_CS (C‘”*"“Pl (t 21,7, 81) 427270V oy (110, 80) + 1y (130, 7, c“)>>} '

j=2

Po(1+2b( +2bp+1
where [= [ Y 02)”] P
]:

+1,and Ap, F are positive constants,

F= (2/000exp{—%2}d0¢>n0.
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The series Z apr (t,x;7,¢)at0 < 6 < t—1 < Tisconvergent uniformly and absolutely.

m=1

Then 0y, ¢ (t,x;7,8) = Z apr(t x;7,¢) and 0y, Ky (t,x;T,§) are continuous, then in the

domain of convergence and 8 L@ (t,x;T,¢) continuous function. Inequality (25) will be written
in the form

P (142b(-1)n;
- 42 T p—(1—a*)/2b
dx, ¢ (t,x,7,8)| < A(t—1) /= D (t,x1,C).

Let us consider 8x].HK (t,x:B,7),j =2,p—1,u=1,n; For p = n;_1+1,n; formula (23) is
true with the corresponding replacing p by j. For y = 1,n;_1, dx, K (t, x; B, y) can be written in
the form

Ox, K (t,%;B,7) = MZ:b [axwak (t,x) — 9y, ax (£, y) ‘y:ﬂ,(tlﬁ)] Dy, Zo (t, % B,7;v (£, B))
—2

|k|=2b

— O, ( Y [a(t,x) —ac (8,7 (,B))] D, Zo (f,x;ﬁlv;v(f,ﬁ)))

+ Y [ (60— ag (o (6B))] 35, D520 (6, 8,77 (£ B)) [5—
k|=2b

p=j
+ 3 ) la(tx) = ag (6 (4 B))] 9y, D%, Zo (8,568,777 (1, B)) |5

1=1 |k|=2b
| ki 1(t—p)r (26)
DG B 9 e (1 Gy
x D53y, Z0 (658,17 (6B) + X (@ (%)), D, Zo (6,5 B,7:7 (£, B))
|k|<2b

+ Z a'ijak (trx)D§1Z0 (trx},Br’)/;’)/(trﬁ))

|k|<2b
+ Y a(t,x) D50y, Zo (6% 8,77 (£ B)) [5=9

|k|<2b

+(_1)lw% Z a (t,x)D Zo (t, ;8,77 (t,B))
(p—j—D!' [z 1 k|=2b . g P10 e

Kernels have the highest singularity at the variable x,. Also, using (26) we have the exis-
tence of ax],go (t,x;7,8), j =2,p — 1 and the following estimations

Poa4on(i—1))ns—a*+1 i

I, (tT,8)| S A(t—1) = » ®(t,x;7,8), j=2,p—1

Using arguments like in [1] we can get

t
Ahxlq) (t’ xXT, g) = AhJC1I< (t’ xXT, g) +\[L’ d:B /R"O AhJC1I< (t/ X; :3/ ,)/)K (ﬁ’ Y g) d,)/
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Applying the technique developed for parabolic systems in [6], and the evaluation of re-

producing kernels, we obtain

& agb(—1)ns—(1-ap) .
2b

}Ahxlqo(t/xfflé’)} < |hX1|{X1(t_T) =1 CD(t,x;T,(_;"),

w1 >0, 00 >0, 01 +a1 = a.

The existence and evaluation of a’jch (t,x;7,8), |k| <2b,att > 7, are established for both

of the cases of parabolic equations and systems in [6]. The theorem is proved. O
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ISOMORPHIC SPECTRUM AND ISOMORPHIC LENGTH OF A BANACH SPACE

We prove that, given any ordinal § < wy, there exists a transfinite /-sequence of separable Banach
spaces (Xy)a<s such that X, embeds isomorphically into Xz and contains no subspace isomorphic
to Xg forall & < B < 6. All these spaces are subspaces of the Banach space E, = (@5 £p),, where
1 < p < 2. Moreover, assuming Martin’s axiom, we prove the same for all ordinals § of continuum
cardinality.

Key words and phrases: Banach space, isomorphic embedding, Martin axiom.
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INTRODUCTION

We use the standard terminology of Banach spaces theory, see [1]. Let X and Y be Banach
spaces. We write X — Y if X embeds isomorphically into ¥, and X ~ Y if X and Y are
isomorphic.

Isomorphic spectrum

By the isomorphic spectrum of an infinite dimensional Banach space X we mean the set
sp (X) of all isomorphic types of infinite dimensional subspaces of X.

Consider the following equivalence relation on the set B of separable infinite dimensional
Banach spaces. We say that Banach spaces X, Y € B are equispectral and write X Ly provided
that X — Y and X < Y (notice that Banach [2, p. 193] used a different terminology for
equispectral Banach spaces X and Y, he said that X and Y have equal linear dimension and used
the notation dim; X = dim, Y). It is immediate that X Y if and only if sp (X) = sp (Y). Itis
a well known fact that X Y does not imply that X ~ Y, however X ~ Y easily implies that
X 2 y. For instance, L1 @ /> i L1, however L & 05 % L.

Observe that if X € {co, ¢y : 1 < p < oo} and Y is any infinite dimensional subspace of X
then X 2 Y.

Denote by B the set of all equivalence classes in 3 modulo the relation %, and for every
X € B by X we denote the equivalence class containing X.
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Given Banach spaces X and Y, we write X < Y to express that X — Y, while Y ¢ X. Itis
easy to see that, for every X;,Y; € B,i = 1,2 with Xj i X, and Vj i Y, the relation X; < Y;j is
equivalent to X, < Y2. So, the same relation < is well defined on B by setting X < ) provided
X <Y for some (or, equivalently, any) representatives X € X and Y € ).

Observe that < is a strict partial relation on 3, and that X < Y is equivalent to the strict
inclusion sp (X) C sp (Y).

By the solution of the homogeneous Banach space problem obtained by a combination of
results of Gowers [5,6] and Komorowski-Tomczak-Jaegermann [9,10], ¢; is the unique element
X of B with sp (X) = {X}. Although the spaces ¢y and ¢, with 1 < p < o, p # 2 have more
than one-element isomorphic spectrum, all of them are equispectral, as mentioned above. So,
¢o and ENp with 1 < p < oo are minimal elements of B. On the other hand, it is easy to see that

CJ0, 1] is the unique maximal element of g, which is, moreover, the greatest element of B.

Set-theoretical preliminaries

We use the standard set-theoretical terminology and notation of [7], where the reader can
also find necessary background. By ¢ we denote the cardinality of continuum. We say that A
meets B provided that AN B # @.

Let (M, <) be a partially ordered set. Following [11], the length of M is defined to be the
supremum of ordinals &« which are isomorphic to a subset of M, and is denoted by L(M). For
instance, L(«) = « for every ordinal « and L(R) = w.

Let w, be any infinite cardinal. We endow the power-set P(w,) with the partial order
A < Bifand onlyif |A\ B] <R, = |B\ A|.

Let us recall the statement of Martin’s axiom (MA). A subset D of a partially ordered set P
is said to be dense if for every p € P thereisd € D such thatd < p. A subset Q C P is said to be
consistent provided for every finite subset F C Q there exists p € P such that p < f for every
f € F. Elements p, q of P are said to be consistent if the two-element subset {p, g} is consistent.
A subset Q C P consisting of more than two elements is said to be pairwise inconsistent if every
two distinct elements of Q are not consistent. P is said to have the countable chain condition
(CCC in short) if every pairwise inconsistent subset of P is at most countable.

Martin’s axiom. Let P be a partially ordered set possessing the CCC. Let 9t be a collection
of dense subsets of P of cardinality < c¢. Then there exists a consistent subset Q C P which
meets every element of .

We remark that MA is independent of the usual axioms ZFC. It follows from the Contin-
uum Hypothesis (CH) and sometimes allows to extend results, previously established under
the assumption of CH.

We need the following combinatorial lemma proved in [11].

Lemma 1. (i) For every regular cardinal ws one has L(P(ws)) > ws 7.

(ii) Let w, be the cardinal of cardinality ¢. Then (MA) L(P(wp)) = We1-

Here (MA) in item (ii) means that the proof of (ii) uses Martin’s axiom.
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Isomorphic length of a Banach space

Let X be a separable infinite dimensional Banach space. By the isomorphic length of X we
mean the length of the subset By of the partially ordered set B consisting of all equivalence
classes containing all infinite dimensional subspaces of X: IL(X) = L(Bx). Since by the above
ggp and By, are singletons, we have that I L(¢y) = IL(co) = 1for every p € [1,+00). In the next
section, we show that for E,, = (@72, £p), with1 < p < 2 one has IL(E,) > w,, and Martin’s
axiom implies that IL(E,;) = wcq1. Of course, the same could be said about the universal
Banach space C|0, 1], which has the maximal possible length.

1 TRANSFINITE <-INCREASING SEQUENCES OF SPACES

Theorem 1. Let1 < p < 2and E, = (@}, ¢p),. Then

1) for every ordinal -y of cardinality ¥, there is a transfinite sequence (X, )x<- of subspaces
of Ey, such that X, < Xp foralla < B < 7,

2) (MA) for every ordinal -y of cardinality ¢ there is a transfinite sequence (X )y« of sub-
spaces of E, such that X, < Xg foralla < p <.

Proof. Let (pn)5°_; be any sequence on numbers with p < p; < pp < ...and lim, e pn = 2.

Lemma 2. For every finite dimensional Banach space X and every n € IN there exists m € IN
such that for every into isomorphism T : ()} — X ®2 (D>, Lp;), one has | T|[| T~ > n.

Proof of Lemma 2. Recall the standard definition (see, for example, [12, p. 54]): a Banach space Z
is said to have Rademacher type p, 1 < p < 2 (or just type p) if there exists a constant T, (Z) < co
such that for every k € IN and for every x1,...,xx € Z,

1 o\ VP ‘ 1/p
(/0 dt) <T,(2) (Z Hxiué) , )
i=1

z
where {r;} are Rademacher functions.

k
;Vi(t)xi

The Khinchin-Kahane inequality (see e.g. [12, p. 57]) implies that we can replace the value

1/
<f01 Hzle ri(t)xi Zdt) b with (fol HZi(Zl ri(t)xl-
(1), it will not change the class of spaces of type p, but may change the constant T,(Z), let us
denote this new constant T, 2(Z).
Now we shall check (recall that p < 2) that the fact that spaces {Z,,}$° ; have type p with
uniformly bounded constants {T,2(Z,)}5,, then Z := (52 Zx), also has type p with con-
stant T, >(Z) bounded from above by T := sup,, Tj2(Z).

2
Z dt) in the left-hand side of inequality
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Soletz; = {zin}5; € (B71Zn), 50 iy € Zy. We have

1/2
/1 it B /1 i
0 B (U— |

5 1/2
dt

2

k
Y ri(t)z
i=1

k
Z ri(t)zi,n
i=1

Z Zn

2/p
p )
Zn

p/2 k 17p
2) =T<Zwﬁﬂ) :
i=1

where in the first line we use the definition of Z as a direct sum; in the second line we use the
fact that Z, have type p with constant T; in the third line we use the triangle inequality for the
space {5/, (recall that 2/p > 1), and in the last line we use the definition of Z again.

Now we return to the proof of Lemma 2. Since X is finite-dimensional, it has type p,4+1
with sufficiently large constant. We need the well-known fact that ¢, has type p if p € [1,2]
(see e.g. [12, p. 63]) and an easy-to-see fact (consider the unit vectors) that £, does not have a
larger type.

We conclude that X @, (@j>n Ep].)z has type p;, ;1 with some constant C, but £,, does not
have type p,1. Therefore the type constant of (i) for type p,1 and sufficiently large m is
> Cn. It is easy to see that this implies that for every into isomorphism T : £} — X @,
(Bjsnp;), one has [T T~ > n. O

1/2

Zin

1/p

k 00
<T Z (Z:l|zi,n
n—=

i=1

We continue the proof of Theorem 1. Using Lemma 2, construct recurrently a sequence
(my)nen of positive integers so that

for every n € IN and every into isomorphism

n—1
u: o — (Do), @2 (D), @
i=1 j>n
one has ||U||[|[UY]| > n.

It is known that for every € > 0, every m € IN and every g € (p,2] there exists a subspace F
of £, which is (1 + ¢)-isomorphic to /i (see [8] for tight estimates of the parameters involved,
the result itself follows from [4]). Using this fact for e = 1, m = m, and q = p,, for every
n € IN we choose a subspace F, of n-th summand of E, (which is isometric to £,) which is
2-isomorphic to £}, say, by means of an isomorphism J, : F, — 5" with || J |||, ]| < 2.

Fix any ordinal -y of cardinality N; (or ¢, respectively). Using items (i) and (ii) of Lemma 1,
respectively, choose a transfinite sequence (Ny)a<, 0f subsets of IN so that [N, \ Ng| < Rg =
INg \ Ny forall a < B < <. For each a < 1y set

Ko = ( D Fn)z'

nEN,
We consider each X, as a subspace of E,. Let us show that (X, ).« has the desired properties.
Fixany « < B < 7. Set N' = N, \ Ng, N = Ny N Ng, N = Ng\ Ny. Then N, = N'UN”,
Ng = N"UN", |N'| <R = |[N"|. Hence,
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Xo = <§%Fn>2®2 < D Fn)z' Xp = < D Fn>2®2 < D F")z'

neN” neN’ neN""

Since |[N'| < ®g = |N"""|, we have that

dim( @ Fr), < co=dim( @ Fu),

neN’ neN"

and hence, X, embeds isomorphically into X B-

Prove that X does not embed isomorphically into X,. Assume, on the contrary, that there is
an into isomorphism T : X3 — X,. Take any n9 € N and consider the restriction T,;, = T,
of T to Fy,.

Observe that
no -1

Xy C <@ Fi>2 )]
i=1

(© ),

J=1o

Let
-1 -1
5: <n€B Fi)z ©2 <® g”]‘)z - <n€B 5%’)2 @2 <® gp])z
i1 j>n i=1 j>n

?lo—l

be an operator which sends ((f;)1;",g) to ((Jifi)";',g). Since J; are isomorphisms with
TN < 2,80 is S with ||S]|[|S™Y|| < 2. Hence,

B B 1 . by 1
I TIT 1||2HTOHHTolHZEHSOTOH”(SOTO) "> 50-

This is impossible for large enough ny € N"”. O

The next corollary follows from Theorem 1 and the observation that a separable infinite di-

mensional Banach space X has only continuum many closed subspaces, and hence,
IL(X) < weiq.

Corollary 1. (MA) IL(E,) = IL(C[0,1]) = we1.

2 REMARKS AND AN OPEN PROBLEM

It would be interesting to find the isomorphic length of the classical spaces L, = L,[0, 1].
Problem 1. Evaluate IL(L,) for1 < p < oo, p # 2.

The embeddability of L, into L, for 1 < p < r < 2 [4] together with impossibility of the
embedding L, into L, for the same values of p,r [2, p. 206] imply the inequality IL(L,) > w;
for1 < p < 2, because every countable ordinal @ < w is isomorphic to a subset of any interval
(a,b) in the reverse order. The same inequality IL(L,) > w; for all values 1 < p < co, p # 21is
a corollary of the following result.

Theorem 2 (Bourgain, Rosenthal, Schechtman, [3]). Let 1 < p < oo, p # 2. There exists a
family (X,,’Z),le of complemented subspaces of L, so that for alla < B < w one has xXF < XZ.

Moreover, if B is a separable Banach space such that X, < B foralla < w; then L, < B.
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Observe that Theorem 2 gives a strictly <-increasing wi-sequence of subspaces of L, for

1 < p < 2 directly. The same holds also for p = 1 due to the fact ([4]) that L, (1 < r < 2)
embeds isometrically into L;. On the other hand, the argument based on embeddability /non-
embeddability of L, into L, does not provide an uncountable sequence. However, both argu-
ments provide the same estimate for IL(L,) if 1 < p < 2.
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AOBeAeHO, IO AST KOXKHOTO OpAMHAAY 0 < wp icHye TpaHCiHITHa J-TIOCAIAOBHICTD cemapa-
beabHMX 6aHAXOBMX MPOCTOPIB (Xy)y <5 TaKa, MO X, BKAAAAETHCS i30MOpdHO B Xg i He MicTUTH
HiATTpOCTOpiB, i30MopdHMX A0 Xg AAs Beix & < B < 4. Bei ni mpocropu e mianpocropamu 6aHa-
xoBoro npocropy E, = (B, EP)Z, ae 1 < p < 2. Biapwmr Toro, y nmpumyiensi akciomn Maprina
AOBEAGHO AaHe TBEPAKEHHS AASI BCiX OPAMHAAIB § IIOTY>XXHOCTi KOHTUHYYM.

Kntouoei cnosa i ppasu: baHaxis mpocTip, isoMopdoHe BKAaAeHHsI, akcioma MapTiHa.
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RELATED FIXED POINT RESULTS VIA C,-CLASS FUNCTIONS ON
C*-ALGEBRA-VALUED G,-METRIC SPACES

We initiate the concept of C*-algebra-valued Gj-metric spaces. We study some basic properties
of such spaces and then prove some fixed point theorems for Banach and Kannan types via C,-class
functions. Also, some nontrivial examples are presented to ensure the effectiveness and applicabil-
ity of the obtained results.

Key words and phrases: fixed point, Cy-class function, C*-algebra-valued G,-metric space.

E Department of Mathematics, Islamic Azad University, Hidaj, Iran

2 Department of Mathematics, Mug Alparslan University, 49250, Mus, Turkey

3 Institut Supérieur d'Informatique et des Techniques de Communication, Université de Sousse, 4000, H. Sousse, Tunisia

E-mail: moeinil45523@gmail.com(MoeiniB.), isikhuseyin76@gmail.com (Isik H.),
hassen.aydi@isima.rnu.tn (Aydi H.)

1 INTRODUCTION

One of the main directions to obtain possible generalizations of fixed point results is the
introduction of new types of spaces. For instance, Ma Z., Jiang, L. and Sun, H. in [21] initiated
the notion of C*-algebra-valued metric spaces, where the set of nonnegative reals was replaced
by the set of positive elements of a unital C*-algebra. Going in the same direction, many papers
appeared. See, for example, [16,17,20,22,23,34, 36].

In [19], the concept of a C*-algebra-valued modular space has been introduced. It general-
ized the concept of a modular space. Now, let T : X, — X, be a self-mapping on a complete
C*-algebra-valued modular space such that there are c € A and A, 0 € R with ||c]| < 1 and
A > o so that

p(A(Tu —Tv)) 2c*p(o(p —v))e,  Vu,ve .

Then T admits a unique fixed point in X, ([19]).

Bakhtin [10] considered the class of b-metric spaces. Later, many works such as [5-7,11,
12,30] have been provided. In [9], the concept of complex valued metric spaces was initiated.
Rao et al. [32] initiated the concept of complex valued b-metric spaces. Mustafa and Sims
[24] considered the class of G-metric spaces, where the considered metric depends on three
variables. For other related papers, see [1,2,8,18,27,29,31,35].

The notion of G,-metric spaces was presented by Aghajani et al. [3] (see also [25]). Later,
Ege [14] introduced the notion of complex valued G,-metric spaces and proved the related
Banach and Kannan type fixed point theorems. In [15], Ege proved a common fixed point
theorem via a-series. For other results on G,-metric spaces, see [26,28,33].
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Very recently, Ansari et al. [4] defined the concept of complex valued C-class functions.
Also, Moeini et al. [22] presented the notion of C,-class functions.

In this presented work, we introduce the C*-algebra-valued G,-metric spaces which gener-
alize the complex valued G,-metric spaces. By using Ci-class functions, we establish Banach
and Kannan type fixed point theorems in C*-algebra-valued G,-metric spaces. To support our
results, some nontrivial examples are also given.

Definition 1 ([3]). Let E be a nonempty set and s > 1. If the function G : EX E X E — R4
verifies:

(Gpl) G(p,1,8) =0ifu=n=7¢;
(Gp2) 0 < G(p, 1) forallu,n € E withu # n;
(Gp3) G(p, ) < G(w,1,6) forallp,y,& € E withyy # ¢;
(Gpy4d) G(u,n,8) = G(p{u,n,¢}), where p is a permutation of u, 1, &;
(Gp5) G(u,n,¢) <s(G(p,a,a)+G(a,n,¢)) forallu,n,¢,a € E,
then G is said to be a G,-metric and (E, G) is called a G,-metric space.
Mention that any G-metric space is a G,-metric space with s = 1.
Proposition 1 ([3]). Let (E, G) be a Gy-metric space. For any u,1,{,a € E, we have
(1) if G(p,1,8) =0, thenp =n =¢;
(i) G(u,1,8) < s(G(p 1) + G, 1, 8));
(i) G(p,11,1) < 25G (1, , )
(v) G(u,1,8) < s(G(p,a,8) +G(a,1,8)).

Definition 2 ([3]). Let (E, G) be a G,-metric space and {j,} be a sequence in E.

(i) {pn} is Gy-convergent to u if for each ¢ > 0, there is po € IN so that G(u, pp, ug) < €,
p.q = po-

(ii) {pn} is said to be G,-Cauchy if for every e > 0, there is py € IN so that G(pp, g, 4i) < €,
P, 4,12 po.

(iii) If each G,-Cauchy sequence G,-converges in (E, G), then (E, G) is called G,-complete.
Proposition 2 ([3]). Let E be a G,-metric space. We have the following equivalences:
(1) {pn} Gy-converges to y;
(2) Gpp, pp pt) — 0asp — oo;

(3) G(pp, pt, ) = 0asp — co.
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A Banach algebra A (over the field of complex numbers C) is called a C*-algebra if there
exists an involution * in A (i.e., an operator * : A — A verifying a** = a for every a € A) so
that, forallc,d € A and 57,v € C, we have:

i) (nc+vd)* = qc* + vd*;
(i) (cd)* =d*c*;
(i) [le*ell = flel|.

By (iii), we have ||c|| = ||c*|| for each ¢ € A. also, (A, ) is said to be a unital *-algebra if
the identity element 15 is contained in A. An element ¢ € A is called positive if c* = c and
its spectrum o (c) = {A € R : A1p — ¢ is noninvertible} C Ry. Denote by A the family of
positive elements in A. Define the partial order =" on A as

d>ciff d—ce AL

If c € A is positive, we write ¢ = 0p, where 04 is the zero element of A. Each positive element
a of a C*-algebra A has a unique positive square root. Denote by A a unital C*-algebra with
identity element 15. Moreover, A, = {c € A:c > 0p} and (c*c)% = |c|.

Lemma 1 ([13]). Let A be a unital C*-algebra (15 is its unit).
(1) Foreachz € A,z < 1p iff|z]| < 1.
(2) Ifc € Ay with||c|| < 1, then 1 — c is invertible and ||c(1a —¢) 1| < 1.
(3) Letc,d € A sothatc,d > 0p and cd = dc. We havecd > 0p.

(4) Put A' = {c € A :cd = dc,Vd € A}. Letc € A',d,e € A withd = ¢ = 0p and
1a — ¢ € A is an invertible operator. We have

(1a —c)'d = (1p —c) te.

Note that if 0o =< ¢,d, we have not 05 < cd in a C*-algebra. Indeed, take the C*-algebra

(32 (1 -2 (-1 2 .
M, (C) with ¢ = <2 3>,d = <_2 4 ),thencd = (_4 8)’ Clearly c,d are in

M, (C), while cd is not.
The notion of complex C-class functions has been initiated by Ansari et al. [4].

Definition 3. Define S = {z € C : z = 0}. Let F : S — C be a continuous function. Such F is
said to be a complex C-class function if for all p,q € S

1) E(p.q) 2 p;
(2) F(p,q) = p implies that either p =0 orgq = 0.

For examples of these functions, see [4].
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2 MAIN RESULTS

First, we initiate the concept of C*-algebra-valued G,-metric spaces.

Definition 4. Let A be a unital C*-algebra and E be a nonempty set. Lets € A be such that
sl > 1. A mapping G : E X E x E — A, is said to be a C*-algebra-valued Gy-metric on E if

(CGy1) G(p,1,8) =On ifp =1 =¢;
(CGyp2) Op < G(p, i, y) forally,n € E withu # 1;
(CGy3) G(u,wm) = G(p,n,¢) forally,n,§ € E withy #&;
(CGy4) G(u,n,&) = G(p{u,n,¢}), where p is a permutation of y, 1, ;
(CGy5) G(u,n,¢) =s(G(pu,a,a) +G(a,n,¢)) forall u,n,¢,a € E.
The triplet (E, A, G) is called a C*-algebra-valued G,-metric space.
Remark 1. By taking A = IR, a C*-algebra-valued Gy-metric space is a (real) G,-metric space.
As in Proposition 1, we have the following.

Proposition 3. Let (E, A, G) be a C*-algebra-valued Gj,-metric space. For all u,1n,¢ € E, we
have

() G(u,1,6) 2s(G(u, m,m) + G, 1, ¢));
(i) G(w,m,1m) =2 25G(n, b, ).

Definition 5. Let (E, A, G) be a C*-algebra-valued G,-metric space and {u,} be a sequence
inE.

(i) {pn} is Gy-convergent to x € E with respect to the algebra A iff for each a € A with
Oa < a, thereisk € IN so that G(x, jip, 1iq) < a forall p,q > k.

(i) {pn} is called G,-Cauchy with respect to A if for eacha € A withOp < a, thereisk € N
so that G(pp, g, i) < a,p,q,i > k.

(iii) If each Gy-Cauchy sequence with respect to A Gy-converges with respect to A, then
(E, A\, G) is said to be complete.

Proposition 4. Let (E, A, G) be a C*-algebra-valued G,-metric space and {j, } be a sequence
in E. Then {j,} is Gy-convergent to y with respect to A iff ||G(y, pn, pm)|| — 0 as n,m — oo.

Proof. (=) Let {un} be Gy-convergent to u with respect to A and leta = €.1 (where ¢ > 0).
Then 0p < a € A and there is an integer k so that G(y, pin, #m) < a for all n,m > k. Thus,
1G ity s i) | <l = € and 50 |G 1, i, por) | — O 25 1,11 — c0.
(<) Suppose that |G(u, pn, im)|| — 0as n,m — oo. Fora € A with0p < a, thereisd > 0
so that forz € A,
|z]| <6 = z<a.

For such a § > 0, there is an integer k so that |G(x, un, pm)|| < 9, i-e., G(4, yn, pm) < a for all
n,m >k, ie., {pn} is Gy-convergent to y with respect to A. O
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From Proposition 3 and Proposition 4, we state the following.

Theorem 1. Let (E, A, G) be a C*-algebra-valued G,-metric space. Let {ji, } be a sequence in
E and u € E. We have equivalence of the following:

(1) {pn} is Gyp-convergent to yu with respect to A;
2) G (up, pp, )l — 0 when p — oo;

3) IG(pp, i, u)|| — 0 when p — oo;

(4) |IG(pg, tip, )| — 0 when p,q — co.

Proof. (1) = (2). It follows from Proposition 4.
(2) = (3). From Proposition 3, one writes

G(pn, ) = 8(G(pn, pins 1) + G(pn, pins 1))

Using (2), we get
|G(pn, 1, 1)|| — 0asn — oo.

(3) = (4). Using (CGp4) and Proposition 3,

G (s pins ) = Gty ) = (G, o 1) + G, i, 1)) = (G (s, ) + G, s i) )

Then ||G(pm, pin, #t)|| — 0 as m,n — oo.
(4) = (1). By (CG3) and (CGp4), we have

G, pins tin) = G(pn, o in) = 8(G(pns s i) + G(fm, o, pin))
= G (pn, p, tim) + 252G (sm, pins 1))

Using the equivalence in Proposition 4, ||G(pm, pn, )|l — 0 as m,n — oo. Therefore,
|Gy, pin, pin)|| — 0 as n — oo. O

Theorem 2. Let (E, A, G) be a C*-algebra-valued G,-metric space and {y,, } be a sequence in E.
Then {uy } is Gp-Cauchy with respect to A if and only if |G (pu, pim, yp)|| — 0 asn,m, p — co.

Proof. (=) Letb = €-1p and € > 0 be a real number. Then 0p < b € A and so there is an
integer k such that G(ptn, pim, pt1) < b for all n,m,1 > k. Thus, |G (pn, m, t1)|| < ||b|| = € for all
n,m,l > k.

(<) Assume that ||G(pn, m, t1)|| — 0as n,m,l — oo. For b € A with 0p < a, there is
v > 0sothatforz € A

llz|| < implies z < b.

For such a 7, there is an integer k so that |G(un, pm, p1)|| < 7y for all n,m,l > k. That is,
G(pn, m, 1) < b for all n,m > k. Then {u, } is Gy-Cauchy with respect to A. O

Example 1. Let E = R and A = M;(R) the set of all 2 x 2 matrices. Consider the usual
operations: scalar multiplication, addition and matrix multiplication. For A € A, consider
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1
|A|l = (Zﬁjzl \aij]2> *. The operator x : A — A given as A* = A, is a convolution on A.
Thus A becomes a unital C*-algebra. For
a:<ﬂ11 a12 >, b < bii b > € A = My(R),
Ay by b

consider a X b itf (a;; — b;;) <0, for alli,j =1,2.

Define d(x,y) = diag(|x — y|,|x — y|) with "diag” is a diagonal matrix and x,y € R. Sup-
pose Dy, (d)(x,y,z) = max{d(x,y),d(y,z),d(x,z)} forall x,y,z € E. DefineG : EXE X E —
A+ by

Glx,,2) = (Du(@)(x,2)),

where p > 1 is an integer. It can be proved that (E, A,G) is a C*-algebra-valued G,-metric
space withs = 2P~ 1.1,.

To define the set of C-class functions (which contains complex valued C-class functions
of [4]), it suffices to use the family of elements of a unital C*-algebra instead of the set of
complex numbers.

Definition 6 ([22]). Let A be a unital C*-algebra and F : AL x AL — A be a continuous
function. Such F is said to be a C-class function if for allc,d € A :

(1) F(c,d) = ¢,
(2) F(c,d) = c implies that eitherc = 0p ord = 0p.
Let C. be the set of C,-class functions.

Remark 2. If we replace A by C in Definition 6, the class C. corresponds to the set of complex
C-class functions.

Example 2. Consider A = M;(RR) as defined in Example 1.
(1) GivenF, : Ay x AL — A asF.(c,d) = c—d, thatis,
F <C: ( C11 12 ) g ( di1 dio )) _ ( c11 —din c12 —di2 )
o ¢ )’ dy1 dxp Co1 —da1 Cpp —dxp
forallcyq,dyy € Ry, (p, g € {1,2}). Then F, € C..
(2) GivenF, : Ay x A+ — A as
€11 C12 din dio _ €11 C12
F. , =A
Co1 €22 dy1 dxp C21 €
forallcyq,dyy € Ry with (p,q € {1,2}), where A € (0,1). Then F, € C..

Example 3. LetE = L®(M) and U = L?(M), where M is a Lebesgue measurable set. Let B(U)
be the family of bounded linear operators on a Hilbert space H. Note that B(U) is a C*-algebra
(with the usual operator norm). Given F, : B(U)4+ x B(U)4+ — B(U) as

F*(P/Q) = P_IP(P)/
where i : B(U)+ — B(U)+ is continuous so that ¢(P) = 0g ) iff P = Op(yy). Then F. € C..
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Let X be the set of the functions o : A, — A so that:
(a) o is continuous;
(b) o(t) = 0p ifft = 0p and o (0p) = 0p.

Our first result is as follows.

Theorem 3. Let (E, A, G) be a complete C*-algebra-valued Gy-metric space withs = (b.1p) >
1a and T : E — E be so that

o((b°10)G(Tp, Ty, T€)) = F.((Glp,7,8)), 8(G(1,1,2)) ), M)

forall u,n,¢ € E, where F, € Cy,0,0 € L and e € (1,00). Then T possesses a unique fixed
point.

Proof. Let T verify (1). Consider uo € E and define p;, = T" 9. By (1), one writes

o((0°1)G(pin, pnt1, pns1)) =< Fe <‘7(G(Vn—1zVnzVn))fﬂ(G(P‘n—lfP‘mP‘n)))-
We have
G(pns pnsts pins1) = (051R) 7' Gptn—1, pin pin),  forall n > 1. (2)
The inequality (2) implies that

Gty i1, Pns1) = (051A) G (pn—2, pin—1, fin_1), forall m > 2.

If the same process is continued, we get

G(pn, pns1, pns1) 3 (6°1a) " "G(po, pr, 1), forall m > 0. )
Using (CG,5) together with (3) (n,m € IN with n < m),

G (b, toms i) = (BAA)[G(Hn, Hns 1, 1) + G(Hns1, Hons i)
G (s ngrs 1)) + (012 (G (pnsts v Hnr2) + G(Hnr, oy )]
)G, pnsrs 1)) + (018 [G(pns1, fngo, )] + - .
"G (-1, P, tim)]
)(B1)°) "G (o, 11, 11) + (b14)*((b14)°) 7" G po, 1, 1) +

"T((618)) " G (po, 1, 1)

Hn
= (b1
= (b1
+ (b.14)™
= (b.1a
+(b.1p)
< [(01a)((B1A)) " + (014)2((014)) " o4 (014)" " (014)°) "G (o, 1, 1)
< (01a)((014)9) "[Ia + (((01a) )™ o+ ((01a) )™)Y G (o, 11, 1)

m—n

= (1) ((b1)°) "G (po, 1, 1) kz (s H™hHen
=1

Therefore, we have

m—n
G G, pn, 1) I| < NBUNIE) NG (o, pea, ) | Y (BT 7
k=1
b= 1||

o () ot L
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If we take n — oo, then

o1 (7 )”ncwo,m,mn'g‘i—l” o,
] ]

because € € (1,+o0) and ||b|| > 1. We deduce that
Um |G (pn, pim, ) || = 0. (4)

n,m—o0

From Proposition 3, we have

G(pn, pm, 11) = G(n, My ) + G(Homs Y, M1),

for n,m,l € IN. Consequently,

NG (s s )| < 11G (st o) ||+ 1 G (i, s 1) 1]

By (4), we conclude that ||G(pn, pim, 41)|| — 0 as n,m,l — co. Thus, {u,} is Gy-Cauchy with
respect to A. The completeness of (E, A, G) implies that there is some u € E so that {y,} is
Gp-convergent to u with respect to A.

We claim that Tu = u. Assume on the contrary u # Tu. By (1), we have

o((b°1a)G(pns1, Tu, Tu)) < F, <(T(G(yn, u,u)), 0(G(pn, u, u))), forall n > 0.
Therefore,
G(ptps1, Tu, Tu) = (b°14) " G(pn, u,u), foralln > 2,
and so

1G (sntr, Tu, Tu)|| < ”bg” 1G (s, ) |-

Taking n — oo, we obtain lim, e ||G(pp41, Tu, Tu)|| = 0. Thus, {u,} Gy-converges to Tu. By
uniqueness of limit u = Tu. Let { # u be another fixed point of T. From (1),

o(1°1a)G(1,,0)) = o((18)G(Tu, TC, TO)) < F. (0(G(w,£,2)), 8(G (1,2, 0)) )
G(u,g,0) = (b°1a)7'G(1,, ).
Thus, .
1G(u, g, O < WHG(%C,C)IL

We conclude that ||G(u,{,Z)|| < 0 because To T bEH € [0, ﬁ) C [0,1). Therefore, u is the unique

tixed point of T. O

Taking F.(s, t) = k*sk (where k € A with ||k|| < 1and s € A ) in Theorem 3, we have the
following.

Corollary 1. Let (E, A, G) be a complete C*-algebra-valued G,-metric space withs = (b.1p) >
1a. Let T : E — E be so that

o((b°1n)G(Tu, Ty, TZ)) 2 k*o(G(p,1,8))k, ()

forall y,n,¢ € E, wherek € A with ||k|| < 1,0 € ¥,e € (1,4+). Then T admits a unique
tixed point.
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Example 4. Let E = R. Consider A = M,(R) as defined in Example 1. LetG : E x E X E —
M5 (R) be defined as

(1 1
Glp,,8) = diag(G(In—nl+n— &l + 18 = uD)? (I —nl+ Iy — & +1& = u)?)

(é(ﬂﬁ+ﬂé+€ﬂ)2 0 )

0 s —nl+1y—¢l+1g — pl)?

forall u,u,¢& € E. Then (E, Ma(R), G) is a complete C*-algebra-valued G,-metric space with

coefficient
20 10
(2 0)22(10)
GivenT : E — EasTu = 4 forally € E, wheree € (1, +o0). Takeo : Ay — A, aso(t) =t.
Forallu,n,¢ € E,
(2 A0)G(Tu, Ty, TE)) = o ((210)G (L 5N o ( (214 ) G )
LA ]’l’ Tl’ g)) =0 ( . A) 357357 3¢ =0 98' A (]/l,T],C

((3 0> (é(uﬂ+n€+€u>2 0 ))
= 0 2_£
b 0 Sl =+l =&l +15— pl)?

<3—i 0) (é(ﬂﬂ+né’+€u)2 0 )
- 2
° & 0 sUp=nl+1n =2l +1¢—u)?

9
u = 0 is the unique fixed point of T in E.

2€
5 0
where k = \/: — |, k]l <1, &€ (1, +00). The inequality (5) holds. From Corollary 1,
0 V3
A related Kannan type fixed point theorem is stated as follows.

Theorem 4. Let (E, A, G) be a complete C*-algebra-valued G,-metric space. LetT : E — E
verifies for all u,n € E,

o(G(Tp, Ty, T)) = Fe(lm(pe, ), 8(m(u, 1)) ). ©)
where F, € C,,0,9 € X, and

m(u,n) =b(G(u, Tu, Tu) + G(n, Tny, Try)),

whereb € A/, and ||b| < % Then T possesses a unique tixed point.
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Proof. Assume that b # 0p. Thenb € A’,, and so b(G(u, Tu, Tu) + G(y, Ty, Try)) is also a
positive element. Let yg be in E. Take p,41 = Tuy = T" 1y for all n > 0. We claim that
{pn} is a Gp-Cauchy sequence with respect to A. In case of y, = y, 41 for some n, y, is a fixed
point of T. Therefore, assume that y,, # y,+1 for all n > 0. Choose G(pn, Hnt1, Pns+1) = Gn. It
follows from (6) that

o (G(pn, Pns1s pnr1)) = o(G(Tpn—1, Ttn, Tpn))
ﬁF*( (b(G(pn—1, Tu—1, Tn-1) + G(ptn, Tpin, Tn))),

8(b(G (1, T, Thin—1) + Gpn, Thtn, Thn))))
= Fe (0 (0(G(ptn—1, s i) + G(pn, Pns1, 1)),

B(B(G(pn, pns ) + Gt 1, ns1))) )
= o (O(G(pn—1, tn, pn) + G(pns 1, Hnt1)))-

Hence,
G(pn, pn1, n1) = b(G(pn—1, pn, n) + G(pn, Bt Pnt1)),
and thus

G, tnt, tn) = (1a = D) DG (1, piu, i) = tG (1, i, in),
where t = (15 — b)~!b. Inductively, we conclude that

G(ptn, a1, Hns1) = tG(Hn—1, tn, tn) = 2G(tn—2, hn—1, Pn-1) = ... = "G (so, i1, 11)
= t"Gy.

Since |b| < 1, we have ||t|| < 1. Hence

Bim (|G (pn, pngt, ) || = 0.

and so
Jim G (g, pin1, Bny1) = O
Now,
U(G(Vﬂ/l"m/l"m)) = G T]/ln 1s Tﬂm 1/ Tﬂm 1))
< F < < ,un—ll Tup—1, T,Mn—l) + G(P‘m—lf Tum—1, T,”m—l))
o * 5 ,
8 (G Hn—-1, T,un 1, T,un 1) G(,umflr T,umflr T,“ml)))
2
- ( ( unl,yn,yn)+G(um1,um,ym)>
— 2 7
]/ln 1, Bns ,Mn) + G(P‘m 1, Km, ,um)
2
=

i (G(un_l,umm : G(ym_l,ym,m) = o(0n).



104 MOEINI B., Isik H., AYDI H.

This shows that {y,} is G,-Cauchy with respect to A. Since E is complete, there is u € E so
that p,, — u. We have

o(G(Tu, pius1, pnv1)) = (G(Tun—1, Thn, Ttn))
( (G(u, Tu, Tu) + G(Vn,THn,THn)>
F.lo 5 ’

9 ( G(u, Tu, Tu) + G(pn, Ttin, Ttin) ))
2

F* (0_ (G(ul Tul Tl/l) + G(,M}’l/ ,MI’H-ll ]’l?l-i-l) > ,

A

PN

2
9 ( G(u, Tu, Tu) + G(anﬂn+1ryn+1>>>

2

Letting n — oo, we get

o(G(Tu,u,u)) < E. <(7(G(Tu,u,u)),t‘)(G(Tu,u,u))).

Thatis, 0(G(Tu, u, u))=F, <(7(G(Tu, u,u)),8(G(Tu, u, u))) . So,

0(G(Tu,u,u)) =0p or HG(Tu,u,u)) =04.

Thatis, G(Tu,u,u) = 0p,ie., u = Tu.
Let v be in E so that v = Tv. We have

o(G(v,u,u)) = o(G(Tov, Tu, Tu))
G(v,Tv, To G(u, Tu, Tu G(v,Tu, To G(u, Tu, Tu
<5 (o (CloToTe) L OWTITIY (o ToTo) + Ol T T

2 2

. (U (G(u,u,u) + G(v,v,v)) 9 <G(u,u,u) —2{— G(v,v,v)))

2
= F.(¢(04), 8(0a)) = 0(0a) = Oa,

which implies that u = v. ]

If we consider Fi(s,t) = s —t (fors,t € AL) in Theorem 4, we get the following.

Corollary 2. Let (E, G) be a complete C*-algebra-valued G,-metric space. Let T : E — E be so
that

o(G(Tu, Ty, Ty)) 2 o(m(p,n)) — (m(u, 1)),

forallu,n € E, whereo, ¥ € £ and

G, Tw, Tp) + Gy, Ty, T
m(p, ) = S TH Pl)z (7, Ty, Tog)

Then T admits a unique fixed point.
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Moerni B., Inmik T, Aiiai I'. CrmocosHo pesyvmamis npo Hepyxomy mouky 01 ¢pyHxyiii kaacy Cy va C*-
anzebposnaunux Gy-mempuunux npocmopax // KapmaTtcpki marem. myba. — 2020. — T.12, Nel. — C.
94-106.

3anporioHoBaHO KoHIemmjo C*-aarebposHauHNX Gp-MeTPUIHIMX ITPOCTOPiB. AOCAIAXEHO AesKi
OCHOBHI BAACTUBOCTi TAKMX IIPOCTOPIB i AOBEAEHO AeSIKi TeOpeMI IIPO HepyXOMy TOUKY Ty banaxa
i Karnana aast dyskriit kaacy C,. TakoX HaBeAeHO AesIKi HeTpUBiaAbHI IPMKAAAM, IIT06 IOKa3aTH
e(peKTUBHICTE i 32CTOCOBHICTH OTPMMAHNX Pe3yAbTaTiB.

Kntouosi cnosa i ppasu: Hepyxoma Touka, PyHKIIis kaacy Cy, C*-arrebposHaurmii G-MeTpIIHMI
MPOCTip.
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A NOTE ON APPROXIMATION OF CONTINUOUS FUNCTIONS ON NORMED
SPACES

Let X be a real separable normed space X admitting a separating polynomial. We prove that each
continuous function from a subset A of X to a real Banach space can be uniformly approximated
by restrictions to A of functions, which are analytic on open subsets of X. Also we prove that each
continuous function to a complex Banach space from a complex separable normed space, admitting
a separating *-polynomial, can be uniformly approximated by *-analytic functions.

Key words and phrases: normed space, continuous function, analytic function, *-analytic function,
uniform approximation, separating polynomial.
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Naukova str., 79060, Lviv, Ukraine
E-mail: mishmit@rambler.ru (Mytrofanov M.A.), alexander.ravsky@uni-wuerzburg.de (Ravsky A.V.)

The first known result on uniform approximation of continuous functions was obtained by
Weierstrass in 1885. Namely, he showed that any continuous real-valued function on a com-
pact subset K of a finitely dimensional real Euclidean space X can be uniformly approximated
by restrictions on K of polynomials on X. For a compact subset K of a finitely dimensional
complex Euclidean space X holds a counterpart of Stone-Weierstrass’ theorem, according to
which any continuous complex-valued function on K can be approximated by elements of any
algebra, containing restrictions on K of polynomials on X and their conjugated functions. A
general direction of investigations is to try to extend these results to topological linear spaces.
Most of the obtained results concern separable Banach spaces, although in the paper [4] the
authors obtained partial positive results for separable Fréchet spaces. A negative result be-
longs to Nemirovskii and Semenov, who in [7] built a continuous real-valued function on the
unit ball K of the real space ¢, which cannot be uniformly approximated by restrictions onto
K of polynomials on ¢,. This result showed that in order to uniformly approximate continu-
ous functions on Banach spaces we need a bigger class of functions than polynomials. The
following fundamental result was obtained by Kurzweil [3].

Theorem 1. Let X be any separable real Banach space that admits a separating polynomial, G
be any open subset of X, and F be any continuous map from G to any real Banach space Y.
Then for any ¢ > 0 there exists an analytic map H from G to Y such that |[F(x) — H(x)|| < ¢
for all x € G.

Separating polynomials were introduced in [3] and are considered in reviews [2] and [6]. In
order to define them and to obtain a counterpart of Kurzweil’s Theorem for a complex Banach
space X, in paper [5] were introduced notions, which we adapt below for complex normed
spaces X and Y.
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A map By, from XK to Y is a map of type (k,m) if By (X1, ..., X, Xka1, - -+, Xkp) S @
nonzero map, which is k-linear with respect to x;, 1 < i < k, and m-antilinear with respect to
xk+j/ 1 < ] < m.

Definition 1. A map B, : X" — Y is x-n-linear if

Bn(xlr o s X Xt 1r ey xk+m) = Z CkmBkm(xll e s Xy X 1r e s xk+m)/
k+m=n

where for each k and m such that k + m = n, By, is a map of type (k,m) and cy,, is either 0 or
1, and at least one of cy,, is non-zero.

Definition 2. A map F, : X — Y is called an n-homogeneous *-polynomial if there exists a
x-n-linear map By, : X" — Y such that F,(x) = By(x,...,x) forall x € X. Remark that Fj is a
constant map.

Definition 3. A map F : X — Y is a *-polynomial of degree j, if

j
F=)Y F,
n=0
where F, is an n-homogeneous continuous *-polynomial for each n and F; # 0.

Definition 4. A map H : X — Y is x-analytic if every point x € X has a neighborhood V such
that

H(x) = i}Fn(x),

where for each n we have that F, is an n-homogeneous continuous *-polynomial and the series

Y. Fu.(x) converges in V uniformly with respect to the norm of the spaceY.
n=0

Definition 5. Let X be a complex (resp. real) normed space. A x-polynomial (resp. polyno-
mial) P : X — C (resp. toR) is called a separating x-polynomial (resp. polynomial) if P(0) = 0
and inf P(x) > 0.
[lxl=1
Denote by H (X, Y) the normed space of *-analytic functions from X to Y.

Theorem 2 ([5]). Let X be any separable complex Banach space that admits a separating
x-polynomial, Y be any complex Banach space, and F : X — Y be any continuous map. Then
for any € > 0 there exists amap H € H(X,Y) such that |[F(x) — H(x)|| < ¢ forall x € X.

The aim of the present paper is to generalize Theorems 1 and 2 to normed spaces. To this
end we need the following technical result.

Lemma 1. If a real normed space X admits a separating polynomial q then its completion X
admits a separating polynomial too.

Proof. Let g = ) q; be a sum of homogeneous polynomials g; on the space X. For eachi € I
icl

there exists a polylinear form h; : X" — R such that g;(x) = h;(x,...,x) for each x € X.

Since h; is a Lipschitz function on X", by [1, Theorem 4.3.17], it admits a continuous extension
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h; on the space X", which is polylinear by the polylinearity of &;. The map 7; : X — R
defined as 7;(x) = h;(x,...,x) for each x € X is an extension of the map g;. Then the map
g = Y. g;is a continuous polynomial extension of the map g onto the space X. It is easy

iel
to show that the unit sphere S of the space X is dense in the unit sphere S of the space X.
Therefore inf §(x) = in{fg g(x) > 0, so 7 is a separating polynomial for the space X. O
x€eS xe

Theorem 3. Let X be a separable real normed space that admits a separating polynomial, Y be
a real Banach space, A C X, f : A — Y be a continuous function, and ¢ > 0. Then there are an
open set A; D A of X and an analytic function f, : A¢ — Y such that ||f(x) — fe(x)|| < ¢ forall
x € A.

Proof. Let X be a completion of X. We build a cover of the set A by open in X sets as follows.
For each point x € A pick its neighborhood O(x) open in X such that ||f(x) — f(x)| < &/3
forall x’ € O(x) N A.

Put A = | O(x). The topological space A, is metrizable, and therefore paracompact,
x€A

[1, 5.1.3]. Therefore, by [1, 5.1.9] there is a locally finite partition {¢s : s € S} of the unity,
subordinated to the cover {O(x) : x € A}.

Now we construct an auxiliary function f] : A; — Y. First, for each index s € S we
define a real number a5 as follows. If suppps N A # &, then we pick an arbitrary point

Xs € supp ¢s N A, and we put a; = f(x;). Otherwise, we put a; = 0. Finally, put f{ = Y. as¢s.
s€S
Letx € A. PutSy = {s € S: x € supp ¢s}. Then ¥ ¢s(x) = 1. Lets € Sy be any index.
SES,

Thus there is an element xy € A such that x € supp ¢s C O(xp). Hence x; € O(xp) and

1f(x) —as| = [If(x) = flxs)ll <[ f(x) = f(xo)ll + ([ f(x0) — flxs)|| < 2e/3.
Then

169 = £ = |0 = K ()

Zf(x)q)s(x) - ZQSG"S(JC)

seS ses ses
= Zsf<x><os<x>— Zsasqosoc) < ZS £ (x) s (x) — asps () |
= ZS £ (x) — as]| @s(x) < 25(28/3)¢5(x) — 2¢/3.

The function f! is continuous on A as a sum of a family of continuous functions with a
locally finite family of supports.

By Lemma 1, the space X admits a separating polynomial. Therefore the space X sa-
tisfies the conditions of Theorem 1, so there exists a function f; analytic on A, such that
|| e (x) — fl(x)|| < e/3forall x € A. Then forall x € A we have

1f(x) = fe()ll <IIf(x) = @)+ 1f(x) = fe(0)]| <&
It remains to put A, = gg N X and let f; be the restriction of the map fg to the set Ae. O

For a complex normed space X we denote by X itself, considered as a real normed space,
and by H (X, Y) the real normed space of analytic functions from X to a Banach space Y.
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Theorem 4. Let X be any separable complex normed space that admits a separating *-poly-
nomial, Y be any complex Banach space, and F : X — Y be any continuous map. Then for any
e > 0 there exists amap H € H(X,Y) such that |[F(x) — H(x)|| < ¢ for each x € X.

Proof. The proof is almost identical to the proof of Theorem 4 from [5] with the following
modifications. Instead of the application of Kurzweil’s Theorem we apply Theorem 3. Instead
of [5, Lemma 2] we use the fact (proof of which is similar to that of [5, Lemma 2]) that the
identity map from a complex normed space H(X,Y) to the real normed space H(X,Y) is an

isomorphism of real normed spaces. O
REFERENCES
[1] Engelking R. General topology. Heldermann, Berlin, 1989.
[2] Gonzalo R., Jaramillo J.A. Separating polynomials on Banach spaces. Extracta Math. 1997, 12 (2) 145-164.
[3] Kurzweil . On approximation in real Banach spaces. Studia Math. 1954, 14, 214-231.
[4] Mytrofanov M.A., Ravsky A.V. Approximation of continuous functions on Frechet spaces. J. Math. Sci. (N.Y.) 2012,

(5]

(6]

(7]

185, 792-799. d0i:10.1007 /s10958-012-0961-6 (translation of Mat. Metodi Fiz.-Mekh. Polya 2011, 54 (3), 33—40.
(in Ukrainian))

Mitrofanov M.A. Approximation of continuous functions on complex Banach spaces. Math. Notes 2009, 86 (4), 530
541. d0i:10.1134/50001434609090302 (translation of Mat. Zametki 2009, 86 (4), 557-570. d0i:10.4213/mzm5161
(in Russian))

Mytrofanov M.A. Separating polynomials, uniform analytical and separating functions. Carpathian Math. Publ.
2015, 7 (2), 197-208. d0i:10.15330/cmp.7.2.197-208 (in Ukrainian)

Nemirovskii A.S., Semenov S.M. On polynomial approximation of functions on Hilbert space. Math. USSR Sb.
1973, 21 (2), 255-277. d0i:10.1070/SM1973v021n02ABEH002016 (translation of Math. Sb. 1973, 92 (134), 2 (10),
257-281. (in Russian))

Received 28.03.2020

Mwurpodanos M.A., Pascoxmit O.B. Ilpo anpokcucmayiio HenepepsHux GyHKYIT 8 HOPMOBAHUX NPOCOpax
// Kapnarcbki MateM. my6a. — 2020. — T.12, Nel. — C. 107-110.

Hexart X e ailicEnM cenmapabeAbHMM HOPMOBaHMM IIPOCTOPOM, IO AOIIyCKa€ BiAOKPEMAIOBAAD-
1 moAinoM. TlokasaHo, 110 HenepBHi pyHKIII 3 miAMHOXUEM A B X B AlicHMIT 6aHaXiB IPOCTIp
MOXYTb 6yTI piBHOMIpHO HaOAVDKEHI aHAAITUYHMMM Ha BIAKpUTHX MiaMHOXMHax X. Takox moka-
3aHO, IO HellepepBHi (PYHKIII y KOMIIAeKCHIIT 6aHaXiB IIPOCTip 3 KOMIIAEKCHOTO cerapabeAbHOTO
HOPMOBAHOTO IIPOCTOPY, IO AOIIyCKa€ BiAOKpPEMAIOBAABHIIA *-TIOAIHOM, MOXYTh OYTI piBHOMipHO
HaOAVDKeHI *-aHaAITUYIHVMU (PYHKITISIMIL.

Kntouosi crosa i ¢ppasu: HOpMOBaHMI IPOCTip, HelepepBHa (PYHKIIsI, aHaAiTMUHA (PyHKIIis,
*-aHaAITMUHA (pyHKIIis, piBHOMipHA anpoKcMMallisi, BiAOKpeMAIOBAABHII TIOAIHOM.
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ON THE ESTIMATION OF FUNCTIONS BELONGING TO LIPSCHITZ CLASS BY
BLOCK PULSE FUNCTIONS AND HYBRID LEGENDRE POLYNOMIALS

In this paper, block pulse functions and hybrid Legendre polynomials are introduced. The esti-
mators of a function f having first and second derivative belonging to Lip,[a, ] class, 0 < a < 1,
and g, b are finite real numbers, by block pulse functions and hybrid Legendre polynomials have
been calculated. These calculated estimators are new, sharp and best possible in wavelet analysis.
An example has been given to explain the validity of approximation of functions by using the hybrid
Legendre polynomials approximation method. A real-world problem of radioactive decay is solved
using this hybrid Legendre polynomials approximation method. Moreover, the Hermite differential
equation of order zero is solved by using hybrid Legendre polynomials approximation method to
explain the importance and the application of the technique of this method.

Key words and phrases: block pulse function, Legendre polynomial, hybrid Legendre polynomial.
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INTRODUCTION

In recent years, researchers like Marzban and Razzaghi [8, 10], Hsiao [4] defined and then
used hybrid functions (HFs) for the numerical solutions of differential equations and integral
equations. Working in the same direction, Marzban et al. [11] derived an operational matrix for
a detailed analysis of HFs. In the continuation of their efforts, Merzban [9] studied the optimal
control of linear delay systems applying HFs.

Objectives of this research paper are:

(i) to introduce block pulse functions and hybrid Legendre polynomials;
(ii) to estimate the error bounds of the functions of a certain class by hybrid functions;

(iii) to estimate the approximations of a function f € Lip,[a, b] by the partial sums of the
block function series and hybrid Legendre series.

This research paper is organized as follows. In Section 1, block pulse functions and their
some properties, block pulse functions expansion, hybrid Legendre polynomials, hybrid Leg-
endre polynomials expansion, and Lip,|a, b] class have been explained. In Section 2, the ap-
proximation of a function f € Lip, [0, 1] by block pulse functions expansion, Legendre polyno-
mials expansion and hybrid Legendre polynomials expansion have been estimated and appro-
priate detailed proofs are provided. In Section 3, hybrid Legendre approximation is explained
with the help of an example. Section 4 is introduced to explain the application of this expan-
sion in solving the Hermite differential equation of order zero and in solving some real-world
problems. Eventually, some conclusions are mentioned in Section 5.
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1 DEFINITIONS AND PRELIMINARIES

1.1 Block pulse functions and their expansion
Let n be an arbitrary fixed positive integer. Define functions B;,i = 1,2, ..., 1, on the inter-
val [0, 1] by (see [7])
i—1 i
1, 5-<t<y;
0, otherwise.

it = {

These functions are referred as block pulse functions (or BPFs).
Let (-, -) denotes the inner product over the field F (R or C). Block pulse functions expan-
sion of an f € L?[0,1) is given by (see [3])

ﬂﬂzimﬁw,ﬁwzﬂﬁm, W

where 7 is an arbitrary fixed positive integer associated with block pulse function B;. Let S,
denotes the n'/" partial sum of the series in (1) and it is given by

&mzimmw

1.2 Properties of block pulse functions

An n-set of BPFs defined above satisfies the following properties.
1. Disjointness, i.e., B;(t)Bj(t) = d;;Bi(t), where 1 <i,j < n, §;; is the Kronecker delta.
2. Orthogonality, i.e.,
0, i#j; ..
<5irﬁj>:{l ._Z 1<i,j<n
s, i=],

3. Completeness, i.e., for every f € L2[0,1) Parseval’s identity

[} £ =5 1Pl P

satisfied, where fg, is defined in (1).

1.3 Legendre and hybrid Legendre polynomials
Legendre differential equation is given by (see [1])

d? d
_ )Y o4y =
(1—x )dx2 Zxdx +nn+1)y =0,
where 7 is a positive integer. Legendre polynomial L, (x) is the solution of above differential
equation and it is written in the form (see [2])

2] n—2r)!
Ea(¥) = Z(_lyznr!(éz— r)!%n); 2r)!xHr’

r=0
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where
[E] _ { L, ifniseven;
2 "51, if n is odd.
Rodrigue’ s formula for L, (x) is given by

1 d"

Ln(¥) = 557 (x*-1)", n=0,12,....

Let n and m be the arbitrary fixed positive integers. Hybrid Legendre polynomials, denoted
by hz-]-, i=1,2,...,n,j=0,1,...,m—1,on the interval [0, 1) are defined by

. _ 9 i=1 ~ i.
i (8) = Li(2nt -2i+1), 5 < t‘< -
0, otherwise,
where i and j are the orders of BPFs and Legendre polynomials respectively.
1.4 Hybrid Legendre polynomials expansion
If f € L2[0,1), then associated hybrid Legendre polynomial infinite series is (see [6])

f = ¥ Sy, =

i=1j=0 ( ijr ij>.

(2)

The (1, m)!" partial sums of the series (2) is given by

n m—1

sum(t) =Y Y cijhi(t).

i=1 j=0
1.5 Lipy[a,b] class
A function f belongs to Lip,[a, b] class for 0 < a < 1if
fx+t) = f(x)| =0(t*), 0 <a <1
If0 < a < B<1, then Lipg[0,1] C Lip,[0,1].

Example. Leta = 3, = J and f(x) = x3, g(x) = X3, Vx € [0,1], then ¢ € Lipg[0,1] =
g € Lip,[0,1]. Here,

Nl—=

g+ =g =[x+ 01— x| < |(x+1) =22 =

Hence, |g(x+1)—g(x)| = O(t%) and g € Lip% [0,1]. Also,

NI—
~
Q=

NI—
I
~~
Q=
~~
=
IA
~~
@I=
~
<
~~
m
—
=)
~
—_
-

<|(x+t)—x|2 =t

g(x+1) —g(x)| = )(x+t)% _x2

~
I

Hence, [g(x +1t) — g(x)| = O(t%) and g € Lip%[O, 1]. Now,

[fx+t) = f¥)] =
Thus, |f(x +t) — f(x)| = O(t%) and f € Lip%[O, 1]. But

(x+Df | <|x+h)—xf =1, Vielo1]

f(x+1) — f(x)] = )(x+t)% — | <) —x]f = t%t—% — th i,
Hence,
P [LCEDETT
t2

This shows that f ¢ Lip% [0,1]. Therefore Lip% [0,1] € Lip% [0,1].
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2 MAIN RESULTS

Theorem 1. Let f be a differentiable function on the interval [0, 1] such that its first derivative

f' € Lip,[0,1] and the block pulse functions expansion of f be f Z fp:Bi(t), where
fo = <<£ ”[Z >>, and B; is a block pulse function. Then the error of approximation of f by
1
m

(Suf)(t) = )_ fpBi(t) is

i=1
O () = min = Sufl =0 | (141

where 0 < « <1 and m be an arbitrary fixed positive integer.

Proof. Since

i—1 i ,
el:fﬁzﬁl(t>_f(t)?q%,’%)l v|: m !E)r 1_112/--'rmr
where m is an arbitrary fixed positive integer associated with the BPFs and X[iz1 iy is a char-

acterstic function defined on the interval [1 1 1 ) Then

%Zﬁ@@+ﬂ@ﬂ%%—%ﬁﬁ[ 11
Now, by Taylor theorem (see [5])
eil* = f;s/ﬁ dt+/f2 {)dt - Zf,sl/ﬁ ’3’+/f2 it -2y, /f<>

:%+jﬂc; )”‘%j}< ")
R () e ()
Bl )

1 1
m

+2/f<i_1>uf’<i;1+9u> du—2fﬁl,/<f (i;) +uf’<i;11~|—9u>>du
0 0

/()

1
~ 2y [ur (o) au
0

+2f <i;1> /%f’ <i_71—|—6u> udu — 2fp,
0
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where 0 < 6 < 1. Also,

f,Bj = m<f/ﬁl> =

[ (r(5 )+f<

From the above formulas we get

leill5 :/j u? <f/ (i_TlnLGu))Zdu—m( j uf
1 . )

j (1_1 )du

§‘L\§\~

7N
3|
—_
o)
NS
Qu
NS

+
1 (i=1 2 1 (i=1
oA ( 1 1 >+<f<7)> +2A1f<7)<1 L1 )
m2+3 \ 20 +3  (a+2)2 ’
where A; is a positive constant.
Hence,

i—1Y)2 i—1
HeHZ — i ||e||2 — A% 1 + 1 + (f/(lW)) + 2A1f/<17) 1 + 1
2T e TR T 202 \20 43 7 (0 42)2 12m?2 mat2 A+3  2a+4

248 (F(5))°, 4af ()

— a2 12m2 met2
2 1 (i=1Y\)2 2 A, ! (i=1 ri=1Y\ N 2
:2< 1241 +(f(m))+ 1f(m)>§2<Al +f(m)>
m2e+2 24412 met2 mot+1 m
Therefore,
1 1
llell = O p- 1+ )|

So, the proof of Theorem 1 is completely established. O

Theorem 2. Let f be a differentiable function defined on the interval [—1,1] such that its sec-
ond derivative f" € Lipy[—1,1] and Legendre expansion of function f be

t) = ZC]P](t), (3)
j=0
. : . P)
where P; is a Legendre polynomial and ¢; = PP Then the error of the approximation of f
177
m—1
by (Unf)(t) = Y ¢iPi(t), m=1,2,...,1is
j=0

ECP)(f) = min |[f — Upfll> < M <1+ \/ziﬁ> (2m1_3>%,
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where m > 2 is an integer, M is a positive constant and 0 < a < 1.

Proof. Legendre expansion of a function f(f) is given by (3). Let
m—1

denotes the m!" partial sum of (3). Then for arbitrary m > 2, we have

1 2
If = Unld = [ (F = )2t = /<Zg ﬁ

-1 -1
1

— 2 [ 2
_Zcf/Pfdt <2]+1

and for arbitrary j > m, we obtain

[ f(£)P;(t)at . - /
C]:_l - _ ];‘ /f() (t)dt %/ () 1-1-21—{_1]—1[11L
ijzdt 21 Y
1
1/ |
2/ 10 (Pl P’)ﬂ > [ £ (B =Py
1

1 1
o 1 1" 1 1 . / //
() — Jm2 7 j+2 7
where B;(t) 21 %13 Hence,

1 1
kﬂs%/v%o—ﬂmnwmnm+§/vﬂmu&mwt
- (4)

1 " 1
< MT{!f\“\Bj(f)}dH / 2(0)’/}310)\‘1@
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where M; is a positive constant. Next, applying the Cauchy-Schwarz inequality, we get

1

1 1 1 1
</]t\“\Bj]dt> S/\t!z“dt /\Bjyzdt:2/\t]2“dt /ysjyzdt

-1
/ H2+P Lt
2(x—|—1 (2j +3)? (]—1)

2 2 2 2
(2(x+1)(2]+3) (2]+5 2j—|—1>+(21x+1)(2j—1)2<2j—3+2j+1>
_ 16 | _
~ (2a+1)(2j —3)8
Hence,
[ Bl < ——" . ®)
I, V2u+1(2j —3)2
Also,
; 2 16
Bdt) < </12dt> </ B: 2dt> < — .
(_/11 X B s
Therefore,
; 4
/|B]-|dt <= ©6)
-1 (2]_3)j

By (4)-(6) we have

1 4M; 1 If7(0)] 4 ( 1 ) 1
il < = + <M +1) ——
It 2 ooy (2 -3)

where M = max {2Mj3,2|f”(0)|} and

© 1 S 2
If = Unlz < 3 M° <1+\/m> (2/—3)%(2j+1)

Hence,

”f—Um|!z§\f2M<1+ L )( 1

Thus Theorem 2 is completely proved. O
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Theorem 3. Let f be a differentiable function on [0,1] such that f"" € Lip,[0,1] and hybrid
Legendre polynomials expansion of f be

i=1j=0
where ¢;; = o hy )

iy 1) and hi]- is the hybrid Legendre polynomials, and
l]/ l]

n m—1
(Spmf)(t Z;Jclhl (1)

be the (n, m)" partial sum of the series (7). Then the error of approximation f by Sy f is

(5 3) )

2m —3)3

HFs

f min [|f — Symflla = O

where m > 2, n is a positive integerand 0 < a <1

Proof. We see that hybrid Legendre polynomials expansion of f is given by (7). Now, suppose
n and m are the arbitrary fixed positive integers. Then fori = 1,2
we have

onandj=0,1, m—1,
J f(®)hij(t)dt f
(f hij) = 5

P;(2nt — 2i+1)dt
Cij <h h > = - i i
1]/ ij n n
2 2 _ 7
Ahzj(”dt AP]. (2nt —2i +1)dt
1 u+2i—1> du
u
‘f1f< 2n 12 241 [ (ut2i—1
= /f — = ) Pi(u)du
2 2n ]
J PRy %
1 2n

8)
2L [ (21 o 24 o b2i-1Y (P =P
(523 (42 ()

-1

2n 2]~|—1
1
1 t+2i—1 t+2i—1
=5 [F(F5) () =4 /f (F 5 ) (B =B
-1

1

1 [, (t+2i— t+2i—1
= — —_— dt ———— | P qdt =L+ L.
n/1f< o >+1 +4/f< );1 1+ 1
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Now,

1, (t42i—1 1 F  /t+2i—1\ [Pla—P
_ - ! L= ) _ / 1 — j+2 j
h=7 /f < 2n >PJ+1dt 4n /f ( 2n )( 2j+3 )dt
-1

-1

1
1 g (t+2i—1
= m_/lf <72n ) (Pj+2 — Pj) dt (9)

1 .
_ 1 /f,, t+2i—1 Piio— P it
8n? 2n 2j+3 '
-1

Next,

1 ; t+2i—1 1 / t+2i—1 P P
_ ! 1= , _ 7 I— -2 5
 dn /1f < 2n )ledt 8n? /1f < 2n ) < 2j—1 )dt' (10)

By (8)—(10) we have

o y(t+2i—1
= 8n2/f <

)
_ 8n2/f,,<t+21—1>

P.,—P P._,—P
j+2 ] j—2 J

.H :
213 + 2 —1 ence

1 t+2i—1
1 t+2i—1
S@/f”< 2n )‘fﬁ<
1

1
M 1 "
< gz | Bl + g |f
-1

1
2 — 1 / g (t+2i—1 P]',Q — P]'
( 2j+3 ) +81/12 1f < 2n 2j—1 at

1
2 — ijZ_Pj p 1 / g (t+2i—1
b= 2= par,
( 2]+3 2j—1 ) 8n2 f 2n /
.

where B i =

1
81 Q.2
-1

1 1
>‘/|Bj|df/
-1

)'IB dt +

20 —
2n

(21 —1
2n

)‘ |B;|dt (1)

where M; is a positive constant.
Now, by (5), (6) and (11) we get

M 4 1 4
S a3 1rx+2 5 gV (12)
28t o 1 1(2j —3)2 8 (2j —3)2

B (s S ] G
- V20 120+ pat2 - 2n2 (2 — 3)% - net2 - 2p2 (2j — 3)%’
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where B = max { M, My }. Since f” € Lip,[0,1],0 < a < 1, itis continuous on [0, 1]. Therefore
it is bounded on [0, 1]. Thus, there exists a constant M independent of ¢ such that [ f” ()| < M,

1 _
Vt € [0,1]. Alson € Nandi =1,2,...,1,500 < 17 < 1,ie. ! € [0,1] for each n and

(3]

Let S, f denotes the (1, m)!" partial sum of the series (7) as given in theorem 3. Now,

f=sunf = (L4 £ ) (E+ £ )am- £ om=£ L omy

i=1 i=n+1 i=1 j=0 i=1j=m

i=1,2,...,n. Hence < M,.

Then

1
&/@m
0

2 n
cijhij > dt = Z

i=1j

1 n
Hf— Snmf”% :/ (2
0

i=1j

e
e

n (13)
i i 2 m 2 i i 1
= ci: | Pr(2nt —2i+1)dt = Cii —7ms Ty
=5 l]d ] =55 i n n2j+1)
By (12) and (13) we have
- SunfB< 525 8% (s + ) s
nmfllz < 55 ne+2 " 2n2 ) (27— 3)3n(2j + 1)
1 2 o 1 1
= B ;
(n”‘+2 2n2> ];1 (2/—3)°(2j+1)
= nzx—l—Z ]:m net2 - 2n2 ) (2m —3)
Hence,
1 1 1
_ 2 < — )
|f = Sumfllz <B na+2 + 2112 (2m — 3>%
Therefore,
E(HFS)(f):minl‘f—snmf”ZZO L—FL # m>2and 0 <a <1.
n,m ’ na+2 212 (2171 _ 3>% ’ = >~
]

3 NUMERICAL EXAMPLE OF HYBRID LEGENDRE POLYNOMIALS APPROXIMATION

In this section hybrid Legendre polynomials approximation of the function

B+t242t+1, Vteo,1],
f(t) = .
0, otherwise
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forn = 1,2 and m = 1,2,3 has been explained by graphs of concerned function. S, ,, for
n=1,2and m = 1,2,3 are calculated and are given as

51(1) = g, 0<t<1, 5a(t) = A +B2t-1), 0<t<],
’ 0, otherwise, ’ 0, otherwise,
51a(0) T+Jt-1)+ZB2t—-1)2-1], 0<t<1,
13(t) = .
0, otherwise,
B, 0<t<], PB4t -1), 0<t<s,
Soa(t) =93, l<i<y, Sop(t) =3+ 2B4r—3), l<t<y,
0, otherwise, O, otherwise,
15 4 184t — 1) + 5 [3(4t —1)2—1], 0<t<}i
So3(t) = 341 + 284t -3)+ Bt -3)2-1], 1<t<y,
0, otherwise.

The graphs of S,,, and f(t) has been plotted for n = 1,2 and m = 1,2,3 in Figures 1-6
respectively. Hybrid Legendre polynomial approximation error for different values of n and
m is shown in Table 1.

n m | [|f = Sumll2
m=1 1.14131
n=1|m=2| 0.187295
m=3 | 0.0188982
m=1 | 0.603409
n=2 | m=2 | 0.0486932
m=3 | 0.00236228

Table 1. Hybrid Legendre polynomial approximation errors for different values of n and m

b

-1 -1 1 2 -2 -1 E e

Figure 1. Graph of S1; and the function f(t) Figure 2. Graph of S; » and the function f(t)
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-10 -0.5 0.5 10 2 21 1

(=]

Figure 3. Graph of S; 3 and the function f(t) Figure 4. Graph of S, 1 and the function f(t)
4F s
3 3
1k Ik
1 1

L I I L L L L L
-15 -10 0.5 0.5 1.0 15 =13 -1.0 -0.3 0.5 1.0 1.5
Figure 5. Graph of S, and the function f(t) Figure 6. Graph of S, 3 and the function f(t)

4 APPLICATION OF HYBRID LEGENDRE POLYNOMIALS EXPANSION

4.1 Application of hybrid Legendre polynomials expansion in real-world problems

We have used the hybrid Legendre polynomial approximation method to solve the differ-
ential equations related to the following real-world problem.

4.1.1 Radioactive decay

Radioactivity [12] is one of the effects of disruption in the nucleus of a radioactive substance.
It is important to remember that radioactivity has also been used in the diagnosis of cancers
through lighting in the nucleus form of the atoms to the recipient.

If m(t) be the mass of a radioactive substance at time ¢, then (see [12])

dm

T —km(t), m(0) = my, (14)

where k is a decay constant and my is the initial mass. Let us consider k = 2 and my = 2, the
above equation reduces to
dm

—p = —2m(t), m(0) =2, (15)
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Equation (15 ) is now solved using hybrid Legendre polynomials operational matrix of inte-
gration as in [6] for n = 5 and m = 3 as below.

Let

h(t) = [ho, h11, h12, hoo, a1, ho, Biso, sy, s, hao, iy, hao, Biso, sy, hisa) T (16)

Here h(t) be 15 x 1 column vector and hi]- fori = 1,2,3,4,5and j = 0,1,2 are calculated as
given in subsection 1.3. The integration of above vector h(t) is given as

/0 h(x)dx = Ph(t).

Here P is 15 x 15 hybrid Legendre polynomials operational matrix of integration and it is given
as

1 1 1 1 1 1
& & 0 + o o & o o f o o Lt 0 o0
% 0 % 0 0 0 0O 0O O 0 0 0 0 0 0
0O -4 0 0 0 0 0O O 0O 0O O 0 0 0 O
1 1 1 1 1
o 0 0 & & o ¢+ o o f o o Lt o0 o
0 0 0 —% 0 % O 0 0 0O 0 0 0 0 O
o 0 0 0 -0 0 0O 0O O O O 0O 0 O
1 1 1 1
0o 0 0 0 0 O W o cly 0o o %I o0 o0
P={ 0 0 0 O 0 0 — 0 4 0 0 0 0 0 0]|.(17
o 0 0 0 0 0 0 -0 0 0 0 0 0 O
1 1 1
o 0 0 0 o0 0 0 0 0 & & o Lt 0 o0
o 0 0 0 O 0 0 0 0 -5 0 & 0 0 0
o 0 0 0 0 0 0O O 0 0 —-% 0 0 0 O0
o 0 0 0o 0 O O O 0 O 0 0 & & O
o 0 0 0 0 0 0O 0 0 0 0 0 —5% 0 =%
0 0 0 0 0 0O O O 0O O 0 0 0 —% 0
Let m(t) = NTh(t), where
N(t) = [n10, 111, 112, 120, 21, 22, N30, M31, M32, a0, M1, Nag, M50, M1, M52
is an unknown vector. Integrating equation (15) and using initial conditions, we observe
(I42PT)N = 2d. (18)

Here I be a identity matrix of order 15 and d = [1,0,0,1,0,0,1,0,0,1,0,0,1,0,0]" is a column
vector of order 15 x 1. Equation (18) denotes the set of fifteen algebraic equations which can be
solved for N. Now comparison between exact solution and approximate solution of equation
(15) is given in Table 2.
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t Hybrid L egendre polynomials Exact solution | Absolute error
solutionforn =5,m =3
0.0 1.99912 2.00000 0.00088
0.1 1.63744 1.63746 0.00002
0.2 1.34005 1.34064 0.00059
0.3 1.09761 1.09762 0.00001
0.4 0.89826 0.89866 0.00040
0.5 0.73575 0.73576 0.00001
0.6 0.60212 0.60239 0.00027
0.7 0.49319 0.49319 0.00000
0.8 0.40362 0.40379 0.00017
0.9 0.33059 0.33060 0.00001

Table 2. Comparison between approximate solution and exact solution for k = 2 amd mgy = 2

Also, equation (14) is solved for k = 1 and my = 1 and comparison between approximate
solution and exact solution for k = 1 and my = 1 is shown in Table 3.

t Hybrid L egendre polynomials Exact solution | Absolute error
solutionforn =5,m =3
0.0 0.99994 1.00000 0.00006
0.1 0.90484 0.90484 0.00000
0.2 0.81868 0.81873 0.00005
0.3 0.74082 0.74082 0.00000
0.4 0.67028 0.67032 0.00004
0.5 0.60653 0.60653 0.00000
0.6 0.54878 0.54881 0.00003
0.7 0.49659 0.49659 0.00000
0.8 0.44930 0.44933 0.00003
0.9 0.40657 0.40657 0.00000

Table 3. Comparison between approximate solution and exact solution for k = 1 amd my =1

4.2 Application of hybrid Legendre polynomials expansion in solving Hermite differen-
tial equation of order zero

Consider the Hermite differential equation of order zero (see [13])
y' =2ty =0 (19)

with initial conditions
y(0) =y'(0) = 1. (20)
Now we have solved the equation (19) by hybrid Legendre polynomial operational matrix of
integration for n = 5 and m = 3 given by (17), which is obtained by hybrid Legendre polyno-
mial approximation method as below.
Let
y"(t) = LTh(t), (21)
where L = [lo, 11,112, 20, 121, 122, 130, 131, 132, 110, 141, 142, I50, 151,152]T is 15 x 1 unknown column
vector and h(t) is also a column vector given by (16). Now expanding f(¢) = 1and g(¢t) = t by
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hybrid Legendre polynomials for n = 5 and m = 3, we obtain f(t) = rTh(t) and g(t) = s"h(t),
where r = [1,0,0,1,0,0,1,0,0,1,0,0,1,0,0]” and

_[r1,31,51,71.109 73"
- 1107107 V10710”7107 10" 7107 10° " 10" 10’

are column vectors each of order 15 x 1. Now integrating equation (21) two times and using
initial conditions given by (20), we find

y'(t) = LTPh(t) 4 rTh(t)

and

y(t) = LTP?h(t) + r" Ph(t) + rTh(t).
Approximate s"hhT by hybrid Legendre polynomials as
sThh" =h's, (22)

where S is a square matrix of order 15 and it is given as

CO OO0 OO OO O oo ogg~
OO OO OO OO OO O OIgg-E-
cNoNeNeoNoNoNoNoNoNoNo N s =)
COoO o000 OO0 o oggwo oo
OO OO OO OO OoOgNuwa~ro © o
COoO OO0 OO o oWy oo o

OO OO0 OO ogHuo oo oo o
o o0 oo oghEuE~ro o0 oo o
OO OO O OguUEND OO0 O O o O
N eNeNaI N NieleNolNollollollellelo)
c o odhENEFo c o o0 o0 o0 o oo
N eNelNN S ol olloll ool ool ollollo)
ogrElvro o0 0000000 0O

guglogr O ©O O 0O 0O 0O O 0 O O O O
SeBEhv o 0O 0O 0O 0O 0O 0o 00 0o O

From the above we get

(I —2SPT) = 25r.

It is a system of algebraic equations which is solved for L. The exact solution of (19) is given by

t
y(t) =1 +/ e dx.
0

Comparison between approximate solution and exact solution is given in Table 4.
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t Hybrid L egendre polynomials Exact solution | Absolute error
solutionforn =5,m =3
0.0 1.000 1.000 0.000
0.1 1.101 1.100 0.001
0.2 1.204 1.203 0.001
0.3 1.311 1.309 0.002
0.4 1.425 1.422 0.003
0.5 1.548 1.545 0.003
0.6 1.686 1.680 0.006
0.7 1.840 1.833 0.007
0.8 2.019 2.009 0.010
0.9 2.229 2.215 0.014

Table 4. Comparison between approximate solution and exact solution for n = 5and m = 3

20k
L%,
%
LY
- “
151 M
"\
"\
Lok S
0.5 —
7
1
1 L 1 L L P
0.2 0.4 0.5 0.8 1.0

Figure 7. Graph of exact solution (dark line) and approximate solution (dashed line)
of radioactive decay problem for k = 2 and my = 2
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Figure 8. Graph of exact solution (dark line) and approximate solution (dashed line)
of radioactive decay problem for k = 1 and my =1
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Figure 9. Graph of exact solution (dark line) and approximate solution (dashed line)
of Hermite differential equation

5 CONCLUSIONS

1. Estimates of Theorems 1, 2 and 3 are given by

on-ofi (2]

m

o (LP), o 1 1 .
@ e =0 | (14 m ) o) w22

(iii) Ely ) (f) = O

1 1 1
<lx—+2+2—2> — ,wherem > 2, 0 <« <1and n is a positive
n n=J) (2m —3)2

integer.
Since E,(WBP) (f) — 0O, ESHLP) (f) — 0and ES,{_,;FS) f — 0as m,n — oo, these approximations are
best possible in wavelet analysis.
2. The solution of differential equations associated with the radioactive decay problem and
the solution of the Hermite differential equation of order zero by hybrid Legendre polynomials
is approximately same as the exact solution. This is the significant achievement of this paper.
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Aan II1., Mapma B.K. Ipo oyinxy dyukyiil i3 kaacy Ainwiya 67104MHO-iMNYAbCHUMU (PYHKYIIMU WA 2i-
OpudHumu noninomamu Aescandpa // Kapnarceki Mmatem. my6a. — 2020. — T.12, Nel. — C. 111-128.

Y it poboTi, BUKOPUCTOBYIOUM OAOUYHO-IMIIYABCHI pYHKIIiT Ta ribpmaHi oAiHOMM AeXaHApa,
3HAVACHO OLIHKM (PYHKIIT f, sIKa Mae IepIIly i ApyTy IOXiAHI, III0 HAAeXaTb A0 Kaacy Lipa[a, b], ae
0 <a <1,ia, b— cxiHueHHi AiiicHi ucaa. OTpyMaHi OLIHKM € HOBMMY, TOYHVMMMY Ta HalIKpaIlMu
y BeliBeAeT aHaAi3i. I3 MeToro TIOsicHeHHST 06T pyHTOBaHOCTI alpOKCMMallii yHKIIi MeToAOM HabAN-
KeHHSI TibprAHMMM TIOAiHOMaMy AeXaHApa HaBeA€HO IIPYKAAA PO3B’SI3Ky 3aAadi paAioaKTMBHOTO
posnaay. Biabliie Toro, AAsl HOSICHEHHST BaXXAMBOCTI Ta 3aCTOCYBaHHSI METOAMKM IIbOTO METOAY 3Ha-
JA€HO pO3B’s130K AMdpepeHITiaAbHOTO piBHSHHS EpMiTa HyABOBOTO TIOPSIAKY.

Kontouosi croea i hpasu: 6A0UHO-iMITyAbCHa (pYHKIIsSI, IOAiHOM AeXXaHApa, Ti6pMAHMIT TOAIHOM
AexaHpapa.
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BEDRATYUK L.}, LuNO N.2

SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC APPELL
POLYNOMIALS

Let x(") denotes the Pochhammer symbol (rising factorial) defined by the formulas x(*) = 1 and

x(n) — x(x+1)(x+2)--- (x+n—1) for n > 1. In this paper, we present a new real-valued Appell-
type polynomial family A,gk) (m,x),n,m € Ny, k € N, every member of which is expressed by mean
a1,az,...,ap } oo (k) (k) (k)

by by, ... by |

a; "a, "...a k
= ¥ oo @ as follows
K=o by by

of the generalized hypergeometric function , F, [

k a1, a a _E _E _Lk—'—l m
A;(,l )(m, x) — xnk+qu 1,42, -, tp, kl k AR k _k
by, by, ..., by x

and, at the same time, the polynomials from this family are Appell-type polynomials.

The generating exponential function of this type of polynomials is firstly discovered and the
proof that they are of Appell-type ones is given. We present the differential operator formal power
series representation as well as an explicit formula over the standard basis, and establish a new iden-
tity for the generalized hypergeometric function. Besides, we derive the addition, the multiplication
and some other formulas for this polynomial family.

Key words and phrases: Appell sequence, Appell polynomial, generalized hypergeometric poly-
nomial, generalized hypergeometric function.

1 Khmelnytskyi National University, 11 Instytytska str., 29016, Khmelnytskyi, Ukraine

2 Vasyl’ Stus Donetsk National University, 21 600-richya str., 21021, Vinnytsia, Ukraine
E-mail: leonid.uk@gmail.com (BedratyukL.), lunio@ukr.net (LunoN.)

1 INTRODUCTION
In [4], P. Appell presented polynomial sequence {A,(x)}, n = 0,1,2,..., such that
deg A, (x) = n and satisfying the identity
A:”L(x) = nAn—l(x)/

where Ag(x) # 0, which is called the Appell polynomial sequence.
An arbitrary Appell polynomial sequence possesses an exponential generating function

%) #n
A(t)e = Z An(x)—',
= n!

here A(t) is a formal power series
t2 "
A(t):ao+a1t+a25+-~-+anﬁ+-~-, ap # 0. (1)
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The Appell-type polynomials A, (x) are expressed in the terms of {a, } as follows

An(x) = ié) <7> a,_ix'.

The simplest example of Appell-type polynomials is the monomial sequence {x"}, n =
0,1,...; other examples are the Bernoulli, the Euler polynomials and the Hermite polynomi-
als. For more examples one can consult [1,11].

The Appell-type polynomials perform a large variety of features and are widely spread
at the different areas of mathematics, namely, at special functions, general algebra, combi-
natorics and number theory. Recently, the Appell-type polynomials are of big interest. The
modern researches give the alternative definitions of Appell-type polynomials and apply new
approaches based, for instance, on the determinant method or in Pascal matrix method (see,
e.g., [3,16]). Consequently, many new properties of those polynomials are described and a
great deal of identities involving Appell-type polynomials are obtained (see [2,6,7]).

Let us recall that the generalized hypergeometric function is defined as follows

w 000 0
F ﬂl,ﬂz,...,ﬂp N :Z 1 2 ---Up Z_ (2)
PR0 by, by, ..., bq P bgk)bék) o bgk) 1’

where aq,ay,...,ap, b1,by,...,b, are complex parameters and none of b; equals to a non-po-
sitive integer or zero, x(") denotes the Pochhammer symbol (or rising factorial) defined by
x" = x(x+1)(x +2)---(x+n—1) forn > 1 and x(O) = 1. Further on, we denote the
generalized hypergeometric function by ,F; for brevity.

We note that the Gauss hypergeometric function ;F; and the Kummer hypergeometric func-
tion 1 F; are the partial cases of (2).

Apart from the Appell-type polynomials, there exist some polynomial families, which ad-
mit representation via the partial cases of the generalized hypergeometric function, i.e., the
Jacobi polynomials ([1])

PP (z) =

(a+1)" g [Tontatprl |1z
nt 21 n+1 2 |

At the same time, there exists a number of the Appell-type polynomial families, which
also admit the representation via partial cases of the Gauss hypergeometric function. It is
known [1], that the Laguerre polynomials L, (x) are presented as follows

.
Remarkably, the Hermite polynomials H,(x) are simply expressed in the terms of those func-
tions ([8])

—n

Lu(x) = 1F [ 1

n n-—1
Hy(x) = x"2F [2' 2

— ] , G(x,t) = P 1

The natural way of generalisation of the Hermitte polinomials is to expand the array of
ratios for another denominators, it was made in [10], the authors obtained the Gould-Hopper
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polynomials ¢ (x, ), with G(x, t) = """, which could be also expressed in the terms of the

generalized hypergeometric function as follows

n _n—l _n—m+1
e, h) =x"mFo | m’ m 7 m

xm

(1)’”hmm]

The aim of this paper is to find a polynomial family, which would be the Appell-type one
and admit the generalized hypergeometric function representation simultaneously. Still, there
exist the polynomial families, which have the needed representation, e.g., the generalized hyper-
geometric polynomials f, (a;; bj; x) , studied at [9], such that

—n,n+1,ay,a,... 4,

1
1/ E/ blr b2/ ey bq

fn (al/ b]/ x) = P+2Fq+2 [ xn] , ne NO/

and the incomplete hypergeometric polynomials associated with generalized incomplete hyperge-
ometric function, studied at [13], but they both are not the Appel-type polynomials.

The difference between all mentioned classes of polynomials, depending, if they are of
Appell-type or not and if they possess the generalized hypergeometric function representation
or do not, has motivated the title of the paper.

Therefore, let us give the following

Definition 1. Let A(k, —n) denotes the array of k ratios —¥, —"T’l,..., —"’Tk“, n € Ny,

k € IN. Then we call the polynomial family

AP (m, x) = 2" F, ”1’“2’51' bZ”PA(b'; ) %] , nm,meNy, keN, 3)
where i
[n/k O (i )
H (ﬂr ( n —] + 1)
by = 4
epbo= 2 —— il (4)
=0 T, (b)) k itxki’

the generalized hypergeometric Appell polynomials.

We note thatif p = 0, g = 0, k := m, m := (—1)hkF the generalized hypergeometric Appell
polynomials Ag,k) (m, x) become the Gould-Hopper polynomials ¢ (x,h) and if p = 0,9 = 0,
m = —2, k = 2 they become the Hermite polynomials H,(x) mentioned above.

The main result of this article is the following basic statement.

Theorem 1. The generalized hypergeometric Appell polynomials Ag,k) (m, x) defined by defi-
nition 1 are the Appell type ones.

2 BASIC DEFINITIONS AND NOTATION

In addition to the rising factorial we use the falling factorial, defined by (x)y = 1 and
(X)p = x(x—1)(x—=2)---(x —n+1) for n > 0. In these notations, the following relations
hold (see [1])

() = (—1)"(—x)™, 5)
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and the Gauss product of indexes formula (see [14]) will be written as follows

m _ (n)
<_w> , n G NO'

(=M = m
(-

(6)

We note that in the case, when either a or b is a non-positive integer, the generalized hyperge-

ometric function reduces to a polynomial
00 p (1)

—m,a,... a4 o (m\ 1= 4

E { p z} — Y (—1) ( )7211.

pHq
b1, by, ..., by r;) n szl bs(”)
As far as we deal with the differentiation, the differentiation formula with respect to z
g {a1+1,a2+1,...,ap+1 z} [12].

TR b+ L,by 41, by 41

.d ai,az, ..., a
would be useful: 7=, F, [bl, by, ... bz

3 BASIC PROPERTIES OF THE GENERALIZED HYPERGEOMETRIC APPELL POLYNOMIALS

3.1 Being of Appell type
Proof of Theorem 1. To prove the generalized hypergeometric Appell polynomials A,gk) (m, x)

are the Appell-type polynomials, it is sufficient to show that there exists a formal power series

A(t) such that the following relation holds
o0 k tn
Atyet =Y AP (m, x)—.

n=0

We set (7)i = (TT"_, (a r)(i)> / <HZ:1 (bs)(i)> . Then from definition 2 and relations (5) and

(6) it follows that
[n/k] i ki i
(k) o ay,az, ..., ap, Ak, —n) |m] _ (v) (=1)%(n),; m
An (m'x)_xi’“‘ﬂ?{ buby.. by K] ;0 IR
We choose
ai,a»,...,a t
o2 4 (—1)";1%]. 7)

All) = pFy [bl,bz,...,bq
Using the expansion of ¢*! into the power series and changing the product of the series by

the double series, we transform the generating function as follows
00 00 n mh xS ts—i—kn

0 (—1)kmt—i ! ©  (xt)°
M (Z ﬂ) =) <Z(’7)n(—1> sl >

At = | L (" Z)=XlX

n=0

s=0

oo 00 oo P
Using the infinite sums interchange formula ([5]) ¥ ¥ anm = ¥ X a4p—4,4 and taking
n=0m=0 p=04g=0
into account the multiplicity of i, we have
© oo [n/k]

Z Z Asn = Z An—ki,ir
=0

n=0s=0 n=0 i
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then
00 0o nm"(—l)knxs ps+kn B o [I[n/k] mi(_1>ki(,)/)i yn—kign
X <s§ T l;) K (n— ki)l
oo (n/k] l mi(_l)ki( i n o (n/k] i qykiy, L\ g
_ n : '7) i t_ _ n Zm( 1) (n)kzx_kl t_
- L ( EO R al R D l;o =% |

The inner sum is precisely equal to the generalized hypergeometric function in the form of
(3) and, therefore, the relation (4) holds. This means that the generating function admit the
needed representation (3).

It should be noted that there is another way to prove Theorem 1, which is to replace xt by ¢
and m /x* by x in [15, Problem 26, p.173].

As a consequence of Theorem1, we derive a new identity for the generalized hypergeomet-
ric function.

Corollary 1. The following identity holds

a1,az,...,ap, Ak, —n +1)
b1, by, ..., by

m| . ay,az,...,ap, Ak, —n)
= F

xk} ek ‘7[ by, by, ..., by
m+1,a+1,...,a,+1,A(k, —n +k) m
bi+1,ba+1,...,b5+1 xk |’

n—1 m
nx" iy ﬁ]

k() 8all )y |

where A1 (k, —n) denotes the product ( — %) (—”—;1) . (—"’Tk“)

Proof. The generalized hypergeometric Appell polynomials are the Appell-type ones, hence,
the identity % {A,gk) (m, x)} = nA,(f_)l(m, x) fulfils.
(k)

Representing the polynomials A, (m, x) in the terms of the generalized hypergeometric
function according to Definition 1, we immediately obtain the left side of the corollary equality.
To obtain its right side we differentiate the hypergeometric representation of the polyno-

mials A,gk) (m, x) under the Leibnitz rule:

d " ay,az,...,ap, Ak, —n) |m |\ 4 a1,az,...,ap, Ak, —n) | m
dx {x pekfy [ biby,.. by |xE|J T e biby... by |
d ai,ay, ..., ap, Ak, —n) | m
na p m
T dx {P+kF‘1 [ bi, by, ... by xk| -

Performing the derivative of the hypergeometric function, we obtain
x”i £ a2 o ap, Ak, —n) | m _ (_1)k(n)k ay - - ap m(—k)
dx | PR b1, by, ..., by K& by by xR

)~ ap(ap + 1) m?(—2k)
k2k bi(bi +1)---by(by+1) 21x2k+1
)
)

TR by(br £ )b 1 2) - by(by T 1)(by +2) 303
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ity CD T (1) - (1+ (=) (n =k (@1 +1) - (ap+ 1) m -2
by - by

=X m

kk Kk (b1 +1)---(bg+1) 21k
LD Ry (4 (@ +2) - (g + 1) (ap +2)m?-3
k2k (b1 +1)(b1 +2) - (by+1)(bg +2) 31x%
_ 1 o\ k=1 a+1,a0+1,...,a, +1,A(k, —n + k) m
= —hkm(y) bk, —n)x p+efg { bi+1,b+1,...,b;+1 xk ]’
that ends the proof. O

Since an arbitrary polynomial of one variable P, (x) € C[x]| always permits the formal series
representation

n
= Z w;xt
i=0

we are interested in finding those representation for the generalized hypergeometric Appell
polynomials.

(k) (

Corollary 2. The generalized hypergeometric Appell polynomials A’ (m, x) possess

(i) the standard basis {x'}_, representation

[n/k] v avkig i i _
(k) _ n'( 1) (’7) M ki
A m ) = Y Sk ¢ ®

i=0

(ii) the ditferential operator formal power series representation

[n/k] (_qnkig Niio
AP (m, x) = ( ) =Y (! 1), y) m D]“) x". ©9)

11-ki
= ik

Proof. (i) We use an approach from [6], which is based on the idea of the connection problem.
Given the two polynomial families of Appell type {P,(x)} and {Q,(x)} with generating
functions A; (t) and A;(t) respectively, the solution of its connection problem could be written

as follows
n!

Qn(x) = Zn_:o _“nfmpm(x)/

m!

As(
where A2 0 Z gtk

We are searchmg for the unknown coefficients «y to decompose the polynomials
Qu(x) =a",Ax(t) =1

upon the polynomials AP (m, x) defined by (3) with generating function A1 (t) defined by (7).

Deriving the ratio of generating functions A, (t) and A; () we have
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and, constructing the corresponding coefficients a;_,,, we obtain the needed representation.
(i) An arbitrary Appell-type polynomial P, (x) could be also written in the symmetric form

Po(x) = g (:‘) i

According to [11], the latter expression is equivalent to the following differential operator

representation
n ci
Pn(x) = Z Z_:DZ xnr
i=0 "’

where D := d / dx is an ordinary differentiation with respect to x, consequently,

A )= 3 (1)euwrs - P () () ) ki) s

] ki
= ki = ki ik

we deduce a differential operator formal power series representation of the generalized hyper-
geometric Appell polynomials of the form (9). O

Remark. Comparing the power series (1) and operational formula (9) of the generalized hyper-
geometric Appell polynomials to the corresponding ones of the Gould-Hopper polynomials

A(t) — ehtm, g,T (x, h) _ <ethz) X",
it is easy to see that the latter have more compact forms.

Symmetry. Substituting the negative value of argument into the formula (8)

A,gk)(m/ —x) = [r%:k] (_1)nfkin!(_1)ki(')’)iml n—ki

- Ik (ki)

i=0

we conclude that, in the case of even k, the generalized hypergeometric Appell polynomials
are the even ones themselves while 7 is an even number, and they are the odd ones themselves
while 7 is an odd number:

A (m,—x) = AP (m,x), AP (m, —x) = —APY) (m, %)

Otherwise, for any odd k in the case of odd 7, the summands standing on the even places
change their signs into the opposite ones, and the same do the summands standing on the odd
places in the case of even n.

3.2 Adition and multiplication formulas and other properties

Here we shall prove the following result.

Theorem 2. The following formulas hold for the generalized hypergeometric Appell polyno-
mials

(i) addition formula

Ag,k)(m,x +y) = Z <n> y”*lAl(k)(m,x) = Z (n) x”flAfk)(m,y),

i=0
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(ii) multiplication formula

n
A(k)me Z() —1”1”1A()( x),

i=0

(iii) indexes interchange formula

5 (1) om0 m) = 5 (1) A5 040,

i=0

(iv) convolution type identity

3 (<17 ()l m, )4 n, )

i=0
_ (_1)nmn/kn! [n/k] agz‘)___a;i) agn/kfi)”‘a;n/kﬂ)
e S i) b (n/k— i)l E

Proof. The addition and the multiplication formulas hold for all Appell-type polynomial fam-
ilies ([11]), consequently, they hold for the generalized hypergeometric Appell polynomials as
well. The indexes interchange formulas could be obtained applying methods proposed in [6]
and the convolution type identity is obtained by the direct calculations at x = 0. O

It is worth stressing, that the polynomials A,gk)(m, Mx) loose the property of being of
Appell-type. Moreover, the generalized hypergeometric polynomials over the polynomials
could be defined in the same manner as the generalized hypergeometric Appell polynomials:

. ai,ay, ..., a,, Ak, —n) m
AR £20) = (FG) oy |77 ‘ ( f(x»k],

where f(x) = agx? +ayxP~1 4+ -+ ap, ag # 0, which deliver us the following differentiation

rule
& A, () = nf ()AL, (m, £ ().

In particular, in the case when p = ap = 1, we obtain the Appell differentiation.
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.y . L . k
V miit craTTi MM IIPEACTaBASIEMO HOBE CIMENCTBO MHOTOYAEHIB TUITy ATMIeAst {A,(1 )(m, x)},
n,m € Ny, k € IN, KOXXeH IpeACTaBHIK SIKOTO BU3HAUEHIMI HaA TIOAEM AIICHMX UnceA 1 Moxe 6yTu
[IPEACTaBAEHMIT Uepes y3araAbHeHY TiepreoMeTpudHy (PyHKIIo

} o G000 i

. 1 ﬂz ...ﬂp
=L 5,0

ar,as,...,a
E |: Pl -
p-q ’
=0 b ) K

by, by, ..., by

ae uepes x(") mosnaueno cumpoa TToxrammepa (3pocTatoumit bakTopiar), SIKMif BU3HAYAIOTH 3a
dopmyaoto x") = x(x +1)(x +2) - (x+n—1) ansn > 1ix0) = 1, y Takmit croci6

L 0 . N n—1 n—k+1 "
A (m,x) = " Fy [TV T T T kx|
by, by, ..., by x

i 0OAHOUACHO MHOTOYAEHM LIbOTO CiMeliCTBa € MHOTOYAeHaMU TUITY ATIIeAs..

AAsI MHOTOUYAEHIB IIbOTO CiMelicTBa BIlepllle 3HalIA€HO MOPOAXYIOUY (PYHKIIiO i AOBEeAEHO, 110
BOHM € MHOTOUA€HaMI TuIly Ammeasl. 3HalfA€HO PO3KAaA IMPeACTaBHMKIB IIbOTO ciMelicTBa 3a CTaH-
AApTHMM 6a3ycoM B 3aMKHYTI dpopmi Ta y dpopmi psiay AndpepeHIiaAbHOTO olepaTopa, a TaKoX
HOBY TOTOXHICTb AASI y3araAbHeHOI rinepreomeTpudnoi dpyskuii. Kpim 11b0oro, Aas y3araAbHeHMX
rinepreoMeTpMYHIX MHOTOYAEHIB AIeAsl BCTAHOBACHO (POPMYAM AOAABAaHHSI i MHOXEHHS apry-
MeHTa Ta AesIKi iHIIi.

Kntouosi cnosa i hpasu: TOCAIAOBHICTD Armensl, MHOTOUAEH ATeAs], y3araAbHeHMI! Tillepreome-
TPMYHMI MHOTOYAEH, y3araabHeHa TillepreoMeTpuyHa OyHKIIisI.
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ASYMPTOTICS OF APPROXIMATION OF FUNCTIONS BY CONJUGATE POISSON
INTEGRALS

Among the actual problems of the theory of approximation of functions one should highlight
a wide range of extremal problems, in particular, studying the approximation of functional classes
by various linear methods of summation of the Fourier series. In this paper, we consider the well-
known Lipschitz class Lip,#, i.e. the class of continuous 27r—periodic functions satisfying the Lips-
chitz condition of order &, 0 < & < 1, and the conjugate Poisson integral acts as the approximating
operator. One of the relevant tasks at present is the possibility of finding constants for asymp-
totic terms of the indicated degree of smallness (the so-called Kolmogorov-Nikol’skii constants) in
asymptotic distributions of approximations by the conjugate Poisson integrals of functions from the
Lipschitz class in the uniform metric. In this paper, complete asymptotic expansions are obtained
for the exact upper bounds of deviations of the conjugate Poisson integrals from functions from the
class Lip,a. These expansions make it possible to write down the Kolmogorov-Nikol’skii constants
of the arbitrary order of smallness.

Key words and phrases: Poisson integral, asymptotic expansion, conjugate function, Kolmogorov—
Nikol’skii problem.
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1 INTRODUCTION

Let C be the space of 2m-periodic continuous functions equipped with the norm
Ifllc = max|£()].

Denote by W any set of 27t-periodic functions with absolutely continuous derivatives up
to order (r — 1) such that esssup | f()(t)| < 1.
t

The set of functions that are conjugate to those from the class W' is denoted by W'. That is
W =<f: flx) = —i/n (x+ 1) cot £ dt = —i/n (f) cot - dt
U = )t 2T Ty 2%
W)= fr+0 = fx=1), few},

Any f € Cis contained in the class Lip; «, 0 < a < 1, if

Vi b ER  |f(h)— f(ka)] < |t — "

YAK 517.5
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Let us consider a boundary value problem (in the unit circle) for the equation Au = 0,
where A is the Laplace operator in polar coordinates. We can rewrite this equation as follows

Fu low 10
o> pop  pPox?
A solution P, (f; x) of (1) that satisfies the boundary conditions

0, 0<p<l, —m<x<m (1)

w(p,x)|pq = f(x), —nm<x<m,

where f is a summable 27t-periodic function, is of the form

1 T
Plfiv) =~ [ flet+ Ky (0,
where
1 o0
Kp(t) = 5+ Y p* coskt =
k=1
The quantity P,(f; x) is called the Poisson integral of a function f, and, respectively, K,(t) is
called the kernel of the Poisson integral.
In the paper, we consider the conjugate Poisson integral, i.e. the quantity of the following
form

1—p?
2(1—2pcost+p?)’

Po(fi0) = Pp(Fix) == [ fla+ Ry, ®

where
psint

1—2pcost + p?

Ko(t) = i oF sinkt = 3)
k=1

is the kernel of the conjugate Poisson integral.
Let % C C be a certain class of functions. According to Stepanets [12], the problem of
establishment of asymptotic equalities for the quantity

EMLP,) . = ?1615 1f() = Po(f:-)]|

is called the Kolmogorov—-Nikol’skii problem.
If we determine the explicit form of a function ¢(p) such that

E(MMP) e = () +o(p(p)  asp—1-,

then we say that the Kolmogorov-Nikol’skii problem for the Poisson integral P, is solved on
the class 91 in the metric of the space C.

Definition 1. A formal series Y. ¢n(p) is called a complete asymptotic expansion of a function
n=0

f(p) asp — 1—, if for an arbitr;ry natural number m the following equation holds

£(o) = io gn(0) 40 (gm(p)  asp—1-,

andVn € N
gnt1(0)| = o(lgn(p)])  asp—1—.
In what follows, this fact we denote by

f(o) = io on(0).
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Approximation properties of the method of approximation by Poisson integrals on classes
of differentiable functions are well studied. The Kolmogorov-Nikol’skii problem for the Pois-
son integral on the classes W' was solved by Natanson in [10].

Timan [14] obtained the exact values of approximative characteristics € (W’; P,) o In the
paper [9] Malei determined the complete asymptotic expansion of the upper bounds of devi-
ations of Poisson integrals from functions of the class W'. Later, this expansion was reproved
by Stark [11].

The complete asymptotic expansion of the quantity £ (W'; D) c in powers of lasd — oo
was obtained by Baskakov [2] in the case of ¥ = 1,2,3 and by Kharkevych, Kal’chuk [5] for
any natural r. Later, the Kolmogorov-Nikol’skii problem for the Poisson integral on classes
of differentiable functions was solved in works [7, 8,15, 18-21]. Simultaneously, approxima-
tion properties of the method of approximation by Poisson integrals on classes of conjugate
functions are studied not enough.

Note that the first estimates of £ (Wl ; Py) - were obtained by Nagy [13]. Later, the general
expressions that allow one to get asymptotic expansions of the quantity &£ (Wr ; P5) - in powers
of % as 0 — oo were determined by Baskakov [1].

The present paper is an extension of the paper [6], where the corresponding results for
the classes Lip, 1 were obtained in terms of (1 — p). In what follows, we establish a complete
asymptotic expansion of the quantity

E(Lipl(x;ﬁp)cz sup ||£(-) ;-)HC, 0<a<1.
feLipy a

This expansion allows one to write down the Kolmogorov-Nikol’skii constants of an arbitrary
order.

2 MAIN RESULTS

The following statement is true.

Theorem 1. For 0 < « <1 the following complete asymptotic expansion holds asp — 1—
7T

_ u—1 1\% »a o ‘ 1 2k+-2
Lip, a; P e I D G v A— P
E(Lipy @ Pp)c = 51n"‘2”<np> nk:o( ) 2k —a+2 <np>

204 o 2k+2 oo 7 1N\ —2k—3 (4)
+ Y (1) <1 —) 2/ < (@2i=1)m—ut)
e = 1Y =
—2k-3 —2k-3 —2k-3
— ((2i—1)7‘(+u3) +<2m’+u3) = (27'ci—u%) ) us du.
Proof. Note first, that the kernel of the conjugate Poisson integral (3) can be rewritten as

- 1t 1 .t (1—p)?
K,(t) = = cot= — = cot = -
plt) = G0ty — 5Ot st 1 2

Whence, in view of 27t-periodicity of functions f, we get

P(f ) — t (1-p)?
Po(f,x) =5 /f (x + 1) Cot2 T 2pcost 1 772
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Eo/(f(x%—t)—f(x—t))coté 1_2);02_’_‘) dt
%/(f(x—l—t)—f(x—t))coti A-p2 4

0

2 1—2pcost+ p?

/ (2m4+x—t) f(x+t))cot£ (1-p)*

2 1—2pcost—+ p? a.
ForO0<t<nm
CotE (1- p) >0,
2 1—2pcost+ p?
functions f belong the class Lip; «, therefore it holds
1P, ( x)—f(x)]<z/%t cot . (1-p)° dt
P - 21 2 1—2pcost+ p?
0
n (5)
+§/(n—t) ¢l (1-p) dt
27 J 2 T 2pcost+p2
2
Let [g(t)],,, be an odd 27r-periodic extension of the function g of the form
t 0<t< %
t)=glat)=1¢ " - 6
8(t) = gla,t) {(ﬂ—t)"‘, f<i<n 6)

The function f*(t) := 2*~1[g(#)],,, belongs to the class Lip; &, and we can see that the right
hand side of (5) coincides with P,(f*,0) — f*(0). Indeed, taking into account that f* is odd
we get

7 _ )2
P70 = F1(0) = % /f*(t)COtél—é:?cosz‘erz

- ( - ()
1 “ t 1-p
Eo/f (t>COt2 1—2pcost + p? a.

The right hand side of (7) coincides with the right hand side of (5). Hence

E(Lip; &;Pp)c = [Pp(f",0) — f*(0)].

(8)
Let us rewrite the kernel of the conjugate Poisson integral (3) in the following form
— 0 O _n(1
Ko(t) = Zelr‘"k sinkt =) e 1m(f’)ksinkt. )
k=1 k=1

It is known, that the Fourier cosine transform of the function e~ #* takes the form [3, Ch. VII]

_ 1 t+u t—u
CDc(u)—m{ﬁ2+(t+u)2+ﬁ2+(t_u)z}- (10)
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Further we shall need the Poisson formula [16, Ch. II]:

V7 (‘DT@ vy, @(m)) - Va (@ vy f(nw>> , (1)
n=1 n=1

where w'y =21, w > 0. Setting w = 1, v = 27 in (11) and taking into account (10) with
B= ln , from (9) we obtain

K,,(t):%<e1“<%>"sinkt)‘ f( " sinkt) = m{%q>c(0)+liq>c(znk)}
=1 - (12)
ot > t + 27k t — 27tk
_ﬁ2+t2+k§(ﬁ2+<t+znk>2+ﬁ2+<t—znk>2>'

Therefore, combining (2) and (12), we can write the conjugate Poisson integral in the fol-
lowing equivalent form

T 7T
- 1 t 1 § 2k
R0 =L [p a1 [ rn§ i
PO ﬂ_nf()ﬁz+t2 ﬂ nf (=1 B+ (¢ +27k)?

17 — 27tk o
__/f* A R T .
T (t — 271k)?
—7T
Now we proceed to calculating of the term I,:
17 ©  t+427k 17 E+2
h=—[fw) Lo = [
T =B+ (t+27k)? T B2+ (t+2m)
—TT —TT
. (14)
1 _ t44m
+ = /f* dt+"'212,1+12,2+"'
/32 + (t +4n)?
—7T
Making appropriate substitutionsin Iy 1, I, - - -, we get
1 3 ; 1 5 ;
= — “(t)—5—— dt, I :—/*tidt,"'
1 ﬂ/f(>ﬁ2+t2 2,2 T f()‘B2+t2
T 37
Hence, from (14), we obtain
+0c0
L1 / FE () dt (15)
2= g e
T

One can verify that the term I3 takes the following form

— 27tk 1
/f /32+(t—2nk :5/ /52+f2 " o

Combining (13) with (15) and (16), we obtain

“+00
Pf0 =2 [ gt 17)
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It is known [12, p. 93], that a conjugate for f function can be represented in the form
+o0
l / —M dt. (18)
T t

Therefore, from (17) and (18), taking into account that the function f* is odd, we get

R A O N .
Po(f*,0) — f*(0) = /(ﬁ2+t2 (/ /) ﬁz—i—tz at

o (19)
282 . 1
3 0/ F O ™
Hence, from (8) and (19), we have
_2F T zn RV Ao
7
From (6) we get
s n s a—1
LIS ST (4 pa (1)
t(B2+12) t2 / HE2 + B2 _/ 2 B
05+ ) e (7 p
(21)
+o0 +o0
a2 B ulX*l
B (/ / 1+u? du
0 %
According to [4, p. 306]
T oyl T T
/ 1+u2 5 cosec—-—. (22)

Let us make transformations in the second integral from the right-hand side of (21), apply-
ing geometric series

72 5 k=0
28 2k+2—u (23)
- i (—1)"<7>
= 2k+2 —«

Combining formulas (21), (22) and (23), we obtain

[8(t)]2n e (1 1)0{2 p- _i (_1)]( 211’1% 2k+2—a o
t(B? + 12) 0 2sin’yt A 2%k+2-a\ 7 '

O\Nl::
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Then, we use geometric series for calculating the second integral from the right-hand side

of (20):
+oo ) 2kt
1 t
[ #5 =Rty B () [ e o

From (24) and (25), we get

R

£(Lip1B,)c = (2mn1) — L
P1&;Fp)Cc = p/) 2sinit

( )2k+271x

— -1 L dt— dt.
+7'ck§)( ) < ) / t3+2k 2k+2—a

7

For the function [g(t)],, on [5 ; +0c0) the following relations hold

(—t+@i-1)n)", te[F+4(i-1)% F+(4i—-3)%F],
2(t)],. = —(t=Qi-1)m)", te [5+4i-3)5 5+ 4i-2)5],
O —(—tr2mi),  te [T (4i-2)E T4 (4i-1)E],
(t —2mi)", te[F+@i—-1)% Z+4i%],
where i = 1,2,.... Splitting the integral f "l 5 Jﬁ” dt into the sum of integrals and making
corresponding substitutions in each of them, we get (4).
The theorem is proved. ]

Results of the theorem give us an opportunity to write down the Kolmogorov—Nikil skii
constants of an arbitrary order in asymptotic expansions in terms of In L as p — 1—.
Let us consider the class of functions Lip; 1. The following statement holds.

Corollary 1. The complete asymptotic expansion holds as p — 1—

11 1\ & (—1)k
& (Lip, 1,Pp)C—lnF—)—%<lnE> +k21(2k+1)(k+1)

« (v - 1) (Zm=)
b (41 _1)2k+1 (4i+1)2k+1 T 0
Proof. Putting « = 1 in (20), we obtain
+oo
2 2
£(Lip, 1,5,)c = 22~ / t 52 - ig dt, )

where [g1(t)],,, is as it was introduced earlier, an odd 27-periodic extension of the function g;

of the form
(1) = £, 0<t<
A
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Making transformations that are analogous to that in (21)—(25), from (27) we get

& (Lip, 1, P =In-+4+— -1 <ln—>
(Lipy 1 Bpc =In o+ 23 (1)} (in

. (28)

2k+1
y /[gmmzndt_ 1 (2
J 3+2k 2k+1\ 7

2

To calculate the integral in the right-hand side of (28), let us write it down as a sum of the
integrals on corresponding intervals. For this reason we use the following form of the function
81
—t+(2i—1)m, te[-5F+@2i-1)m —F+2mri],

[gl(t)]ZTE = {

t — 271, te[-F+2m; —F+(i+1)n].
We obtain
+oo — S +2mi —F+Qi+1)n
(g1(1)], & —t+Q2i-1)m t — 27t
/ $3+2k -t = Z / $3+2k dt + / $3+2k dt | . (29)
z =l \cz iy — T 42mi

Having calculated the integral on the right-hand side of (29) and made corresponding
transformations, we obtain

—+00
510 5, (23 1
| Caad dt‘(%) ESNES))

7 (30)
> 1 1
x | k+ - .
Taking into account (30), from (28) we get (26).
The Corollary 1 is proved. ]

In the paper we have also obtained another form of the expansion (26), in terms of the gen-
eralized Riemann zeta function (the Hurwitz zeta function) (see definition, e.g., [17, Ch. XIII]).
It is quite relevant because in approximation of functions by the Poisson integrals we obtain
asymptotic expansions with non-explicit form of the coefficients. The Hurwitz zeta function
gives a possibility to get sharp values of the Kolmogorov-Nikil skii constants.

Corollary 2. The complete asymptotic expansion holds as p — 1—

=11 1N (1)
&(Lip, 1,Pp)c—ln5—;<ln5> +,§1(2k+1)(k+1)

1 3 5 2 1)\ %2
X <m{§<2k+1;1>—§<2k+1;1)}—1> <%ln5> ,

o
where ((z;q) = Z() W, Rez > 1, is the Hurwitz zeta function.
n=

(31)
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Proof. Taking into account that

- 1 1 & 1 1 3
Z (4i — 1)1 T 42kl X~ 32kl 42k+1C <2k+1q>'

i=1 i=0 (i+ %)
> 1 1 5

= C2k+1; —) ,
i; (4i+1)FT 4

from (30) we derive
810 4 _ (2)*T 1
$3+2k i (2k+1)(k+1)

X <k+ﬁ (c <2k+1;§> —§<2k+1;2>>>.

The Corollary 2 is proved. ]

+0c0

Ml —

(32)

Note that (32) holds for k = 1,2, ... . In the case k = 0 the Hurwitz zeta function is not de-

termined. Therefore the corresponding coefficient is individually calculated in the expansion
(31).
Note also that Corollary 1 is a generalization of the B. Nagy result [13]. The estimation

2
& (Lip, 1;Fp)czlnl+o <lnl> N
p P
follows from Corollary 1 that coincides with the indicated result.
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AxTyaABHMMU 3apadaMi Teopil HabAVKeHHsT (pyHKIIiMN € PO3B’sI3aHHS IIMPOKOTO KOAA €KCTpe-
MaABHMX 3aAay, 30KpeMa, AOCAIAKeHHSI IMTaHb allpOKCcuManii (pyHKIIOHAABHMX KAACiB pisHMMM
AiHIHEMMM MeTOAaMM T ACYMOBYBaHHsI psiaib @yp’e. B AaHil po6OTi po3rASAQETHCS BiAOMIMIL KAAC
Aimomis Lip,a, To6To KAac HellepepBHMX 27T-TIepioAMIHMX (PYHKIIIMN, IO 32 A0BOABHSIIOTh YMOBY
Airmmst mopsiaky «, 0 < « < 1, a B IKOCTi HabAVKAIOWOTO OllepaTopa BUCTYIIAE CITPSIKeHNIA iHTe-
rpaa Ilyaccona. AOCUTD aKTyaABHOIO 3aAadelo Ha AAHUIA 9ac € MOXKAMBICTb 3HAXOAKEHHS KOHCTaHT
P aCUMIOTOTUYHMX AOAAHKAX BKa3aHOTO CTeMeHsI MaAOCTi (Tak 3BaHMX KOHCTaHT Koamoroposa—
HikoABCHKOro) B aCMMITOTHYHIMX PO3KAAAAX BEAMUMH HabAVDKeHb CIIpsDKeHMMM iHTerpasamu ITy-
accoHa pYHKIIIN 3 Kaacy Aimmmris B piBHOMipHiit MeTpumi. B po6oTi oTpyMaHO MOBHI aCMMITOTH-
YHi pO3KAAAM AASI TOUHMX BEPXHIX MeX BiAXMAEHbD CIIpsKeHMX iHTerpaais Ilyaccona Bia pyHKIIN 3
Kaacy Lip;a. AaHi po3KaaAM Aar0Th MOXKAMBICTD 3ammcaTi KoHCTaHTU Koamoroposa-Hikoabcbkoro
AOBIABHOTO HOPSIAKY MAAOCTI.

Korwouosi cnoea i ¢ppasu: iHTerpan IlyaccoHa, acMMOTOTMYHMI PO3KAAA, CIIpsIKeHa pyHKIIis, 3a-
aava Koamoroposa-Hixoabcbxoro.
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APPROXIMATION OF THE NIKOL'SKII-BESOV FUNCTIONAL CLASSES BY ENTIRE
FUNCTIONS OF A SPECIAL FORM

We establish the exact-order estimates for the approximation of functions from the Nikol'skii—
Besov classes S{/QB(IRd), d > 1, by entire functions of exponential type with some restrictions for
their spectrum. The error of the approximation is estimated in the metric of the Lebesgue space
Loo(RY).

Key words and phrases: Nikol'skii-Besov classes, entire function of exponential type, Fourier
transform.
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1 INTRODUCTION

In the paper, we continue to study the approximative characteristics of the Nikol’skii-Besov
classes S;,GB(IRd ) of functions with a dominant mixed derivative in the Lebesgue spaces (see
[4,17, 18,21, 23,25]). We have established the order estimates of the best approximation of
functions from these classes by entire functions of exponential type with a spectrum focused
on the Lebesgue sets whose measure does not exceed M.

The spaces S;/QB(]Rd) were first considered by S. M. Nikol’skii [8] for § = oo (in this case

also one can S;/OOB(]Rd) =S,H (R%)) and T.I. Amanov [1] for 1 < 8 < oo. In the classical form,
the definition of these functional spaces was formulated by S. M. Nikol’skii and T.I. Amanov
through mixed multiple differences and mixed multiple modules of continuity of functions.
Here, the definition of the Nikol’'skii-Besov spaces S;’()B(le ) is presented through so-called
decomposition representation of the norm of elements from these spaces. Note that decom-
position representation and corresponding rationing of the Nikol’skii-Besov spaces were first
obtained by S. M. Nikol’skii and P.I. Lizorkin [5]. As it turned out, this decomposition norm of
functions plays a key role in the studies of different approximative characteristics of the func-
tion classes. This representation is based on the application of the Fourier transform that can
be defined using generalized functions (see, e.g., [2, Ch. 11], [6], [15, Ch. 2]).
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2 DEFINITION OF CLASSES OF FUNCTIONS AND APPROXIMATIVE CHARACTERISTICS

Let R? be the d-dimensional Euclidean space with the elements x = (xq,...,x;) and
(x,y) := x1y1 + - + x4y4. Denote by L,(R?), 1 < g < oo, the space of all functions f(x) =
f(x1,...,x;) measurable on R? with the finite norm

17l = (L/Wf(x)ﬂdx> 1<q<oo, and ||flle = esssup |f(¥)]
R4

x€R4

Let S = S(IR) be the Schwarz space of test complex-valued functions ¢ infinitely differen-
tiable on R? and decreasing at infinity together with their derivatives faster than any power of

the function (x? + ... + x3) 7%, considered in the appropriate topology. Let S’ denote the space
of linear continuous functionals on S. The elements of the space S’ are generalized functions.
If f € §/, then (f, ) denotes the value of a functional f on the test function ¢ € S. Denote by
F¢ and F~1¢ the Fourier transform and the inverse Fourier transform of functions ¢ from the
spaces S and S'.

For any continuous function ¢ on IR, the closure of the set of all points x € R? such that
¢(x) # 01is called the support of the function ¢ and denoted by supp ¢.

The generalized function f vanishes in an open set G when (f, ¢) = 0 for all ¢ € S and
supp ¢ C G. The union of all neighborhoods, where f is equal to zero, is an open set and
called the null set of the generalized function f. It is denoted by Gy. The complement of the
largest open set G to R? is called the support of the generalized function f, i.e., supp f equals
to G £ itisa closed set.

According to the formula

(f,9) = [ fwex, ges, )
R4

each function f € Lp(]Rd), 1 < p < oo, defines a linear continuous functional on S and, there-
fore, is an element of S’ in this sense. Hence, the Fourier transform of a function f € Lp(]Rd),
1 < p < oo, can be regarded as the Fourier transform of the generalized function (1).

Further, let Ky, () = [ km (AN e 2MdN, m € Z,, K_q := 0, where

1, = 1A, 0< A <1
0, |A| > 2™,
For any vector s = (s1,...,54),5; € Z+, j = 1,d, we define
d
As(x) = 1—{ (Ks;(xj) = K a(x7)),
]:

AS(frx) = fx) x Ag(x) = /f(y)A: (x —y)dy.
R4

Also, forall s € Zi, consider the sets

Qs ={A=(M,....A0): n(s)25 ' <A <2, 0 €R, j=1,d},
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where 17(0) = 0and 5(t) =1, t > 0 (respectively, Q3 ford = 1).
The following statement is true.

Lemma 1 (see example [4]). Let1 < p < oo, then for any f € Lp(le ), we have
flx) =} AS(f %)
S

and supp §As(f,x) C Q5.

Note that A} (f, x) is the analog of the de la Vallée Poussin block of sum of periodic function
of several variables (see example [14]).

In the accepted notation, the spaces S;’()B(le ), 1 < p 0 < oo, r > 0, can be defined as
follows (see, e.g., [4,16]):

S},0B(RY) = {f € Ly(RY): Iflls; B < 00},

where for 1 < 0 < oo,

1
0
Il cmey =< (ZZ(S")‘)HA:(f, ->||z> @

s>0

and for 6 = oo,
£y oray 7= [1f sy rgmey = sglgz(s")HAj(f,-)Hp. ©)
s~

Here and below, for positive quantities 2 and b, the notation a < b means that there exist
positive constants C; and C, that do not depend on an essential parameter in the values a2 and
b (e.g., C; and C; in the expressions (2) and (3) do not depend on the function f) such that
Cia < b (in this case, we write 1 < b) and Cpa > b (in this case, we write a > b). In the present
paper, all constants C;, i = 1,2, ..., depend only on the parameters contained in the definition
of the function class, the metric in which we estimate the error of approximation, and the
dimension of the space R?. Moreover, for the vectors a = (ay,...,a;) and b = (by,...,b,;), the
inequalities of the type a < b (a > b) are understood in the coordinate-wise: a; < b; (a; > b;),
j=1,d Wealsouset >0 (t > 0)ift; >0(t; > 0),j=1,d,and a # b if a; # b; at least for
onei,i=1,d.

In what follows, we use the notations S;I()B and S, H (S;IGB and S, H for d = 1) instead
of S;,GB(IRd ) and S,H (R?) respectively. We also assume that the coordinates of the vector

r = (r1,...,7y) are ordered as follows 0 < ry =1, = --- =1, < rypq < .-+ < r;. The vector
r = (r1,...,74) is associated with the vector v = (v1,...,74), v = ri/r, j = 1,d, and the
vector v is, in turn, associated, with the vector v/, where 'y§ =7, ifj=1vand1 < 'y§ <7
j=v+1,4d.

In addition, in the case 1 < p < oo, the norm of functions from the spaces S;,GB(le ) can

be defined in another form. Let A C R? be a measurable set. Denote by x, a characteristic
function of the set A and for f € L,(IR%), set 6 (f,x) = 3’1()(% - §f). The spaces S%0B,
1<p<oo,1<6< oo, r>0,can be defined as follows [5]

SpoB = {f € Ly(RY: Iflls; 5 < o},
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where )
8
1flls; = (ZZ”QIM* H") (4)
s>0

for1 <60 < oo and
£ llsp 12 = sup 257185 (f, )l - (5)
s>0

The class Sy ,B is defined as a set of functions f € L »(R?) such that Ilf ”529 p < 1. We
preserve the same notations for the classes S ,B as for the spaces S7 ,
As can be seen from (2)—(5), for any f € S’ pB, 1 < p < oo, the followmg relation holds:

165 CFlp = 1A ()l p-

Now we consider the approximative characteristics of the classes S;,GB

Let £ C Z% be a finite set, M := M(L) = Use Q3. Forany f € Ly(RY), 1 < g < o0, we
put

Sm(f, x) := Son(zy(f, %) = ) 65(f, x
sel

Since supp Ss_m (f,x) C M, then Son(f, x) is an entire function of the space L, (R?).

For f € Ly(R?) and %0 B(R?) C Ly(IRY), consider the following approximative character-
istic

()=, [0 = Sme o)
and
eS (S" B) := sup e . 6
m(SheB), feS’pB m(f), (6)

3 APPROXIMATION OF FUNCTIONS FROM CLASSES S’{ OB(]Rd) BY ENTIRE FUNCTIONS

The following statements are true.
Theorem 1. Letr > 1,1 < 6 < oo and d = 1. Then the following relation holds:
e5;(S1B(R)), =< M~ (7)

Theorem 2. Letr; > 1,1 < 6 < co. Then ford > 2 the following relation holds:
_ _1
e%{(S{,QB(IRd))OO = (M_1 log" ™ M)r1 ! ( log"~* M)1 0, (8)

The results of Theorems 1 and 2 are also new for Nikol'skii classes S{H(R?), d > 1.

Let us note that in Theorem 1, the estimate e% (S{/QB (R)),, does not depend on the param-
eter 0 unlike to the corresponding estimate in the case d > 2 (Theorem 2).

Before proving the main results, we formulate auxiliary theorem.

Theorem 3 ([1]). Let1 < p,6 < oo, 1 < p < g < oo and we have a vector p such that

oj=ri—(3-1)>0,j=Td Iff € S ,B(RY), then f € S ,B(R?) and

”f”s‘q’ﬁB(]Rd) < ”f”SZ,QBURd)'
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Proof of Theorem 1. Since r > 1, then by virtue of Theorem 3, there exists a number p,
p =7 —1> 0, such that for any function f € S yB(IR), we have f € Sf;leB(]R) C Leo(R).

First, we will get the upper estimate in (7). Recall now the definition of another approxima-
tive characteristic used in the proof of the results. For s € 7%, define the set Q) as follows

= U @

(s,7)<n
where n € IN. The set Q; is called a stepwise hyperbolic cross and, moreover, mes Q; =
241 (see, e.g., [5]), where mes Q) is the Lebesgue measure of the set Qj.
For f € Ly(R%),1 < q < oo, we set
Z o0:(f,x), x € R?
(s ¥)<n
and denote

EQg(f)q =[fC) - SQg(fr g and EQg(S;,eBM = f:};P 5Q’f(f> )

We now specificating the definition of the quantity £5y(f)4 in the one-dimensional case.

For d = 1, each of the sets Q3 is a union of the half intervals (—2°, —25_1] and [25_1, 2%),
s € Z,, with the corresponding modification at s = 0. Then the stepwise hyperbolic cross
degenerates into the interval (—2",2"), as the union of sets Q5 for alls < n,s € Z, namely
Qn = Qf = Us<, Q%. In addition we have |Q,| =< 2", where |Q,| denotes the length of the
interval. -

The definition of (9) for f € L;(IR), 1 < g < o, can be rewritten as follows

€0,(flg = IIf () = Sq.(f:)llg, €0, (S,6B)g = sup Eq,(f)qg,

f eS;/GB
where

So.(f,x) = Zé*fx

s<n

From the definition of the approximative characteristics (6) and (9), it follows that the fol-
lowing relation holds in the case when mes Q) =< mes M

en (ShoB), < Eqy(Sh,08), (10)
The following statement is true.
Theorem 4 ([25]). Letr; > 1,1 < 6 < oo. Then the following relation holds:
Eqy(SgB) = 27"~ D=1 (1=5), (11)
In the case d = 1, the estimate (11) can be written as follows
£0, (S} 4B),, =< 27", (12)

For a given M, we choose a number n € N such that |Q,| < M < |Q,41], i.e. M =< 2"
Taking into account (10), from relation (12) we get the upper estimate in (7)

e%/[( g,GB)oo < an (Sg,GB)oo = 27}1(7‘71) = MiHFl'
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To obtain the lower estimate in (7), for any n € IN, consider the function
fi(x) = C32 AL (x), C3>0,

that is, the function f; consists of one “block” A} (x).
We give some auxiliary statements.

Lemma 2 ([25]). Let1 < p < oo, then the estimate

JAz (), = 2" ()

holds, where ||s|ly =s1+...+54,8 € Z1,j=1,d.
Lemma 3 ([25]). The following relation

1AZ () leo = 20l

holds, where ||s|l1 =s1+...+54,8 € Z1,j=1,d.

According to Lemma 2, we have || A3(-)||, < Cy4. Then for 1 < 6 < o,

1

e 1
E — 0
S

and
Ifillsy = sup 2 [|AZ (fr, )]l = 227" =1.
! s

So, the function f; belongs to the class S{leB foralll <0 < o0,
For a given M, choosing a number n € IN such that |Qn| <4M < |@n+1 |, where O, = Q.
|Qn| < 2", and using Lemma 3, we conclude that

1A1C) = Son(f1 Moo = [ ()lleo = 1Sm(f1, )lleo| > 27(2" = M) > 27" 2" =< M7,

The lower estimate is established. Theorem 1 is proved. O
Before proving Theorem 2 we note that by Theorem 3 the condition r; > 1 ensures that
there exists a vectorp, p; =1;—1>0,j = 1,d, such that any function f € S{/QB(le ) belongs to
the set SfoleB(]Rd) and therefore f € Lo (IRY). In addition, we can say that for some 1 < gg < oo,
fe S;O/QB’ where pj="1;i— <1 — ql—o) >0,]= 1,d.
Proof of Theorem 2. The upper estimate in (8) follows from Theorem 4. Since mes Q; <

21"~ then for a given M, we choose a number n € IN such that mes Q)Y < M < mes QZ IRy
that is M = 2"n"~1. Using relation (11), we have

ef, (87 4B)., < 27" D D0-8) = (M~ 1og' ! M) (log' M) ),

Passing to establishing the estimate from below in (8), we should note that it is sufficient to
obtain it in the case v = d.
Let

@(n):{s:(sl,...,sd)EZdI sl—l—...+sd:n} and Qn: U Q;S/
s€@(n)
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and mes Qn = vl
Unlike the one-dimensional case, we consider the following functions depending on the
value of the parameter 6

fa(x) = C52_”r1n_% Z Ai(x), Cs5>0,
s€@(n)

when 1 < 0 < o0, and

folx) =Ce27" ), Al(x), Ce>0,
s€O(n)

when 6 = co.
Let us show that the functions f, and f3 belong to the classes S 4B and 57 B respectively.
According to Lemma 2, we have || A} (-)||, < C7. Then

1

1
9 9
* - s s,r *
|fzs;,93x( )3 2(5”)9|As(f2r)|§’) =27 ( )3 2<f>9As<->|€)

s€@(n) s€O(n)

1 1
_ d-1 ’ _d-1 !
=27y~ [ Y nee )« T [ Y 1| <1
s€@(n) s€@(n)

For the function f3, the following estimates hold:

Ifslls; = sup 267 AL(fs, )l = 27" sup 257 AL ()i =27 sup 207 < 1.
’ s€0(n) s€@(n) (s1)=n+1

Further, denote by £’ the set of vectors s such that s € @(n) and the set M = M(L') =
Userr Q35 satisfies the relation

mes én < 4M < mes @nH, (13)

where M = M(n) = mes 9.

Lemma 4 ([25]). The following relation holds:

Using the Lemmas 3, 4 and relation (13), taking into account that mes Qn = 2"p’~1 we can
write

1£2(:) = Sm(f2, Moo = |12 lloo = 1Som (2, ) o]
—nry,, 45t ond—1 B
> 27T (21— M) > 27T 2
— 271D (8) < (M logd ™ M)" ! (log? "t M) ).

y A:(->H = 21,

(s,1)=n+1 o

Similarly in the case 6 = oo, we get

1) = Som(f3, )leo > (M log™ M) og? ! M.
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The lower estimates are established. Theorem 2 is proved. U
The exact-order estimates of efd( ;,GB)q are established in [21] for some other relations
between parameters p, g and 6. In this article, we show that there are relations between the
parameters p, g, 0 such that the quantities ¢, (S},6B )q and &y (S;,GB)q have different orders.

The quantity (6) is a non-periodic analogue of the best orthogonal approximation and the
quantity (9) corresponds to the approximation of the stepwise hyperbolic Fourier sum. The
main results concerning the approximation of the Nikol'skii-Besov classes of periodic func-
tions with a dominant mixed derivative can be found in monographs V.N. Temlyakov [14],
A.S. Romanyuk [11] and D. Diting, V.N. Temlyakov and T. Ullrich [3].

Currently, the generalizations of the Nikol’skii-Besov classes with the dominant mixed
smoothness of periodic and non-periodic functions of many variables are currently being in-
tensively studied, in particular, in the articles [7,9,10,12,13,19, 26].

In the one-dimensional case, the Nikol’skii—-Besov classes with mixed smoothness
s, sB(R?) coincide with isotropic and anisotropic Nikol'skii-Besov classes B, o(RY) and

B’ (]Rd) The exact-order estimates of some approximate characteristics of these classes are
established in [20,22,24].
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Oaep>kaHO TOUHI 3a MOPSIAKOM OILHKM HabAVKeHHsT pyHKIiN 3 kaaciB Hikoabcbkoro-becosa
S{,BB (IRd), d > 1, 3a AOIIOMOTOIO IiAMX (PYHKIIiN eKCIIOHEHIiaABHOTO TUITY 3 IEBHMMM OOMeKeHHsI-
M1 Ha ixHiit crrekTp. [ToxnbKa HaBAVKEeHHS OLIHIOETHCS y MeTpui IpocTopy Aebera Lo (R?).

Kntouosi crosa i ¢ppasu: xkaacu Hikoabcbxoro-becosa, mina pyHKIis eKCTIOHEHIIaABHOTO THITY,
neperBopeHHst Dyp’e.
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ANTONOVA T.M.

ON CONVERGENCE CRITERIA FOR BRANCHED CONTINUED FRACTION

The starting point of the present paper is a result by E.A. Boltarovych (1989) on convergence
regions, dealing with branched continued fraction

i i) % %) % fi)
P B R T T S e T B S
1= = In=

where |a;0,_1)| < a/N,ip = 1,N,p =1,2n—1,n > 1, and for each multiindex i(2n — 1) there
is a single index jp,, 1 < ja, < N, such that |a,-(2,1,1),]-2n| >Rip=1,Np=12n-1,n>1,
and |a,-(2n)| <r/(N—=1),i3 # jon ip = L,N,p = 1,2n,n > 1, where N > 1 and «, 7, R are real
numbers that satisfying certain conditions. In the present paper, conditions for these regions are
replaced by YN_; |a;q)| < a(1—¢), Zg’”H:l |ajany| < @(1—¢),ip =T,N,p=1,2nn2>1,and
for each multiindex i(2n — 1) there is a single index jan, 1 < jo, < N, such that |a;,_1)5,,| > R and

Yie {12, NP\ {jan} [8i2m)| < 7,ip =1, N, p=1,2n—1,n > 1, where ¢, a, r and R are real numbers
that satisfying certain conditions, and better convergence speed estimates are obtained.

Key words and phrases: convergence, convergence region, convergence speed estimate, branched
continued fraction.
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1 INTRODUCTION

All known general methods of proof of convergence criteria of continued fractions are
based on value-region considerations. The interplay between element regions and value re-
gions leads to convergence region criteria, that is, results of the form: if the elements of con-
tinued fraction lie in some regions then the continued fraction converges. In addition, the
relationship between element regions and value regions provides one with knowledge of the
location of approximants of continued fraction whose elements lie in some convergence re-
gions. Both of these phenomena (i.e., the convergence regions and the information about the
location of approximants) are not to be found for most common infinite processes, such as
series and products [15, pp. 63-78].

It is well know (see, for example, [7]) that branched continued fractions (BCF) are multi-
dimensional generalization of continued fractions. Let N be a fixed natural number. For BCF
with the complex elements

Noajn) oy N ayn)
po e R <1>
1= ir=1 ip=1

E.A. Boltarovych [9] proved the following theorem.
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Theorem 1. Let N > 1 and let there exist real numbers «, r and R such that0 < a < 1/4,
0<r<oo,R(1—a)>(14a)(r+2—2a),

a(R+7)(1+a)?
(R(1—a) —r(14+a) —1+a2)2

and such that BCF (1) with elements a;(,,) satisfying

Q= <1, ()

‘ai(anl)‘ <a/N,ip=1,N,p=12n—-1,n2>1, (3)
and for each multiindex i(2n — 1) there is a single index jo,, 1 < jo, < N, such that
|aion—1),j,,] = R, ip = LN, p=12n—-1,n>1, (4)
2ion)| <7/ (N =1), izy # jon, ip =1L N, p=1,2n, n > 1. (5)
Then the BCF (1) converges.

This is analog of result by Leighton-Wall [13] on twin convergence regions, dealing with
continued fractions. In the present paper, we shall study what happens to conditions on num-
bers a, r and R, and convergence speed estimates, when the conditions (3)—(5) are replaced

by

N
Z a1y < a(l—e), ) aionsy| <a(l—¢), ip=1N, p=12nn>1, (6)
inp1=1
where 0 < ¢ < 1, and
18001 jo | = R, ) ajom| <7, ip=1,N, p=12n—1,n>1. (7)

inn€{L,2,... N}\{jon}

The same type of problem of convergence regions for BCF is discussed in [2-6,14]. Application
of the value regions to the study of the convergence of functional BCF may be found in [5,8,10].
Expansions of certain analytic functions in some classes of BCF are given in [1,8,11,12].

We give here a few facts (see [7]) that are used. Let QE&)) denotes the “tails” of (1), that is

QE(SS)) =1,i,=1,N,p=15>1,and

k+1 a; Z‘nfl a:
k+1 i(k+2) i(n
T D SN
i1 tim 1o+ i

wherei, =1,N,p = 1,k,k =1,n—1,n > 2. Itis clear that the following recurrence relations
hold

_1+ Z k+1 ip=1N,p=Lk k=1n-1,n>2.
lk+1_1Q k+1)

If fn denotes the n-th approximant of (1), then f, = 211 1(aiy/ Q ) n > 1, and if all
1 k) # 0, then

H}’l+1
i1=1 12:1 iny1=1 Hn+1 Ql(k) Hk:l QEEQ)

o

|

=

I
T
—_
e
Mz
Mz
Mz

,m>n>1. (8)
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2 CONVERGENCE CRITERIA

We shall prove the auxiliary lemma.
Lemma. Let there exist real numbers «, r and R such that
0<a<1,0<r<oo, R(1—a)>(14+a)(r+2—2a), )
and such that BCF (1) with elements a;,,) satisfying

N N
Z laiq)| < a, Z [aionsyl <o, iy =1,N, p=12nn>1, (10)

inp1=1

and for each multiindex i(2n — 1) there is a single index jo,, 1 < j», < N, such that the
inequalities (7) hold. If Ql(”k) denotes the “tails” of BCF (1), the following inequalities hold

1—oc<|Q |<1+a ip =1,

R r
Qi) Z 757 "1

Proof. Let n be an arbitrary natural number. By induction on k for each i(k) we show that the
inequalities (11) and (12) are valid.

If n is even number and k = n/2, then for each i(n) relations (11) are obvious. If n is odd
number and k = (n — 1)/2, then for arbitrary i(n — 1) use of relation (10) leads to

2k<n, n>2, (11)

<p<
—1>1,i,=1,N, 1<p<2%-1<n—-1,n>2 (12

|Qn1|>1—2|a | >1—a and | |<1+Z|a ) < 14w

in=1 =1

By induction hypothesis that (11) hold for k = r and for each i(2r), where 2r < n, we prove the
inequalities (12) for k = r and for each i(2r — 1) and the inequalities (11) for 2k = 2r — 2 for
each i(2r — 2). Indeed, use of relations (7), (9), (10) for arbitrary i(2r — 1) leads to

ai(2r)

(n) | _ Ai(2r=1),jar
Qicr—n| =11+~ + e
i) jp  2re{12 NN Qo)

|‘1i(2r—1),]2,| B \ai(zr)\ R r

> -1> - -1>1
’Qf(nz)r_l)ljh‘ i2r€{1,2,... N}\{jar} ‘Ql(?z)r)‘ l1ta 1-a
and for arbitrary i(2r — 2)
N gin. N
Qi =1- ¥ %21% and Q) <1+ ). ”2” <1+
ipr—1=1 |Qi(2r71)| ipr—1=1 |Q (2r— 1)|
This completes the proof of the lemma. O

Our main result is the following theorem.

Theorem 2. Let there exist real numbers «, ¢, r and R such that 0 < a« < 1,0 < ¢ < 1,
0 <r<oo,R(1—a)> (1+a)(r+2—2a) and such that BCF (1) with elements a;,, satisfying
the inequalities (6) and for each multiindex i(2n — 1) there is a single index jp,, 1 < jo, < N,
such that the inequalities (7) hold. Then the following statements hold.
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e (A) The BCF (1) converges to a value f.
e (B) If f, denotes the n-th approximant of the BCF (1) and

_ a1+ a)(RA—a) +r(1+a))
(R(1—a) —r(1+a) —1+a?2)?

<1, (13)

then

0((1 _€)n+1qn
U VR ey s .

n>1. (14)

e (C) The values of the BCF (1) and of its approximants are in the region |z| < a(1 —¢).

Proof. At first, we prove (B). Let m > 2n 41 and n > 1. From the formula (8) one obtains

NONCN e Hz"“la )|
(1)
f—ful <Y Y Y = ;
STt et QU TR QU TR 1Q4 |
NONN ey TR \a r Iy ra |
i(1) k=1 |4i(2k) k=1 2k+1)
P IDINHDY

1 igppr= 1|Ql(( |Hk 1|Q 2k 1 |Hk 1|Q (2k) 2k+1)|

~.

i1=11p

Obviously, the conditions of lemma hold. Let k be an arbitrary natural number. Applying
(11) and (12) we have for arbitrary i(2k — 1)

i’: |ﬂ 2k| i’: |‘1 (2k+1)]
(m)
sz 1 ‘Q Zk 1 ’12k+1 1’Q 2k Qi(2k+1)‘
- a(1—é) ﬁ !a (20)|
0= R/ +a) /(T —a) —1) 4= Q2T o)
_ x(1-¢)
T (1-a)(R/A+a)—r/(1—a)—1)
|ﬂ (2k— 1)]2k| ’El Zk‘
X( e ‘+, Qe e |
Q Zk 1 2k 1)]21( ZZkE{l,Z,...,N}\{]zk} Qi(Zkfl)Qi(Zk)
Since

|‘1 (20| 1

e AN ) Qi1 Qi (7 ORI @) =r/ (=) = 1)y 4500 ()
r
)

\ai(zk) |

SA—O)R/Ata) —r/(l—a)—1)
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and

(2n)
|52k 1),y | _ ai(Zk*l)'jZk/Qi(Zk_l)erk

(2n) (2n) (2n)
|Qi(2nk71)Qi(2nkfl),j2k| L+ ai(ar—1) ./ Qz‘(znkfl)

+ T (12, N () (i) / Qo)

JJ2k

_ L+ Vi (12, N1\ (i} (Bic2k) / Qf(zfzfﬂ
T (2n) (2n)
1+ iar1) e/ Qiar—1) . T Einee 1.2 N1 i} (9i(28)/ Qiax)
(2n)
-1 T4 Yipe (1.2 NP e} (Fic2) 7/ Qjap))
<1+ o
Qitk—1)
<14 14+7/(1—a) B R/(1+«)
- R/Q+a)-r/1—-a)—1 R/(Q+4+a)—r/(1—a)—-1
then
i’: |22k | i’: |ai(2k41)] < a(l1—¢)(R/(14+a)+r/(1—a))
| @) | m) )| = (1= 0 —a) 12
=1 |Qjiag—1) Qi(any | 2= Q42 Qiais )| A-a)(R/(1+a)=r/(1=a)~1)
Thus, form >2n+1andn > 1
n+1 _ \n+1 . n _ \n+1ln
o — fonl < o (1—e)""(R/(A+a)+r/(1—a))" a(l—¢)"yg (15)

1—a)"(R/1+a)—r/(1—a)—1)2"t1  R/(14+a)—r/(1—a)—1
where ¢ is defined by (13). If in (15) we pass to the limit as n — oo, then from (13) it follows
that BCF (1) converges. On the other hand, if in (15) we pass to the limit as m — oo, we obtain
the estimate (14). This proves (B).
To prove (A) we consider the following equation

Fi(x) = (), (16)

2
x R r R r
) = 1—x<1+x+1—x>'F2(x)_ <1+x_1—x_1> '

It is clear that F;(0) < F»(0), and F;(x) > 0 and F»(x) > 0 for all x € (0;1). It follows from
F/(x) = R(1+x2)/(1 —x2)2+r(1+x)/(1 — x)? that F{(x) > 0 for all x € (0;1). Let us write
the function F,(x) in the form F(x) = (x> — (R +7)x + R —r —1)?/(1 — x?)? and consider
the following equation

where

x>~ (R4+rx+R—r—1=0. (17)

Ifr > 0,then x* = (R+7r—+/(R+7)2—4(R—r—1))/2 is the only root of equation (17) on
(0;1) and, if r = 0, then x* = 1 is the only root of (17). Now from
x>~ (R+r)x+R—-r—1 R LT
1—x2 (1+x)2  (1—x)?
we have Fj(x) < 0 for all x € (0;x*). It follows that there exists the only root a* of equation

(16) on (0;x*). If 0 < & < a*, then Fj(a) < F,(a), that is, the condition (13) holds. In the case
when a* < & < 1 we consider the following BCF

Ej(x) = -2

N gz N g N o g0 1\Z N g
Z i(1) Z i(2) . Z i(2k—1) Z i(2k) o (18)
P 1 + i1 1 + iy 11 1 + i1 1 +
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where z € C. Itis clear that the elements of BCF (18) satisfy the conditions of lemma in domain
D, ={zeC: |z] <1/(1—¢)}. It follows from (11) and (12) that, if f,(z) denotes the n-th
approximant of the BCF (18), forall z € D,

|fu(z)] < Z\a 12| < af (1—¢)lz| < a,

i.e. the sequence {f,(z)} is uniformly bounded in the domain D;. If z € D,+, where D+ =
{z € C: |z| < a*/a}, then according to the above BCF (18) converges. Obviously, Dy+ C Dk.
Hence, by [16, Theorem 24.2, p. 108] BCF (18) converges uniformly on each compact subset of
the domain Dy, in particular, for z = 1. It follows that BCF (1) converges.

Finally, from

N
|fu] < Z|z ) <a(l—e)
111|Q i1=

follows proof of (C). O

Remark. If the conditions (3)—(5) are replaced by the conditions (6) and (7), then the condition
(2) is replaced by the condition (13) and the 0 < « < 1/4 is replaced by the 0 < a < 1. Itis
clear that Q > g, and, thus, the estimates (14) are better than similar estimates obtained in the
proof of Theorem 1. In addition, if g < 1, then ¢ can be zero.

Corollary. Let there exist real numbers B and ¢ such that0 < f < 1/N,0 < ¢ < 1, and such
that BCF (1) with elements a;(,,) satisfying |a;i,_1)| < B(1 —¢), wherei, =1,N,p=1,2n—1,
n > 1, and for each multiindex i(2n — 1) there is a single index jo,, 1 < jo, < N, such that
3i2n-1)50,| = L+ NB)(2 = (1+N)B)/(1 =NB), ip=1,N, p=1,2n-1,n>1,
|ai(2n)| S ,B/ iZi’l 7éj2n/ lp == 1/N/ p == 1,2”, n Z 1.

Then BCF (1) converges, and its values and its approximants are in the region |z| < NB(1 —¢).
Proof. Weseta = NB,r = (N —1)8, R = (1+NB)(2 — B(1+ N))/(1 — NB). Then

_1+N8B B N-1 )\ r
— 1_Nﬁ(2—2Nﬁ+(N—1)ﬁ)_(1+N[3) <2+1_Nﬁﬁ> —(1+oc)< 1_“>.

It follows that the conditions of Theorem 2 hold, and, therefore, the corollary is an immediate
consequence of this theorem. O

3 EXAMPLE

Let B, r and R be some positive numbers. We consider the periodical BCF

2 ai1) ai(2) 2 Ai(n)
yfe oy i (19)
P T S e e e B S
where a;1) = B, 0,_1) = (=1)2271B, a;0,_1)1 = (=1)2171R, a;0,_1), = (=1)2-17,
which form by the following fractional transformation
_ P p
s(w) = R r T R T
1+ - 1-— +

14w 1—w 14w 1—w
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It follows that BCF (19) can be converged only to the real root of the following equation
(w—2B)(1 —w?)*> —w(R —r—w(R+7))*=0. (20)

We choose p = a(1 —¢)/2, 0 =1/3,e =1/4,r =2/3 and R = 5. Then it is clear that the
conditions of Theorem 2 are satisfied and the inequalities |w| < 28 are valid. Thus, BCF (19)
converges. On the other hand the equation (20) we write in the form

9(4w —1)(1 — w?)? — 4w(13 — 17w)? = 0. (21)

Let F(w) = 9(4w — 1)(1 — w?)? — 4w (13 — 17w)?. Then F(0) < 0 and F(—1/4) > 0. Thus, on
the interval [—1/4; 0] there is root of the equation (21). The following recurrent formula

_ 260~ 27
for = e k- e K2

with initial conditions f; = 28 and f» = 28/(1 — (R — r)?) can be used to find of the above
mentioned root.

REFERENCES

[1] Antonova T.M., Hoenko N.P. Approximation of Lauricella’s functions Fp ratio by Norlund’s branched continued
fraction in the complex domain. Mat. Metody Fiz.-Mekh. Polya 2004, 47 (2), 7-15. (in Ukrainian)

[2] Antonova T.M., Sus’ O.M. On the twin convergence sets for two-dimensional continued fractions with complex
elements. Mat. Metody Fiz.-Mekh. Polya 2007, 50 (3), 94-101. (in Ukrainian)

[3] Antonova T.M., Sus” O.M. On one criterion for the figured convergence of two-dimensional continued fractions
with complex elements. J. Math. Sci. 2010, 170 (5), 594-603. do0i:10.1007/s10958-010-0104-x (translation of Mat.
Metody Fiz.-Mekh. Polya 2009, 52 (2), 28-35. (in Ukrainian))

[4] Baran O.E. Some Circular regions of convergence for branched continued fractions of a special form. J. Math. Sci.
2015, 205 (4), 491-500. doi:10.1007 /s10958-015-2262-3 (translation of Mat. Metody Fiz.-Mekh. Polya 2013, 56
(3), 7-14. (in Ukrainian))

[5] Baran O.E. Some convergence regions of branched continued fractions of special form. Carpathian Math. Publ. 2013,
5 (1), 4-13. doi:10.15330/cmp.5.1.4-13

[6] Baran O.E. Twin circular domains of convergence of branched continued fractions with inequivalent variables. . Math.
Sci. 2011, 174 (2), 209-218. d0i:10.1007 /s10958-011-0291-0 (translation of Mat. Metody Fiz.-Mekh. Polya 2009,
52 (4), 73-80. (in Ukrainian))

[7] Bodnar D.I. Branched continued fractions. Naukova Dumka, Kyiv, 1986. (in Russian)

[8] Bodnar D.I., Dmytryshyn R.I. Multidimensional associated fractions with independent variables and multiple power
series. Ukrainian Math. J. 2019, 71 (3), 370-386. d0i:10.1007 /s11253-019-01652-5 (translation of Ukr. Math Zh.
2019, 71 (3), 325-339. (in Ukrainian))

[9] Boltarovych E.A. Analog of Leighton—Wall convergence criteria for branched continued fractions. In: Methods of
Studies of Differential and Integral Operators, Naukova Dumbka, Kiev, 1989, 32-36. (in Russian)

[10] Dmytryshyn R.1. Convergence of some branched continued fractions with independent variables. Mat. Stud. 2017, 47
(2), 150-159. d0i:10.15330/ms.47.2.150-159

[11] Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple
power series. Proc. Roy. Soc. Edinburgh Sect. A 2019, 1-18. doi:10.1017 /prm.2019.2

[12] Dmytryshyn R.I. The two-dimensional g-fraction with independent variables for double power series. . Approx.
Theory 2012, 164 (12), 1520-1539. doi:10.1016/j.jat.2012.09.002



164 ANTONOVA T.M.

[13] Leighton W., Wall H.S. On the transformation and convergence of continued fractions. Amer. J. Math. 1936, 58 (2),
267-281. doi:10.2307 /2371036

[14] Malachkovs’kii G.G. Some twin regions of convergence for branched continued fractions. J. Math. Sci. 1998, 90
(5), 2374-2375. doi:10.1007 /BF02433969 (translation of Mat. Metody Fiz.-Mekh. Polya 1996, 39 (2), 62-64. (in
Ukrainian))

[15] Jones W.B., Thron W.]. Continued fractions: Analytic theory and applications. Addison-Wesley Publishing
Company, London, 1980.

[16] Wall H.S. Analytic theory of continued fractions. Van Nostrand, New York, 1948.

Received 20.03.2020
Revised 08.05.2020

Anronosa T.M. Ipo kpumepiii 36iscHocmi 01 2innacmoeo aanyw0206020 dpody // Kapmarcbki MaTeM.
my6a. — 2020. — T.12, Nel. — C. 157-164.

Ocnosoro 1ii€i poboTtn € pesyabrar €.A. boaTaposiuya (1989) mpo MHOXMHM 36i1KHOCTI AAS TiA-
ASICTOTO AQHITFOTOBOTO APO6Y

=z

i) &L di) N, aifn)
1 +l.2; 1 +"'+.Z L+

=1

ae |ajou—1)l < a/N,ip = LN, p = 1,2n—1,n > 1,1 AAsL KOKHOTO MyAbTHiHAeKCY (211 — 1)

icHye eamHwit iHAEKC fo,, 1 < jp, < N, Taxwi, 1m0 |ai(2n_1)17-2n| >R, ip =1,N,p=12n-1,

n>1,Tta |a,-(7_n)| <r/(N—=1), iy # jon,ip = LN, p =12n,n > 1,2 N > 1,4 r1aR-

AlVicHI UMCAa, IO 33 AOBOABHSIIOTH IT€BHI YMOBM. Y IIilf pOOOTi yMOBM AASI X MHOXXMH 3aMiHeHO Ha
N N TN p =197 ;

Yi—1 o] < a(l—¢), Xy 1 1ai0ng)l < a(l—¢),ip =1,N,p =1,2n,n = 1,1 Ars xoxHOro

myAbTHiHAEKCY (21 — 1) icHye eayrmit iHAeKC jon, 1 < jon < N, Taxumit, wo [a;2,_1),,| = R Ta

Yipne {12, NP\ {jan} |a,-(2n)| <rip,=1,N,p=12n—1,n>1, aee a rTaR - alifcHi wicra, mo 3a-
AOBOABHSIIOTB ITeBHi YMOBH, i, OTPMMaHO Kpallli OIIiHKM ITBYAKOCTI 3615KHOCTi AASI ITbOTO TiAASICTOTO
AQHITIOTOBOTO APObY.

Kntouosi cnosa i ¢ppasu: 361>XHiCTb, MHOXKMHA 361KHOCTI, OIIIHKa IIIBUAKOCTI 3615KHOCTI, TIAASICTI
AaHIIIOTOBMIA APib.
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CHAIKOVS'KYI A.l, LAcoDA O.2

BOUNDED SOLUTIONS OF A DIFFERENCE EQUATION WITH FINITE NUMBER OF
JUMPS OF OPERATOR COEFFICIENT

We study the problem of existence of a unique bounded solution of a difference equation with
variable operator coefficient in a Banach space. There is well known theory of such equations with
constant coefficient. In that case the problem is solved in terms of spectrum of the operator coef-
ficient. For the case of variable operator coefficient correspondent conditions are known too. But
it is too hard to check the conditions for particular equations. So, it is very important to give an
answer for the problem for those particular cases of variable coefficient, when correspondent con-
ditions are easy to check. One of such cases is the case of piecewise constant operator coefficient.
There are well known sufficient conditions of existence and uniqueness of bounded solution for the
case of one jump. In this work, we generalize these results for the case of finite number of jumps of
operator coefficient. Moreover, under additional assumption we obtained necessary and sufficient
conditions of existence and uniqueness of bounded solution.

Key words and phrases: difference equation, bounded solution, Banach space.
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INTRODUCTION

Let (X, || - ||) be a complex Banach space, L(X) be the space of linear continuous operators
in X, I € L(X) be the identity operator. Let us denote c(A) the spectrum of an operator
A € L(X). Letus denote S = {z€ C : |z| = 1} the unit circle in the complex plane.

Let us consider the difference equation

xn_l’_l = Anxn +yn, n G Z, (1)

where {A, |n€ Z} C L(X), {yn | n€ Z} C X are known sequences, {x, | n€ Z} C Xisa
desired sequence. In the paper we investigate the question of existence and uniqueness of a
bounded solution for the equation (1).

It is known [3, chapter 7.6] the equation (1) has a unique bounded solution {x, | n € Z}
for any bounded sequence {y, | n € Z} if and only if operators sequence fulfills a condition
of discrete dichotomy (analogue of exponential dichotomy, which is well known in the theory
of differential equations). However, checking of discrete dichotomy conditions is very hard,
so we need simpler conditions of existence and uniqueness of a bounded solution for special
operators sequences.

YAK 517.929.2
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To formulate one of such conditions we need the following spectral decomposition. As-
sume A € L(X) and the condition 0(A) NS = & is true. Then the spectrum of the operator
A is decomposed into two parts, one of them is inside of the unit circle S, the other is outside.
Using the theorem about decomposition [4, p. 445] we can derive:

1) an existence of projectors P_(A), P+ (A) € L(X) such that

2) decomposition of the space X to the direct sum
X=X _(A)+X:(A), (2)

where X_(A) = P_(A)X, X+ (A) = P+ (A)X are subspaces in which corresponding operators
A_=P_(A)A, A4y = Py (A)A have spectra

c(A)N{zeC|l|z| <1}, c(A)N{ze C||z| > 1} (3)
accordingly.

L.V. Gonchar and M.F. Gorodnii investigated the equation (1) in the papers [1,2] for the case
of one jump of an operator coefficient. In the paper [1] the following result was proved.

Theorem 1. Let X be a complex Banach space and G, U be some operators from L(X), which
satisfy the following conditions:

)o(G)NS=g,cU)NS =g;
2) X =X_(G)+X+(U).
Then the difference equation

{ Xp41 = GXp +yn, n>1,
X1 = Uxy +yn, n <0,

has a unique bounded in X solution {x, : n € Z} for any bounded in X sequence {y, : n € Z}.

In the paper the result of the Theorem 1 is generalized to an equation with several jumps
of an operator coefficient.

1 MAIN RESULTS

Let us consider a special case of the equation (1) with an operator coefficient, which changes
finite number of times:
Xn1 = AoXn +Yn, 1 <0,
Xpp1 = Anxn+yy, 1<n<N-1, (4)
Xpt1 = Aan +yu, n > N.
Here N is a fixed natural number.

Assume the conditions 0(Ag) NS = &, 0(Ax) NS = & are true. Then each of the operators
Ap, AN produce spectral decomposition of the form (2). Let us denote

PO_ = P_(A()), P0+ = P+(A()), PN_ = P_(AN>, PN+ = P+(AN),
XO, = X_ (Ao), X0+ = X+(A0), XN— = X_ (AN), XN+ = X+(AN).
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Remark 1. In a degenerate case, when one of the sets in (3) is empty, the corresponding sub-
space contains zero element only, so we can omit it in the direct sum. Further we assume
that all these sets are nonempty. For degenerate cases statements below are true if degenerate
summands are omitted.

Lemma 1. Let 0(Ap) NS = &. Then for any bounded sequence {y, : n < 0} C X all bounded
solutions of the equation

Xpi1 = AoxXn +yu, n <0,
can be obtained by the formula
0 n—1
Xy =A— YA P e+ Y AT IRy, n <, )
k=n k=—o00

where b € Xy, is an arbitrary element.

Proof. The condition 0(Ap+) C {z€C : |z| > 1} implies the existence of the operator
Ay J} € L(X) and the estimate

IC>03re (0,1) Vn>1 ||Ay)]| < Cr". (6)
Similarly, the condition 0(Ag—) C {z€ C: |z| < 1} implies the estimate
AC>03re (0,1) Vn>1 ||Aj_|| < Cr'. (7)

So, the defined sequence (5) is bounded for any element b € X .
Let us check that the sequence (5) is a solution of the difference equation. We have

0 n—1
Aoxn +Yn = A8+b - Z Ag_kPOerk + Z Ag_kPOf]/k + Poyyn + Po—yn
k=n k=—o00
(n+1)-1 0 (n41)—k—1 (1)1 (n+1)—k—1
= Ay, b— Z Ay Poyryx + Z A Po_yx = xp41, n <0.
k=n+1 k=—00

On the other hand, if {z, : n > N} is any bounded solution and {x, : n > N} is any
bounded solution of the form (5), the difference {r, = z,, — x,, : n > N}, is a bounded solution
of the homogeneous equation

Tn+1 = Aorn, n < =1

From this equation we have

and, using projection operator,
Py_rg=Ay"rn =0, n— —oco.

So, rg € Xot and r, = Afj, 1o, n < —1. We obtained that solution {z, : n < 0} has the form
(5). This completes the proof. O
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Lemma 2. Let 0(An) NS = @. Then for any bounded sequence {y, : n > N} C X all the
bounded solutions of the equation

Xny1 = ANYn +Yn, n 2N,
can be obtained by the formula

n—1 +o0
xn=AGNo+ Y APy — Y AL Py, n >N, (8)
k=N k=n

where b € Xy _ is an arbitrary element.
Proof. The conditions 0(Any) C{z€ C:|z| > 1} and 0(An-) C {z€ C : |z| < 1} imply the
existence of the operator AKIL € L(X) and estimates similar to (6) and (7). So, the sequence (8)

is bounded for any element b € Xy _.
If we put the sequence (8) to the difference equation, we obtain

n—1 +o0
ANXy +Yn = AHN:NJrlb + Z AnNikPN,]/k — Z AankPNerk + PN—Yn + PNy Yn

k=N k=n
Nt 1—N ()1 (n+1)—k—1 & () —k—-1
=AU TN 4+ Z Ay Pn_yi — Z Ay PnNiVye = x441, n > N.
k=N k=n+1

Similar to proof of previous lemma, the difference {r, = z, —x, : n > N} between any
bounded solution {z, : n > N} and bounded solution {x, : n > N} of the form (8), is a
bounded solution of the homogeneous equation

Tn41 = ANTn, n >N,

and has a form
rn = A”N’NVN, n > N.

Since
PN+7’n = AnN__._NT’N, PN+rN = A%_T_ni’n — 6, n— +oo,

we have ry € Xy_ and 1, = A’K,‘_N rg, n > 0. So any bounded solution has the form (8). The
proof is completed. O

Lemma 3. Let N > 2 and AN_1AN—2 - ... - A1 be injection. The boundary problem

{anrl:Anxn"’ynrlSnSN_l, 9)

Po—x1 = v, PnyXN = U,

has a unique solution {x, : 1 < n < N} C X foranyv € Xyo_, u € Xy and any
{yn:1<n < N-1} C X ifand only if

X = WH+Xn_, (10)

where W = {AN_1AN—2...- A1x:x € Xo }.
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Proof. If a solution of the problem (9) exists, then the formula
n—2
Xn = Ap1An—2-...- A1x1 + Z Ap1An—2- .- AppaYk +Yn—1, 2<n <N, (11)
k=1
is true. One can check this result by induction. We have x, = A;x; + y; and

AnXp +Yn = AnAn1An—2- ...  A1xq

n—2
+ Z AnAn1An—2- . Ak + AnYn1+Yn = X1, 2<n<N-1
k=1
Necessity. Let the boundary problem has a unique solution for any bounded sequence
{yn:1<n <N -1} C X and boundary conditions v € Xo_, u € Xn.
Let us fix an arbitrary element f € X. Incasey; = yp = ... = Yn_2 = 0, yn-1 = f,
u = v = 0 problem (9) has the unique solution. Formula (11) gives us

XN = ANflAN,Z el A1x1 —|—f

that is, using boundary conditions, we have f = Py_xny + AN_1AN—2 - ...  A1(—Po4+x1). This
equality implies f is the sum of elements from W and Xy_.

To prove uniqueness of the element’s decomposition let us assume by the contrary that
there are nonzero elements 1 € Xg., vg € Xy_ such that

0= AN_1AN_2 ... Aqug + vp. (12)

Boundary problem (9) incasey; = y2 = ... = Yn—2 = Yn-1 = 0, u = v = 0 has unique
solution {x1, xp,...,xN_1, XN} and

XN — AN—lAN—Z el Alxl.
But adding assumption (12) we have
(xn —v0) = AN-1AN—2 - ... - A1(x1 + up),

so, {x1 + uop, x2, ..., XN—-1, XN — Vo } is another solution of the boundary problem. A contradic-
tion.
Since f is arbitrary, the required decomposition (10) is proved.
Sufficiency. Let decomposition (10) is true. For arbitrary v € Xo_, u € Xy; and
{yn:1<n < N-1} C Xletusdenote
N—2
fi=) AN-1AN—2- ... Ak Hyn-1 — U+ AN1AN—2 ... - Ajo.
k=1

Due to the space decomposition we have
AM(w,b) e WX Xn_ : f=w+Db

or equivalently
E”(El, b) € Xo+ X Xn- f = AN_1AN_2 ... - Aja+D.
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Using the definition of f we have

N-2
l(a,b) € Xo4 x Xn— : AN-1AN-2 " - Ap1Yk T YN-1
= (13)

= AN—lAN—Z tat Al (ll — ’(’)) + (b + u).

This statement implies that the problem (9) has a solution. Indeed, we can put x; = v —a.
The first boundary condition is fulfilled. Elements x, ..., xy could be obtained from (11). By
comparing (11) for n = N and (13) we obtain x5 = b + u and the second boundary condition
is fulfilled too.

Obtained solution is unique since for homogeneous boundary problem we have

XN = ANflANfz et A1X1
and xy € Xy—, x1 € Xo+. But using space decomposition (10) we obtain xy = 0, and
using condition that operator AN_1AN_2 - ... Aj is injective, we have x| = 0,s0xp = ...
=XN_1= 0. The lemma is proved. 0

Theorem 2. Leto(Ayp) NS =, 0(AnN)NS =@ and AN_1AN—2 - ... A1 be an injection. Then
the equation (4) has a unique bounded solution {x, : n € Z} C X for any bounded sequence
{yn :n€ Z} C X ifand only if

X =W+Xn_,

where W = {AN_1AN_2-... - A1x 1 x € Xo4 }.

Proof. Necessity. Let the equation (4) has a unique bounded solution {x, : n € Z} C X for any
bounded sequence {y, : n€ Z} C X.

Let {b, : 1 <n < N-1} C Xand u € Xyn4,v € Xo_ be arbitrary. We will consider
bounded sequence {y, : n€ Z} C X, wherey, =0,n < 0;yo =0,y = by, 1 <n < N-—1;
yny = —An+u; yp = 0, n > N. For this sequence there exists a unique bounded solution
{xp:neZ} CX

By Lemma 1 the part of solution {x,, : n < 1} has such form that x; = b+ v where b € Xy
That implies

Py_x1 =no. (14)

Similarly by Lemma 2 the part of solution {x, : n > N} has such form that xy = b+ u,

where b € Xy_, so
PN+xN = Uu. (15)

Due to equalities (14) and (15) the sequence {x, : 1 < n < N} is a solution of the boundary
problem (9).
Suppose by the contrary that boundary problem (9) has another solution {z, : 1 <n < N}.
Let
zZ0 = Aaj(zl - ]/1>/ Zn = AngZO/ n S _1/
N1 = ANZN YN,z = AN N Tlzng, > N+2
One can see that sequence {z, : n € Z} is bounded due to spectral properties of Ay, and

An-. This sequence is a solution of (4). Indeed, for 1 < n < N — 1 equation is true due to
boundary problem and since

z0 = Ay (z1 —y1) € Xot, 2n41 = ANZN + YN = AN—zn + Aniu — Ansu € XN,
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we have

z1 = Ap+zo +y1 = Agzo + Y1, Znyl = AO+ zZo = A0A0+ZO Aozy, n<-—1,

—N N—-1
ZN+1 = ANZN T YN, Zy4l1 = A’;\]_ ZN+1 = ANAHN_ ZN+1 = AnzZn, n 2> N+1.

This solution is different from {x, : n € Z} (at least for 1 < n < N). A contradiction.

Since boundary problem (9) has unique solution for any input data, Lemma 3 gives us
decomposition (10).

Sufficiency. Assume that decomposition (10) is true. Let {y, : n € Z} C X be any bounded
sequence. We will construct bounded solution of (4). This solution consists of three parts,
described by Lemmas 1-3 (with intersections in x; and xy).

By Lemma 1 for bounded sequence {y, : n < 0} C X we have

xn:Ag 1p ZA e 1P0+yk+ Z A” = 1P0 yi, n<1,

k=—0c0

0
where by € Xy . In particular, x; = by + v, wherev = )}, Aj kPO,yk € Xo_.50, Ph_x1 = v.
k=—c0

Similarly, by Lemma 2 for bounded sequence {y,, : n_Z N} C X we have

n—1 +o00
xn = AN Nba+ Y AV Py — Y AR T Puyyk, n >N,
k=N k=n
where b € Xy_. In particular, x5y = by 4+ u, where u = — Z AN k= 1yk € XN+-50, Pyixny = u.

k_
By Lemma 3 the boundary problem (9) with defined above u and v has the unique solution

{x, : 1 < n < N} C X.So x1,xy are uniquely defined by sequence {y, : n€ Z} C X.
That implies that by = Pp1x1, by = Py_xy are uniquely defined too. So the whole solution
{xy : n € Z} C X is uniquely defined.

Constructed solution is a unique bounded solution of (4). 0

Remark 2. For N = 1 sufficiency of Theorem 2 gives us the statement of Theorem 1.
Example 1. Let X =1, N =2,

Agx = (x1/2,xz(2+1/2),x3/4,x4(2+1/4),x5/6,x6(2+1/6),...),
Apx = (x1 — X2, X1 + X2, X3 — X4, X3 + X4, X5 — X6, X5 + X, ...), Ax = Ap.

Then

7(Ag) = o(Ay) = {1/(2n),2+1/(2n) | n € N} U{0,2},

Xz,:{xelz|x2:x4:x6:...:O},
X0+:{xelz|x1:x3:x5:...:O},
W:{xelz\aq = —Xp,X3 = —x4,x5:—x6,...}.

Since W+X,_ = X, conditions of Theorem 2 are fulfilled so for any bounded sequence y the
equation (4) has a unique bounded solution.
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B poboTi BMBUYAa€ETHCSI IMTaHHS iCHYBaHHST €AVHOTO OOMeXKEHOTO pO3B’I3KY Pi3HUIIEBOTO PiBHSIH-
HSI 3i 3MiHHIM OIlepaTOpHMUM KoedillieHTOM B 6aHaXOBOMY IpocTopi. IcHye A0b6pe po3BuHeHa Teo-
Ppisl BIATIOBiAHMX PiBHSIHD 31 CTaAMM KoecpillieHTOM, B paMKax SIKOi ITOcTaBA€He IMTaHHs pO3B’si3aHe
B TepMiHaX CIIEKTPY OIlepaTOPHOro KoedpilieHTa. AAs BUITAAKY 3MIiHHOTO OIlepaTOpHOTro Koedpilli-
€HTa BiATIOBiAHI YMOBM TaKOX BiAOMi, IIPOTe € AyKe CKAAAHVMMI AASI lepeBipkit. ToMy BaXXAMBMM €
AATH BIAIIOBiAb Ha IIOCTaBAeHe IIMTaHHS AASI TUX YaCTVMHHMX BUIIAAKIB 3MiHHOTO KoedillieHTa, KOAU
BiATIOBiAHI yMOBM AeTKO epeBipuTi. OAHMM 3 TaKVX BUITAAKIB € PiBHSIHHSI 3 KyCKOBO-CTaAMM OIlepa-
TOpHMM KoedpirtieHTOM. BiaoMi AocTaTHI yMOBM iCHYBaHHSI Ta €EAMHOCTI 06MEXEHOTO PO3B’SI3KY AAST
BUITAAKY OAHOTO cTpubKa. B 1ili poboTi 1i pe3yAbTaTy y3araAbHIOIOTHCS AASL BUITAAKY CKiHUEHHOTO
umcAa cTpubKiB onepaTopHoro koedimienTa. Kpim Toro, 3a AOAATKOBOTO IPVITYIIIEHHs OTPYMaHO
HeobXiAHI Ta AOCTaTHI yMOBM iCHyBaHHsI Ta EAMHOCTi 0OMeXeHOTO pO3B’SI3KYy.

Kntouosi cnosa i ¢ppasu: pisHUIIEBe piBHSHHSI, 0OMeXXeHN po3B’sI30K, 6aHaXiB IPOCTip.
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THE NONLOCAL BOUNDARY VALUE PROBLEM WITH PERTURBATIONS OF
MIXED BOUNDARY CONDITIONS FOR AN ELLIPTIC EQUATION WITH
CONSTANT COEFFICIENTS. 11

In this paper we continue to investigate the properties of the problem with nonlocal conditions,
which are multipoint perturbations of mixed boundary conditions, started in the first part. In par-
ticular, we construct a generalized transform operator, which maps the solutions of the self-adjoint
boundary-value problem with mixed boundary conditions to the solutions of the investigated mul-
tipoint problem. The system of root functions V(L) of operator L for multipoint problem is con-
structed. The conditions under which the system V(L) is complete and minimal, and the conditions
under which it is the Riesz basis are determined. In the case of an elliptic equation the conditions of
existence and uniqueness of the solution for the problem are established.
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method, method of transform operators, Riesz basis.
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1 INTRODUCTION AND MAIN RESULTS

In the papers [1-5] by the methods of the theory of transformation operators (see [12]),
we studied nonself-adjoint problems with a multipoint spectrum and an infinite number of
root functions (see [10]). In the one-dimensional case such problems are generated by regular
but not strongly regular Birkhoff conditions (see [11]). For equations containing involution,
multipoint problems were studied in the works [5-7]. In this paper we continue the study of
the problem for an elliptic equations with constant coefficients with mixed conditions initiated
in[1,7,8].

For our investigation we will use the following notations. Let G := {x := (x1,x2) € R?:
0 < x1, xp < 1}, Dy, D, be the operators of differentiation by the variables x;, x; respectively,
W2"(G) be a Sobolev space with the following scalar product and norm respectively:

(13 0)yzn () = (:0) 1y (6) + (D"u; DY"0) 1y 6) + (D3"u; D3"0) 1y )
H”H%v;-n((;) = (u;u)wzzn(c),
W3"(0,1) := {y € AC[0,1] : y") € C[0,1], r=1,2,...,2n =1, y®) € L,(0,1)},
Ls2(0,1) :={y(t) € Ly(0,1) : y(t) = (—-1)°y(1—1t)}, s € {0,1},

YAK 517.927.5, 517.984.5
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[L2(0,1)] be a set of linear and continuous operators given in the space L,(0,1).
Let us consider the multipoint problem

n
2 2n—2
L(D)u:= Y a,D"Dy" u = f(x), x € G, (1)
p=0

( — _

Esllu = D%s Zu]xlzo + D%S Zu’xlzl + [élu = Or 5= 1r2/ L

fn_,_s,lu = D%s_2u|x1:0 - D%S_2u|x1:1 = 0/ 5= 1/ 2/ co N,

55,214 = D%Sizu’XZZO + D3572u’3€2:1 = 0/ 5= 1/ 2! - n, (2)
£n+512u = D%s_1u|xZ:O + D%S—1u|x2:1 + g?” = O/ 5= 1/ 2/ s n,

j S5 q

1487 =Y Y bq,r,s,jD].u(x)]xj:xr,j, s=1,2,...,n,

q=07r=0

where 0 = X < Xpj <o < Xpj = 1, ap, bq,r,s,j € R, ks,j <2n, ke N,s=1,2,...,n,
p=01,...,nj=12

Let L : Ly(G) — Ly(G) be the operator of the problem (1)—~(2), Lu := L(D)u, u € D(L),
D(L) :={u e W3"(G) : bgu=0,s=1,2,...,2n, j=1,2}.

Let us consider the following assumptions and theorems, that are necessary for further
investigation.

Assumption Py 1 by, s ; = (—1)Q+qu,kj_r,slj, Xpj=1—=%rjq=0,1,.. kst =0,1,...,k,
s=1,2,...,nj=12
Assumption P, : there exists a positive number C; such that the inequality

n

p,n—p
Y apuip,
p=0

Calpf* <

holds for y := (uy, u2) € R?, |uf? := |p1|> + |pu2)? — oo.
Assumption Py : kg1 <25 =2, ksp <25—1,5s=1,2,...,n.

Theorem 1. Let Assumption P; holds. Then, the operator L has a set of eigenvalues

n
0= {)\k,m = (=1)"Y_aphp 1t s s 1 = TR, pmp =70 (2m — 1)%, k,m € IN}, (3)
p=0
and a system V (L) of root functions, which is complete and minimal in the space L,(G).
Let Assumptions P—P; hold. Then, the operator L has the system V (L), which is the Riesz
basis of the space L(G).

Theorem 2. Let Assumptions P;—P5 hold. Then for an arbitrary function f € L,(G) there exists
a unique solution u € W3"(G) of problem (1)—2).

Our research is structured as follows. In Section 2 we investigate the properties of the
problem with self-adjoint boundary conditions. In Section 3 we study the spectral properties
for nonlocal problem with nonself-adjoint boundary conditions. In Section 4 we construct
a commutative group of transformation operators. Using spectral properties of multipoint
problem and conditions for completeness the basis properties of the systems of eigenfunctions
are established in Section 5. In Section 6 the main theorems are proved.
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2 THE SELF-AJOINT PROBLEM

Let us consider for equation
—z®) (t) = pz(t), te(0,1), peC, (4)
the problem with boundary conditions
20 0)+ 20 (1) =0, r=0,1. (5)
Let By : L»(0,1) — L(0,1) be the operator of problem (4)—(5):
Boz (t) := —z?) (1), z(t) € D(By),
D (By) = {z e W2(0,1): z(0) +zM(1) =0, r = 0,1},
Ty = {rr,m,z(t) € L(0,1) : Toma(t) := V2sinm(2m — 1)t,
T ma(t) := V2cos t(2m —1)t, m € N, r = O,l},
Tip:={Tm2(t) € Lj2(0,1): me N}, j=0,1.
Lemma 1. The operator By has a point spectrum
o (Bg) := {pmp € R: pyo = m*(2m —1)?, m € N}
and system of eigenfunctions T».

Proof. A direct substitution proves that the elements of system T, are the eigenfunctions of
operator By, which correspond to the eigenvalues o (By).

Taking into account, that the subsystem of eigenfunctions T, of the operator By is an or-
thonormal base of space Lio (0,1), j = 0,1, we obtain the statement of lemma. O

We consider the spectral problem

n
L(D)u := Z aprngnfzpu =Au(x), x€ G, A€C, (6)
p=0
g(),s,lu = D%Sizubq:o + D%572u|x1:1 =0,
gO,nJrs,lu = D%S_Zu’xlzo - D%S_Zu‘xlzl =0, (7)
by s ol = D%S*2u|xZ:0 + D%szu|x2:1 =0,
longspt = D%s_lu]xzzo + D%s_lu\xzzl =0,s=12,...,n.

Let Ly : Ly(G) — Lp(G) be the operator of the problem (6)—(7):
Lou := L(D)u, u € D(Lo), D (Lo) := {u € W3(G) : Lo,ju=0,r=1,2,...2n j= 1,2},
T = {Tslkll(xl) € Ly(0,1) : Typ1(x1) := V2sin(2k —s)xy, k=1,2,..., 5 = 0,1},

V(Lo) = {r5km(% Lo) €L2(G) : Opehm(x, Lo) =T 1 (1) Toma(x2), 7,8 = 0,1,m,k=1,2,....}.
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Lemma 2. The operator Ly has eigenvalues (3) and a system of eigenfunctions V(Ly).

Proof. By direct substitution we obtain that v, ¢ i ,,(x, Lg) € D (Lo) and

LOUr,s,k,m(x/ LO) = Ak,mvr,s,k,m(xr LO)/
n
Nom = (~1)72 Y ayk? (2m — 122, k,m € N.
p=0

Therefore, the set of eigenvalues (3) for the operator Ly corresponds the system of eigenfunc-
tions V(Lg). O

Theorem 3. Let Assumption P, holds. Then for any function f € Ly(G) there exists a unique
solution u € W3"(G) of the problem (6)—~(7).

Proof. Let us expand the functions f, u € Ly(G) as a series by the system V(Ly):

f = X fr,s,k,mvr,s,k,m(xr LO)I

r,s,k,m
u= ) ur,s,k,mvr,s,k,m(x/ LO)-
r,s,k,m

Substituting these functions into the equation (1), we obtain
-1
Uy s km = )\k,mfr,s,k,mr r, s € {Or 1}! k,m € N.
Consider the ratio

2p ~2n—2 —p,
DlpDzn Pu=(—1)" Z Fl;}:,lﬂfn,zp)\k,yly,fr,s,k,mvr,s,k,m(xz Ly), p=0,1,...,n.

r,s,k,m

Taking into account Assumption P, for some C, > 0, we obtain

poon—py—1 _
Mi1tms Mol <C2 p=0,1,...,m,

2 2n—2
IDY" D5 P ull 1,6y < Collfllry 6y, P =0.1,...,m,

[l ey < Callflliy ()
Therefore, u € W3"(G). Theorem is proved. O

For fixed k € IN, s € {0,1}, we consider the solutions of the problem (6)—(7) as a product

u(x) ==z (x2) T (x1)- (8)

To determine the unknown function z(x;) we obtain the following eigenvalues problem

Y. (—DPapuf 222 (xp) = Az(x2), x2 € (0,1), A €C, 9)
p=0

{ZO/S/ZZ = 2(25_2) (O) + Z(ZS_Z) (1) (10)

lO,Tl+S,ZZ = Z(zsfl)(o) + 2(2571)(1>

I
SIS
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Let Loy : L2(0,1) — L(0,1) be the operator of the problem (9)-(10)

n

Loz = Y (—=1)Papuf 12> ) (x3), z € D (Lox),
p=0

D (Lox) :={z € W3"(0,1) : I,z =0, r=1,2,...,2n}.
The roots @, i (A) of the equation

n

X:()(—l)p“pwzn_ZPV;lz,l =A
p:

which is characteristic for equation (9), are chosen so that
Re Wy k (}\) < Re Wy_1k (}\) <...<Re @1k ()\) <0, wn+q,k ()\) = —Wyk (}\) , 4= 1,2,...,n.

Let us determine the functions

{zo,,,,k (x2,A) := J(exp @px (A) X2+ exp @y (A) (1= x2)) € Lop(0,1), g=1,...,n, )

Zontqk (X2,A): T(exp @gx (M) xa—exp@y (A) (1 —x2)) € L12(0,1), g=1,...,n.
Substituting the general solution

2n

z(x2) = Y ez (x2,A)
r=1

of the equation (9) into boundary conditions (10), we obtain the equation to determine the
eigenvalues for Lo
A(A, k) = det(lO,S,QZOIr,k (XZ, )\))Zn

rs=1 —

Taking into account the ratio zg 14k (X2,A4) € Ly (0,1), lopntj2 €Wy, p € {0,1}, we obtain

lontj220gk (X2,A) =0, j,g=1,2,...,n,
)

(
lojpZon+qr (X2,A) =0, j, g =1,2,...,m,

A(A/ k) = A0()\/ k)Al (A/ k)/
AP ()‘/ k) = det(lo,pn+j,220,pn+q,k (XZIA))]Y‘I,qzll p=01,
AN K) =TT @g(A) X +e@M)2 TT (@) (A) — @ (A))* = 0. (12)
q=1 1<j<q<n

Let @y, = 171(2m — 1), 1 := \/—1 are the roots of equation (12) and @, ;,x = @;(An k),
qg=23,...,n, m=1,2,....By direct calculations we obtain that the operator L has the
system of eigenfunctions

V(Lox) := {vsm(x2, Lox) € L2(0,1) : vs (X2, Lok) := Tsm2(x2), s =0,1, m=1,2,...}

and the set of eigenvalues o} := {Ak,m €o: me ]N}.
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3 THE NONSELF-AJOINT PROBLEM

Let us consider the spectral problem

—z@ (t) = uz(t), n€ C, t € (0,1),

hz:=2z(0)+2z(1) =0, (13)
Lz =z (0) + 2N (1) + 3z =0,

where
13z :=b(zM(0) — zV(1)), b € R. (14)

Let B: Ly(0,1) — L(0,1) be the operator of the problem (13)-(14) and V(B) the system of
root functions for operator B.

Taking into account the results of the papers [1,2], we define eigenfunctions and attach
functions of the operators B by formulas

Z)1,m(i'/ B) = Tl,m,z(t);
vom(t,B) = (1 b2t — 1)>T0,m,2(t), m=12,....

Therefore, the operator B has the system V(B) of root functions, which are related by ratio

BUO,m(t/ B) - Vm,ZUO,m(f/ B) + émvl,m(tz B)/

where §,, = 4bt(2m —1), m=1,2,....
Taking into account the results of the paper [2], we obtain the following statement.

Lemma 3. The operator B has the point spectrum o (By) and the system of root functions V(B),
which is the Riesz basis of the space L,(0,1).

We consider the solutions of the spectral problem (6), (2) as a product (8). To determine
the unknown function z(x,) we obtain for the equation (9) the eigenvalues problem with the
conditions

lspz := z(B-2)(0) 4+ 2(3-2)(1) =0, (15)
Lntspz = z(zs_l)(O) + 2(25_1)(1) +1l+s2=0,5s=1,2,...,n,
where
ks,z kz
Lyysz := Z Z bq,r,s,ZZ(q)(xr,Z)r s=1,2,...,n. (16)
q=0r=0

Let Ly be the operator of the problem (9), (15)—(16):

n
Lyz := Z(—1)papy,fllz(2"’2p)(x2), z€ D(Ly),
p=0

D (L) :={z € W3"(0,1) : L,,z=0, r=1,2,...,2n}.
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Lemma 4. Let Assumption P; holds. Then the eigenvalues of the operators L and L coincide.

Proof. Substituting the general solution (11) of the equation (9) into boundary conditions (10),
we obtain the equation to determine the eigenvalues of the operator Ly

Al ()\, k) = det(ls,zzolp,k (xz, A))%Tg:l =0.
Taking into account the relations

Z0mtqk (X2, A) € Lro(0,1), Losnijo € WS, Iy € Ws, 5, r€{0,1}, j € {1,2,...,n},

we obtain
linzogk (x2,A) = @?_2(7\)(1 + ),
LitinZonsqk (X2, A) = @g(M)F71(1 4 M),
linZonigr (X2, A) = loj2Zonsgk (X2,A) =0,
Livj2zontak(X2,A) = lontj2Zonsqr (X2,A),
linzogk(x2,A) = linozogi(x2,A), g=1,2,...,m,
A(A k) = Do(A, k)A1(A, k),
As(A k) = det(losn+j22z0sntqk (¥2,4))7q=1, s =0,1,
and .
A AK) =TT @g(A) X +e@M)2 TT (@) (A) — @ (A))* = 0.
q=1 1<j<g<n
Therefore A'(A, k) = A(A, k). The lemma is proved. O

Let us consider the boundary-value problem for the equation (9)

150z := 7(25-2) (0) + 2(25*2)(1) =0,s=1,2,...,n,

Hnyspz =22 D0) +22 V(1) =0, j#s,5s=1,2,...,1, (17)
lntjoz = z&=D(0) + 2D (1) + E}H]-z =0,
where . ‘
Iz :=bj(z%(0) - 2% V(1) =0, bjeR. (18)

Let Ly x : L2(0,1) — L(0,1) be the operator of the problem (9), (17)—(18)

n

Lijxz:= Y (=1)Fapul ;z* %) (xy), z € D (Ly i),
p=0 '
D (Lyjy) = {z EWZ(0,1): Iz =0, r= 1,2,...,2n}.
We determine the system of functions

1 )
Znt1,mik(X2) 1= 5(1 — 2x2) sin Py 2X2, (19)

1
Znqmk(x2) 1= 5 (14 e%mk) =1 (ePamit2 — Prmill=02)) g =23, n, (20)
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and a square matrix of order n, whose elements are defined as follows. j-th row is determined
by the functions (19), (20) and elements of other rows are determined by numbers

Sk = lejzzrll,n+r,22n+1,m,k(XZ) = (_1)r711

_ 1-2r _ ~2r—1
19q,r,m,k = Pm,Z ll,n+r,22n+q,m,k(x2) — (Dq,m,kr

whereq=2,3,...,n, r#j, r=12,...,n.
We denote the determinant of the resulting matrix by zj,m,k(xz), m=1,2,....

. n
r#j, s
Let Ajymx := det(ﬁsmm,k)ri % 9. Then Zjmk(X2) = 21 Nj g mkZntgmk(X2)-
5=1, 4=
Remark 1. For any fixed k € IN and m — oo we obtain the relations

‘Sl,r,m,k = 191,r,m,kp%,12 =1 ‘Sq,r,m,k = 19q,r,m,kpa,lz =& <1 + O(m)_l) ’
where ¢, are the roots of equation (—=1)"e?" =1, Im £;<0,9=2,3,...,n.
Substituting the function z; ;, x (x2) into boundary conditions (17)-(18), we obtain the equal-
ities
ll,s,ZZj,m,k =0,s#n+j,s=12,...,2n, m=12,...,

11,n+j,2Zj,m,k(x2) = Cjmks

n
2j—1
Cj,m,k = pm,Z Zm,k | | (Dq,m,k/ m=1,2,...,
q=1

where Z,, ; is the Vandermonde determinant of order n, which is constructed by numbers
52 g=12,...,n.

q,r,mk’

Remark 2. For an arbitrary k € IN the number sequence {Z,,}%_, asm — oo converges to the

Vandermonde determinant Z,, (e?l, s, e%) , which is constructed by numbers s%, ees, ei.

In addition, the sequence {5q,r,m,k}°m°:1 converges toeg, 9 =1,2,...,n.

Thus, there are positive numbers C3, C4 such that the following inequality holds
0< Cs < [ejmpl 10, <Ca<oo, je{L,2,..m}, m=12,.... (1)

We determine the function z; ; ,, x(x2) such that the following inequality holds

n
20imk(%2) = Znpami(¥2) + ) Ajjll,m,kAj,q/m,kznmm,k (x2) .
q=2
Therefore,
21,jmk(X2) = A 11,m,kzj,m,k(x2>/ (22)

n
- _ A1 2j-1 _
gl,n+jzl,j,m,k(x2) T Xj,m,k/ Xj,m,k - A]‘,Lm,kzm,kpnilz H (Dq,m,k/ m = 112/ s
q=1
By substituting into boundary conditions (17)—(18) we conclude that the operator Ly ;x has
eigenfunctions

01,m (Xz, Ll,j,k) = Tl,m,Z(XZ)/ m = 1, 2, e (23)
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The root function v, (x2, Ly jx) of operator L j is determined by the sum

vom (%2, L1jk) := Tom2(x2) + Mjmrz1jmk(x2), m=1,2,.... (24)

To determine the unknown parameters 7; ,, x we substitute the expression (24) into boundary
conditions (17)—(18).
Taking into account the formula (22), we obtain

1 -1
17j,7”rZ,k = _ln+]‘70,m,2(ll,n—i-j,ZZl,j,m,k) , m = 1, 2, e

From the definition of the determinant A; ; ,, x we have inequality |A | < Cs.

Therefore, taking into account the inequality |1} /T0,m,2
we obtain the relations

]p P and the estimates (21),

1jml < je{1,2,...,n}, meN. (25)

Thus, the operator Ly jx has the system of root functions (23)—(24).
Let us consider the operator Bj; : L»(0,1) — L»(0,1), which has a point spectrum ¢ (By)
and the system of root functions

V(Bjx) :== {Ur,m(x2, Bix) € L2(0,1) 1 v1,m(x2, Bjx) == T,m2(x2),
Z)O,m(xz, Bj,k) = <1 + qj,m,k(sz — 1))T0,m,2(x2), m=1,2,... }

Lemma 5. The system of functions V(B;) is the Riesz basis in the space L>(0,1).

Proof. From the inequality (25) we obtain that the system V(B; ) is Bessel (see [10]). Therefore,
the operator R(Bj,k)Tr,m,z(xz) = U m (X2, B]-,k), r=0,1, m=1,2,...,is continuous in L,(0,1).
In addition, the operator S(B; ) := R(B;jx) — E is continuous in the space L>(0, 1).
Taking into account the definition of functions in V(B; ) we obtain

S(Bj,k) . L1,2(0,1) — O, S(Bj,k> : Lolz(o,l) — L1,2(0,1).

Thus, $?(B; ) and R™!(B;y) := E — R(Bjx) € [L2(0,1)].
Therefore, from the Bari theorem (see [10]) the system V(B]-,k) is the Riesz basis in the space
L»(0,1). O

Lemma 6. Let Assumption Py holds. Then the operator Ly ;i has the system of root functions
1% (Ll,j,k) , which is the Riesz basis in the space L(0, 1).

Proof. The system of functions V(L1 ;x) is complete and minimal in space L (0, 1) because the
boundary conditions (17)—(18) are regular by Birkhoff (see [11]).

We show that the systems of functions V/(B; ;) and V(L) are quadratically approximate
in space L,(0,1).

Let us estimate the sum of the series

H(Lyjx; Bjx) ZHUsm x2, Ly jx) — Us,m(xZIBj,k)H%z(o,U

2
= 21 l[v0,m (x2, Ll,j,k) — vo,m (%2, Bj,k) ||L2(0,1)f
m=

n
H(Lljk/ B] k) < max ’77] mk’ ‘A] 1, mk‘ Z X:Z ‘A]‘,q,m,kyz”Zl,q,m,k(XZ)H%Z(O,l)'
q:



182 BARANETSKIJ] YA.O., KALENYUK P.I., KOPACH M.I., SOLOMKO A.V.
Taking into account the choice of numbers @, ,, x, we obtain the estimate
H(Lyjk Bjk) < oo.

Therefore, the complete and minimal system V(L i) € L2(0,1) is quadratically approxi-
mate to Riesz basis V(B k).
Thus, applying the Bari theorem (see [10]), we obtain the statement of Lemma 6. O

4 TRANSFORMATION OPERATORS
Let us determine

22 jmk(X2) = Njmpz1jmk(x2), m=1,2,....

By choosing of arbitrary sequence of real numbers 6 = {6,,}"_, we define the operator
Bjg: L2(0,1) = L2(0,1), which is generated by the differential expression

n

Y (= 1)Papuf 2" ) (x5)
p=0

and has the system V(B g) := {vs,m(xz, Bjg) € L2(0,1): s =0,1, m=1,2,... } of functions

U1,m(%2, Bjg) := T1,m2(x2),

(26)
00,m(x2, Bjg) := Tom2(x2) + Omzo jmi(x2), m=1,2,...,
which are root functions in the sense of equalities
B]',gvllm (Xz, leg) = )\k,mvllm (Xz, B]‘,Q), m = 1, 2, ey (27)
Bjgvom(x2,Bje) = AkmVom(x2,Bjg) + CikmV1,m(x2, Bjg), (28)

n p— p— p—
where i = (=1)"4n1; 5 k0n L ”PCEZ Zpy,’zlpinz =1 m = 1,2,..., and has the set of
p=0 o

eigenvalues oy.
Let us consider the operators R(Bjg), which are defined in the space L,(0,1) by

R(B]‘,Q) :=E + S(Bjﬁ),
S(Bjp)T,m2(x2) :=0, S(Bjg)Tom2(x2) := Omzojmi(x2), m=1,2,....

Let Qj(Lox) be the set of operators B; g, which have purely point spectrum oy and the system
of root functions (26), I';(Lo ) be the set of operators R(B; ).
For any Bjg,, Bjg, € Tj(Lox), we define on T';(Lgy) the commutative multiplication opera-
tion
R(Bjg,)R(Bjg,) = E+ S(Bjg,) + S(Bjs,) = R(Bjs,)R(Bje,)

and the inverse operator R™!(B;4) = E — S(Bjg), Bjo € T1(Loy)-
Therefore, T'j(Lg) is the Abelian group, which contains a subgroup I';(Lox) N [L2(0,1)].
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Lemma 7. For any sequence {0y };,_; C R the system of functions V(B;y) is complete and

minimal in L,(0, 1).

Proof. We prove on the contrary that the system of functions V/(B;g) is total (complete) in the

space L»(0,1).

Let us suppose that there exists a function h = hy + hy, hs € Lg(0,1) that is orthogonal to
all elements of the system V/(B; ). Taking into account, that the system T 5 is the orthonormal

basis of space L1,(0,1), we obtain hi; = 0.

Therefore h € Lo»(0,1). Assuming the orthogonality of the function & to the elements of

the system V(B 9), we have equality

(h,v(),m(JCz, B]',g)) L(01) — (l’l T()mz) L>(0,1) =0 m=1,2,....

Taking into account that the system Tj 5 is the orthonormal basis of L»(0,1), we obtain # = 0.

Let us prove the minimality of the system V(B; ). We determine the set of functions

1

Lr0(0,1) := {h = Z Hy mTrma(x2) € La(0,1) Z Z 12,62 < oo},

r=0m=1 r=0m=1

where 6,0 := 1, inthecase 8, =0, 0,,0 =0y, if6,, #0, m=1,2,....
The set L 4(0, 1) is a Hilbert space with respect to the scalar product

1 o
(h g ng 01 = Z Z mOhi’mgT’m

r=0m=1

Let us consider the relations

00,m(x2, Bjg) = R(Bjg)Tom2(x2) = (1 — Om)Tom2(x2) + Omvom(x2, L1jk),
(h; R(B;0)Tom2)T,(00) < 4(1+63) (1 T0,m2)T, 101y + 263 (1 00,m (X2, L1,j)) T, (01

(h; v0,m(x2, Bj0) )1, (0,1) = (R*(Bj,0); To,m,2) 1,(0,1)-
(h;R(Bjﬂ)Tl,mQ)Lz(O,l) = (h, Tl,M,2>L2(O,1)f m=1,2,....

Taking into account these relations and inequality

(1 vs,m (x2, Ll,j,k))%z(oll) < HR*(Ll,j,k)”[ZLZ((M)](h} Ts,m,z)%z(o,l), s=01m=12,...,

we obtain the estimate

IR* (o)l 7, 0,1 < (4+ IR (Laii) I, 0 ) I, 0,0
Therefore, for conjugate operator R*(B,g) the following inclusion holds (see [9])
R*(Bjg) € [L2(0,1); L2(0,1)].
So, the inverse operator exists

E — S*(Bj,g) € [L2,6(0,1); L2(0,1)],

that is, the system of functions V(L1 ) has the unique biorthogonal system W(Ly ;).

(29)
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Lemma 8. The system of functions V (B, ) is the Riesz basis in L»(0,1) if and only if the se-
quence {6,, }5_, is bounded.

Proof. Necessity. If the system of functions V(B;g) is the Riesz basis, then it is almost normal-
ized. From the opposite, if |0, — oo for m — oo, then, taking into account (27)—(28), we
obtain

(0,1) — 00, M —» Q.

[00,m (x2, Bjo)l|L5(0,0) = 1+ |Oml[|22,j,m,

Sufficiency. If the sequence 6 is bounded, then the spaces L, 4(0,1) and L,(0, 1) coincide. There-
fore, taking into account the inclusion (29), we obtain R(B;g) € [L2(0,1)]. O

The set of n real sequences {Gj,m}°m°:1, j =12,...,n, we denote by ®, and consider
the operator Bg, eigenvalues of which coincide with the eigenvalues of the operator L and

eigenfunctions are defined by the equalities

v1,m(X2, Be) = T1,m2(x2),

vo,m (X2, Be) = Toma2(x2) + Z Oimz2,jmr(x2), m=1,2,....
]_

(30)

We define the transformation operator R(Bg) := E + S(Bg) : L2(0,1) — Lp(0,1) which
maps the system of eigenfunctions V(L) of operator Ly into system of functions V(Bg) of
operator Bg

R(B@)Tslm,z(xZ) = vs,m,k(t/ B@), S = 0, 1, m = 1,2, e

From the definition of operator Bg we obtain
S(B@) : L(),z(o,l) — L1I2(O,1), L1,2(0,1) — O, SZ(B@) =0.
Therefore, the bounded operator R~ (Bg) = E — S(Bg) exists.

Lemma 9. For any sequences {0;,,};_1, j = 1,2,...,n, the system of eigenfunctions of oper-

ator Bg is complete and minimal in the space L,(0,1).
The system of functions V(Bg) is the Riesz basis in the space L,(0,1) if and only if the
sequences {Bj,m};j:l, j=1,2,...,n, are bounded.

Proof of Lemma 9 is similar to the proof of Lemma 7. O

Let Q(Ly) be the set of operators Bg, eigenfunctions of which is defined by formulas (30),
T'(Ly) be the set of transformation operators R(Bg).

Remark 3. On the setT'(Ly) we can define the multiplication operation and prove thatT'(Ly) is
an Abelian group.

5 THE NONSELF-AJOINT PROBLEM FOR A DIFFERENTIAL EQUATION OF EVEN ORDER
For equation (9) let us consider the eigenvalues problem with nonlocal conditions

(25-2)(1) =0, s=1,2,...,n,

Iy sz = z(2 O)+z
)+ 2z 1>(1)+12 z=0, 31)
) +23Y

2j— 1)(
)(0

butjpz =zl
@-1)(0

bnispz =2
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where
< ,2 k2

"+JZ =) Z b /‘1/]/22 (x2,)- (32)

q=07r=
Let Ly x : L2(0,1) — L2(0, 1) be the operator of the problem (9), (31), (32)

n

Lojz(x2) := ) (— pap]/t 22=2%)(x;), z € D (Lojjk)
p=0

D (L) = {z €W (0,1): borpz=0,7=12,...,2n},
and V (L) be the system of root functions for operator Ly x
R(Ly ) : L2(0,1) — L2(0,1), R(Lyjx): V(Lox) — V(Lajx)-

Lemma 10. Let Assumption P holds. Then the operator L, j has the system of root functions
V (Ly,jx) , which is complete and minimal in the space L»(0,1).

If Assumptions P1, P3 hold, then the system of functions V (L, ;) is the Riesz basis in the
space L»(0,1).

Proof. Substituting function 17, 2(x2) into boundary conditions (31), (32) we obtain that the
operator L, ; , has eigenvalues
O1,m(%2, Lojk) = Tyma(x2), m=1,2,.... (33)

Root function v, (X2, Lyx) of operator L, ; x is defined by the sum
00,m(x2, Lojx) = Toma(x2) + ﬂjl,m,kzz,j,m,k(xz), m=1,2,.... (34)

For determining of unknown parameters 17]-1 . We substitute the expression (34) into boundary
conditions (31), (32).
Taking into account the ratio (22) we have the equality

77j1,m,k = _(12,n+j,222,j,m,k>7ll%+]‘70,m,2~ (35)
Therefore, the operator L  ; has the system of root functions (33)—(35).

Remark 4. On the contrary, as in the proof of Lemma 8, we can prove the completeness of the
system V (L, ) in the space L5(0,1).

Taking into account that z; ; ,, x(x2) € L12(0,1), we have the inclusion R(Ly;x) € T'(Lo)-
Therefore, the system V(L) is minimal in the space L>(0,1).

Let Assumption P; holds. Then from the inequality (25) we obtain ]ﬂ]lmk] < Cg. Therefore,
taking into account the statement of Lemma 9, we obtain that R(Lyx) € T(Lgx) N [L2(0,1)].

Let us show that for the operator R(L;) Lemma 10 holds. Substituting into boundary con-
ditions (31), (32) we obtain that the operator Ly has the eigenfunctions

Ullm(xz, Lk) = Tllmlz(xZ>, m=1,2,....

Root function vy, (%2, Ly) of operator Ly is defined by the sum

n
00 (%2, Li) = Toma(x2) + Y 1} aZajmp(¥2), m=1,2,...,
=1
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where unknown parameters q},m,k are defined by formula (35).
Therefore, the transformation operator R(Ly) : Ly(0,1) — L(0,1)

R(Lk)TS,m,Z(XZ) = Us,m(xZ/ Lk)/ s = 0/ 1/ m = 1/ 2/ cecy

is the element of the set I'(Ly). Thus, the system V(L) is complete and minimal in the space
L»(0,1).

n
Taking into account the ratio R(Ly) = [T R(Lpjx) and the statement of Lemma 9, in the
j=1
case of Assumptions P;, Ps we have R(Ly) € [Lp(0,1)].
Thus, the system V(Ly) is the Riesz basis in the space L,(0,1). O

Therefore, for operator Ly Lemma 10 holds.

6 PROOF OF THE MAIN RESULTS

Proof of Theorem 1. Particular cases of the operator L, when b,,s; = 0, we denoted by
L/, j = 1,2, respectively.

Let 71, 1 be the orthoprojector into one-dimensional proper subspace in L (0, 1). We define
the root functions of operator L? by

vs,r,k,m (x/ Lz) = Us,m (x2/ Lk) Tr,k,l (xl) 7 S,T’ e {Orl}r k/m e N/
and the transformation operator R(L?) : Lo(G) — L,(G) by
R(L?) := Z R(Lk) X Ty ,1,

r,k,m

Us rkom <x, L2> = R(L2>Us,r,k,m (x, Lo) , 8,7 € {0,1}, k,m € IN.

Similarly, when Assumption P, holds, we can define the biorthogonal system W(L?).

Taking into account Lemma 10, we obtain that for operator L2 Theorem 1 holds. From The-
orem 1 of the paper [1] we obtain that for operator L' Theorem 1 holds and for transformation
operator R(L!) the ratio R(L') € [L,(G)] holds.

Let us define the transformation operator R(L) : L,(G) — Ly(G), R(L) := R(L')R(L?),
and the root functions of operator L

Vs rjom (X, L) := R(L)vs g m (x,Lo), s,v € {0,1}, k,m € IN.
By direct verification we obtain that the elements of the system V(L) are roots in sense

(L - /\k,m)vr,l,k,m(xz L) =0,
(L = Am)0r,0,m (X, L) = &0 kmOr,1km(x, L),
gr,O,k,m = 4”(_1)n_177r,0,k,mpiqn,2_1/ r,s € {0,1}, k,m € IN.

Taking into account Assumption P;, we obtain that the systems V(L/) have the unique biortho-
gonal systems W(L/), j = 1,2, in the space Ly(G).

Therefore, the system V(L) is complete and minimal in the space L,(G).

Let Assumptions P;—P; hold. Then from Theorem 3 of the paper [8] and from Lemma 10
we obtain R(L!') € [W2"(G)]. So, Theorem 1 is proved. O
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Remark 5. There are positive numbers Cy, C1g such that for any function

f(x) = Z fr,q,k,mvr,q,k,m(xr L) (36)
r,9.km
the inequality
C9Hf”%2(c) < Z ’fr,q,k,m‘z < ClOHf”%Z(G)
7,q9,k,m
holds.

Proof of Theorem 2. Tt is enough to consider the case q,,51 = 0. Let the right part of the
equation (1) has the expansion (36).
The solution of the problem (1)-(2) we find in the form of a series

u(x> = Z ur,q,k,mvr,q,k,m(xr L)-
r,q,km

Substituting these expansions into equation (1) we obtain the equalities

-1
ur/O/k/m = A'k,ﬂl.]crlofk/nl,
-1 -2
Up1km = )\k,mfr,l,k,m - )\k,mgr,O,k,mfr,O,k,mr re {Or 1}! k/ m € IN.

Let us consider the relations

D%”u(x) = Z A];iyfllfr,q,k,mvr,q,k,m(x, L).

r,q,km

Taking into account Assumption P,, we obtain

IDY"u|| 1,6y < Cuallfllr,(G)-

Similarly from Theorem 3 of the paper [1] we obtain the inequality

ID3"u||1,(6) < Cazll fllr,(G)-

Therefore, taking into account Theorem 3, we obtain R(L?) € [W2"(G)].
Thus, for the definition of the transformation operator R(L) we have R(L) € [W3"(G)].
Then
[llwzn ey < Cuall fllLy(c)-

Theorem is proved. 0
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bapanenskmii 51.0., Kaaenrok I'L1., Komau M.I.,, Coaomko A.B. HenokanvHa kpatiosa 3adaua 3i 30yperns-
MU MIUAHUX Kpatiosux YMo8 015 eqinmuuHo20 pisHIHHS i3 cmaaumu xoegiyienmamu. 11 // Kapmarcebki
MaTeM. my6a. — 2020. — T.12, Nel. — C. 173-188.

VY po60Ti IpOAOBXEHO po3movaTi y MepIIilif YacTUHI AOCAIAXKEHHS BAACTMBOCTEN 3apadi 3 He-
AOKaABHVMM YMOBaMI, sIKi € 6araToTOUKOBMMM 36y PEeHHSIMI MIllIaHMX KpalioBMX YMOB. 30KpeMma,
o6yAOBaHO y3ararbHEHIII OIlepaTop IepeTBOPEHH s, sIKMiT Biao6pakae pO3B’SI3KI CaMOCIIPSIKeHOT
KpaloBoi 3apadi i3 MillTaHMMM KpallOBMMM YMOBaMI B pO3B’SI3KM 6araToToukoBoi 3aaadi. ITobyao-
BaHO crcteMy V(L) xopeHeBux pyHKIiit oreparopa L 6araToToukoBoi 3araui. BusHaueHo yMoBH,
pu sikmx cucrema V(L) oBHa Ta MiHiMaABHA Ta YMOBY, 3a SIKVX BOHa € 6a3ucom Picca. AAst BUITaAKY
eAINTUYHOrO piBHSIHHS BCTAHOBAEHO YMOBM iCHYBaHHSI Ta €AMHOCTI PO3B’SI3KY 3aAadi.

Kntouosi crosa i ppasu: amdpepeHIiarbHe PiBHSHHS 3 YaCTMHHMMM IOXiAHMMM, KOpeHeBi pyH-
kuii, MeToa Pyp’e, MeToA omepaTopis epeTBOpeHHs], Hasnc Picca.
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NILPOTENT LIE ALGEBRAS OF DERIVATIONS WITH THE CENTER OF SMALL
CORANK

Let K be a field of characteristic zero, A be an integral domain over K with the field of fractions
R = Frac(A), and Derg A be the Lie algebra of all K-derivations on A. Let W(A) := RDergA and
L be a nilpotent subalgebra of rank #n over R of the Lie algebra W(A). We prove that if the center
Z =Z(L)is of rank > n — 2 over R and F = F(L) is the field of constants for L in R, then the Lie
algebra FL is contained in a locally nilpotent subalgebra of W(A) of rank n over R with a natural
basis over the field R. It is also proved that the Lie algebra FL can be isomorphically embedded
(as an abstract Lie algebra) into the triangular Lie algebra u, (F), which was studied early by other
authors.

Key words and phrases: derivation, vector field, Lie algebra, nilpotent algebra, integral domain.
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INTRODUCTION

Let K be a field of characteristic zero, A be an integral domain over K, and R = Frac(A)
be its field of fractions. Recall that a IK-derivation D on A is a KK-linear operator on the vector
space A satisfying the Leibniz rule D(ab) = D(a)b +aD(b) forany a,b € A. The set Derx A of
all K-derivations on A is a Lie algebra over K with the Lie bracket [D1, D;] = D1D; — D, D;.
The Lie algebra Derg A can be isomorphically embedded into the Lie algebra Derk R (any
derivation D on A can be uniquely extended on R by the rule D(a/b) = (D(a)b —aD(b))/b?,
a,b € A). We denote by W(A) the subalgebra R Derg A of the Lie algebra Derk R (note that
W(A) and Derk R are Lie algebras over the field K but not over R). Nevertheless, W(A) and
Derk R are vector spaces over the field R, so one can define the rank rkg L for any subalgebra
L of the Lie algebra W(A) by the rule rkg L = dimg RL. Every subalgebra L of the Lie algebra
W(A) determines its field of constants in R by

F=F(L):={reR|D(r)=0 forall D€ L}.

The product FL = {y «;D; |a; € F, D; € L} is a Lie algebra over the field F, this Lie alge-
bra often has simpler structure than L itself (note that such an extension of the ground field
preserves the main properties of L from the viewpoint of Lie theory).

We study nilpotent subalgebras L C W(A) of rank n > 3 over R with the center Z = Z(L)
of rank > n — 2 over R, i.e. with the center of corank < 2 over R. We prove that FL is contained
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in a locally nilpotent subalgebra of W(A) with a natural basis over R, similar to the standard
basis of the triangular Lie algebra U, (F) (Theorem 1). As a consequence, we get an isomorphic
embedding (as Lie algebras) of the Lie algebra FL over F into the triangular Lie algebra u,,(F)
over F (Theorem 2). These results generalize main results of the papers [8] and [9]. Note that
the problem of classifying finite dimensional Lie algebras from Theorem 1 up to isomorphism
is wild (i.e., it contains the hopeless problem of classifying pairs of square matrices up to
similarity, see [3]). Triangular Lie algebras were studied in [1] and [2], they are locally nilpotent
but not nilpotent.

We use standard notations. The ground field K is arbitrary of characteristic zero. If F
is a subfield of a field R and rq,...,r¢ € R, then F(rq,...,r¢) is the set of all linear com-
binations of r; with coefficients in F, it is a subspace in the F-space R, for an infinite set
{r1,...,7 ...} we use the notation F ({r;};_). The triangular subalgebra u,(KK) of the Lie

algebra W, (K) := Derg K][xy,...,x,] consists of all the derivations on K][xy,...,x,] of the
form
D= fi(xaee o Xn) e 4 fro (K)o o+ frn
— J1 27740 ax1 n—1 n ax”il naxll

where f; € K[x;11,..., %], fu € K. If D € W(A), then Ker D denotes the field of constants for
DinR,ie,KerD = {r € R| D(r) = 0}.

1 MAIN PROPERTIES OF NILPOTENT SUBALGEBRAS OF W(A)

We often use the next relations for derivations which are well known (see, for example [7]).
Let D1,D; € W(A) and a,b € R. Then

1) [llDl, sz] = ab[Dl, Dz] +aDy (b)Dz — sz(ll)Dl;
2) ifa,b € Ker D1 NKer Dy, then [aDy,bD;] = ab[Dy, D5).

The next two lemmas contain some results about derivations and Lie algebras of deriva-
tions.

Lemma 1 ([6], Lemma 2). Let L be a subalgebra of the Lie algebra Derk R and F the field of
constants for L in R. Then FL is a Lie algebra over F, and if L is abelian, nilpotent or solvable,
then so is FL, respectively.

Lemma 2 ([6], Proposition 1). Let L be a nilpotent subalgebra of the Lie algebra W(A) with
rkg L < oo and F = F(L) the field of constants for L in R. Then

1) FL is finite dimensional over F;
2) ifrkgr L = 1, then L is abelian and dimp FL = 1;

3) ifrkg L = 2, then FL is either abelian with dimp FL. = 2 or FL is of the form

k
FL—=F <D2,D1,aD1,...,%D1> )

for some D1, D; € FL and a € R such that [D1,D;] =0, Dy(a) =1, Di(a) =0.
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Lemma 3. Let L be a nilpotent subalgebra of the Lie algebra W(A) of rank n over R with the
center Z = Z(L) of rank k over R. Then [ := RZ N L is an abelian ideal of L withrkg I = k.

Proof. By Lemma 4 from [6], I is an ideal of the Lie algebra L. Let us show that I is abelian.
Let us choose an arbitrary basis Dy, ..., Dy of the center Z over R (i.e., a maximal by inclusion
linearly independent over R subset of Z). One can easy to see that Dy, ..., Dy is a basis of the
ideal I as well, so we can write for each element D € |

D =a1Dy+ -+ a Dy

for some ay,...,a; € R. Since D;eZ, j=1,...,k itholds

k k
[Dj, D] = [Dj, ) " a;Di] = Y Dj(a;)D; = 0 (1)
i=1 i=1

forj = 1,...,k. The derivations Dy, ..., D, are linearly independent over the field R, hence
we obtain from (1) that D]-(ai) = 0,1i,j = 1,...,k. Therefore we have for each element
D = b1D; + ... by Dy of the ideal I the next equalities

k

k k
i=1 j=1 ij=1

since D;(b;) = Dj(a;) = 0 as mentioned above. The latter means that I is an abelian ideal.
Besides, obviously rkg I = k. O

Lemma 4. Let L be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of L,

:= RZNL and F the field of constants for L in R. If for some D € L it holds [D, FI] C FI,
[D, FI| # 0, then there exist a basis Dy, . .., Dy, of the ideal FI of the Lie algebra FL over R and
a € R such that D(a) = 1, D;j(a) =0, i = 1,...,m. Besides, each element D € FI is of the
form D = fi(a)Dy + - - + fu(a)Dy for some polynomials f; € F[t|, where F; is the field of
constants for the subalgebra Ly = FI 4 FD in R.

Proof. By Lemma 3, the intersection I = RZ N L is an abelian ideal of the Lie algebra L and
therefore FI is an abelian ideal of the Lie algebra FL. Choose a basis Dy, ..., Dy, of FI over the
field R in such a way that Dy, ..., D;, € Z. Then FZ is the center of the Lie algebra FL. Now take
any basis T7, ..., Ts of the F-space FI (note that the Lie algebra FL is finite dimensional over

m

the field F by [6]). Every basis element T; can be written in the form T; = }_ r;;D;,i =1,...,s,
j=1

for some rij € R. Denote by B the subring B = F[ri]-,i =1,...,5,j =1,...,m] of the field R

generated by F and the elements r;;. Since the linear operator ad D is nilpotent on the F-space
FI the derivation D is locally nilpotent on the ring B. Indeed,

D, =D, Y ryDj) = Y. D(ry)D;
= =

and therefore .
(ad D)(T;) = Y D¥i(r;;)D; = 0
j=1
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for some natural k;, i = 1,...,s. Denoting k = maxj<;<; ki, we get Dk(ri]-) = 0 and therefore
D is locally nilpotent on B. One can easily show that there exists an element p € B (a preslice)
such that D(p) € KerD,D(p) # 0. Then denoting a := p/D(p), we have D(a) = 1 (such
an element 4 is called a slice for D). The ring B is contained in the localization B[c~!], where
¢ := D(p) and the derivation D is locally nilpotent on B[c~!]. Note that B[c~!] C F;, where
Fy is the field of constants for L1 = FI + FD in R. Besides, by Principle 11 from [4] it holds
Blc~!] = Bo[a], where By is the kernel of D in B[c!]. This completes the proof because B C
Blc~!] and every element D of FI is of the form D = byD; + ... by Dy, b; € B. O

Lemma 5. Let L be a nilpotent subalgebra of the Lie algebra W(A), Z = Z(L) the center of
L, F the field of constants of L in R and I = RZN L. Lettkgr Z = n — 2. Then the following
statements for the Lie algebra FL/FI hold

1) if FL/FI is abelian, then dimp FL/FI = 2;
2) if FL/FI is nonabelian, then there exist elements D,_1,D,, € FL,b € R such that

k

b
_Dn—1+FI; DH+FI>

FL/FI:F<Dn—1+FI, bDn—1+FI,..., Tl

withk > 1, D, (b) =1, D,_1(b) =0, D(b) =0 forall D € FI.

Proof. Let us choose a basis D, ..., D,_ of the center Z over the field R and any central ideal
FD,_1 + FI of the quotient algebra FL/FI. Denote the intersection R(I +KD,,_1) N L by I;.
Then it is easy to see that FI; is an ideal of the Lie algebra FL of rank n — 1 over R and the
Lie algebra FL/F]I; is of dimension 1 over F (by Lemma 5 from [6]). Let us choose an arbitrary
element D, € FL\ FI;. Then Dy, ..., D, is a basis of the Lie algebra FL over the field R.

Case 1. The quotient algebra FL/FI is abelian. Let us show that

FL/FI =F (D, 1+ FI, D, +FI).

Indeed, let us take any elements S; + FI, Sy 4 FI of FL/FI and write

Zrz i, So= Zle, ri, s;i€R, i,j=1,.
i=1

From the equalities [D;, S1] = [D;,S2] = 0,i = 1,...,n — 2 (recall that D; € Z(L),
i=1,...,n—2)it follows that
Di(i’]‘>:DZ‘(S]‘>:O,iIl...,Tl—Z,jIl,...,n. (2)

Since [FL, FI] C FI we have [D;, S1],[D;, S2] € FI fori = n — 1, n. Taking into account the
equalities (2) we derive that

Di(sj) = Di(rj) =0, i=n—1,n, j=n—-1,n

Therefore it holds s;, 7; € F fori = n — 1, n and the elements D,,_1 + FI, D,, + FI form a basis
for the abelian Lie algebra FL/FI over the field F.

Case 2. FL/FI is nonabelian. Then dimp FL/FI > 3 because the Lie algebra FL/FI is
nilpotent. Let us show that the ideal FI;/FI of the Lie algebra FL/FI is abelian (recall that
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I = R(I + KD, _1) NL). Since D,,_1 + FI lies in the center of the quotient algebra FL/FI we
have for any element ¥D,,_1 + FI of the ideal FI; /FI the following equality

[Dy_1+FI,D,_1 + FI] = FI.

Hence D, _1(r)D,_1 + FI = FI. The last equality implies D,,_1(r) = 0. But then for any
elements rD,_1 4 FI, sD,,_1 + FI of FI; /FI we get

[rD,_1+ FI,sD,,_1 + FI| = [rDy,_1,sD,,_1 + FI]
= (Dy_1(s)r —sDy_1(r))Dy,—1 + FI = FI.

The latter means that FI; /FI is an abelian ideal of FL/F1.

Further, the nilpotent linear operator ad D, acts on the linear space FI;/FI with
Ker(ad D,) = FD,_1 + FI. Indeed, let ad D,(rD,,—1 + FI) = FI. Then [D,,rD,_1] € FI
and therefore D, (r)D,_1 € FI. This relation implies D, (r) = 0 and taking into account the
equalities D;(r) = 0, i = 1,...,n — 1, we get that r € F and Ker(ad D,,) = FD,,_1 + FI. Tt
follows from this relation that the linear operator ad D, on FI/FI; has only one Jordan chain
and the Jordan basis can be chosen with the first element D,,_1 + FI. Since dim FI;/FI > 2
(recall that dimp FL/FI > 3) the chain is of length > 2. Let us take the second element of
the Jordan chain in the form bD,_1 + FI, b € R. Then ad D,,(bD,,_1 + FI) = D,,_1 + FI and
hence Dy, (b) = 1. The inclusion [D,_1,bD,_41] € FI implies the equality D,,_1(b) = 0, and
analogously one can obtain D;(b) =0, i=1,...,n—2.

If dimFI;/FI > 3 and ¢D,,_1 + FI is the third element of the Jordan chain of ad D,,, then
repeating the above considerations we get Dy, (c) = b. Then the elementa = g—? — ¢ € Rsatisfies
the relations D,,_1(a) = Dy(a) = 0and D;(a) =0, i = 1,...,n — 2, since D;(b) = D;(c) = 0.
Therefore, & = g—? —c€Fandc = g—f + a. Since aD,,_1 + FI € Ker(ad D,), we can take the
third element of the Jordan chain in the form g—len,l + FI. Repeating the consideration one
can build the needed basis of the Lie algebra FL/FI. O

Lemma 6. Let L be a nilpotent subalgebra of W(A) with the center Z = Z(L) of
rkgr Z = n — 2, F the field of constants for L in R and I = RZ N L. IfS, T are elements of L such
that [S, T| € I, the rank of the subalgebra L, spanned by I,S, T equals n and Cpy(FI) = FI,
then there exist elements a,b € R such that S(a) = 1, T(a) = 0,S(b) = 0, T(b) = 1 and
D(a) = D(b) = 0 for each D € 1. Besides, every element D € FI can be written in the form
D = f1(a,b)D1 + - - - + fu—2(a,b)D,_, with some polynomials f;(u,v) € F[u,v).

Proof. Let us choose a basis Dy, ..., D,_5 of Z over R. By the lemma conditions, one can easily
see that Dq,...,D,_»,S, T is a basis of L over R. The ideal FI of the Lie algebra FL is abelian
by Lemma 3 and ad S,ad T are commuting linear operators on the vector space FI (over F).
Take a basis 17, ..., Ts of FI over F (recall that dimp FL < co by Theorem 1 from [6]) and write

n—2
T;= ). riD; for some rij € R,i=1,...,5,j=1,...,n—2. Denote by

j=1

B = F[rl-]-,i =1,...5,j=1,...,n=2],

the subring of R generated by F and all the coefficients 7;;. Then B is invariant under the deriva-
tions S and T, these derivations are locally nilpotent on B and linearly independent over R (by



194 CHAPOVSKYI Y.Y., MASHCHENKO L.Z., PETRAVCHUK A.P.

the condition Cpy (FI) = FI of the lemma). By Lemma 4, there exists an element a € B[cfl]
such that
S(ﬂ):l, Di(a):O, i:l/___’n_zl

(here ¢ = S(p) for a preslice p for S in B). Since ¢ € KerS and [S,T| = 0 one can assume
without loss of generality that T(c) € KerT. But then T is a locally nilpotent derivation on
the subring B[c~!]. Repeating these considerations we can find an element b € Bc~!]|[d ]
with T(b) = 1 (here d is a preslice for the derivation T in B[c~!]). Denote B; = B[c™!,d71],
the subring of R generated by B,c~!,d~!. Then using standard facts about locally nilpotent
derivations (see, for example Principle 11 in [4]) one can show that By = Byla, b], where
By = Ker S NKer T. Therefore every element /1 of By can be written in the form h = f(a,b)
with f(u,v) € F[u,v]. Note that

F=KerTNKerS ﬂf’;lz Ker D;.

It follows from this representation of elements of B that every element of the ideal FI can be
written in the form

D = fi(a,b)D1 + - -+ fy—2(a,b)Dy_»
with some polynomials f;(u,v) € F[u,v]. O

2 THE MAIN RESULTS

Theorem 1. Let L be a nilpotent subalgebra of rank n > 3 over R from the Lie algebra W(A),
Z = Z(L) the center of L withrkg Z > n — 2, F the field of constants of L in R. Then one of the
following statements holds:

1) dimp FL = n and FL is either abelian or is a direct sum of a nonabelian nilpotent Lie
algebra of dimension 3 and an abelian Lie algebra;

2) dimp FL > n + 1 and FL lies in one of the locally nilpotent subalgebras L1, L, of W(A) of
rank n over R, which have a basis Di,...,D, over R satisfying the relations
[D;, D]-] =0, i,j=1,...,n,and are one of the form

i o0 i o0
Ly=F {b.—,Dl} r~~~/{b-_'Dn1} , Dy,
L i=0 L i=0

for someb € R such that D;(b) =0,i=1,...,n—1,and D,(b) =1,

/A a'bl * bl ®
L2:F {"'l Dl} /---/{ N DVLZ} I{-_lDl’l—l} /Di’l
L i,j=0 Ly ij=0 (1 i=0

for some a,b € R such that D,_1(a) = 1, Dy(a) = 0, Dy_1(b) = 0, Dy(b) = 1,
Di(ﬂl) :Di(b) :0, i:1,...,n—2.

Proof. By Lemma 3, I = RZ N L is an abelian ideal of L and therefore FI is an abelian ideal of
the Lie algebra FL (here the Lie algebra FL is considered over the field F). Let dimp FL = n.
It is obvious that dimr M = rkg M for any subalgebra M of the Lie algebra FL, in particular
dimp FZ > n — 2 because of conditions of the theorem. We may restrict ourselves only on



NILPOTENT LIE ALGEBRAS OF DERIVATIONS WITH THE CENTER OF SMALL CORANK 195

nonabelian algebras and assume dimp FZ = n — 2 (in case dimp FZ > n — 1 the Lie algebra
FL is abelian). Since FL is nilpotent of nilpotency class 2, one can easily show that FL is a
direct sum of a nonabelian Lie algebra of dimension 3 and an abelian algebra and satisfies the
condition 1) of the theorem. So, we may assume further that dimp FL > n + 1.

Case 1. tkr Z = n — 1. Then FI is of codimension 1 in FL by Lemma 5 from [6]. Therefore
dimp FI > n because of dimp FL > n 41 and dimr FL/FI = 1. We obtain the strong inclusion
FZ g FI because of dimp FZ = n — 1. Take a basis Dq,...,D,_1 of Z over R and an element
D, € FL\ FI. Then Dy, ..., Dy is a basis for FL over R and [Dy, FI| # 0. Using Lemma 4 one
can easily show that FL is contained in a subalgebra of type L; from W(A).

Case2.tkr Z =n—2and dimp FI = n — 2. Then FI = FZ, dimp FL/FI > 3 and therefore
by Lemma 5 the quotient algebra FL/FI is of the form

; k
bl
PL/FI:P<{Z_—'DH1+FI} ,Dn+FI>
: i=0

for some k > 1,b € R such that D,(b) =1, D,,_1(b) = 0and D(b) = 0 foreach D € FI.

The F-space
A b -
= {{ied o fiea). )

is an abelian subalgebra of W(A) and [FL, J] C ]J. Therefore the sum

]+F<{%Dn1} ,Dn>
: i=0

is a subalgebra of the Lie algebra W(A). If [D,,, D,,_1] # 0, then taking into account the relation
[Dy, Dy—1] € FI one can write

[Dn/ Dn—l] =oDy+ - +ay2Dp
for some a; € F (recall that FI = FZ). Consider the element of W(A) of the form
Dy_1 =Dy_1—a1bDy — -+ — ay_2bDy_».

Since [D,, 57,,1] =0, 1'5”,1(17) = 0, one can replace the element D,,_; with the element D, 1
and assume without loss of generality that [D,,, D,,_1] = 0. As a result we get the Lie algebra
of the type L; from the statement of the theorem.

Case 3.rkg Z = n —2 and dimp FI > n — 2. First, suppose Cr1(FI) = FI. Then by Lemma 6
there are a basis Dy, ..., D, _» of the ideal FI over R and elements a,b € R such that

D,_1(a) =1, Dy(a) =0, Dy_1(b) =0, Dy(b) =1

and
Di(ﬂl) = Di(b) :O, i= 1,...,n—2,

and each element D € FI can be written in the form

D= fl(ﬂl, b)Dl + - +fn_2(ﬂl, b)Dn_z
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for some polynomials f;(u,v) € Flu,v].
Consider the F-subspace

J = Fla,b]Dy + -+ - + Fla,b]Dy,_»

of the Lie algebra W(A). It is easy to see that | is an abelian subalgebra of W(A) and [FL, J] C J.
If [Dy, Dy,—1] = 0, then it is obvious that the subalgebra FL + ] is of type L of the theorem and
FL C Ly. Let [Dy, Dyy_1] # 0. Since [Dy, Dyy_1] € FI, it follows

[Dy, Dy—1] = h1(a,b)D1 + -+ + hy—2Dn—
for some polynomials %;(u,v) € F[u,v]. Then the subalgebra | has such an element
T = ul(a, b)Dl +... un_z(ll, b)Dn_z

that Dy, (u;(a, b)) = hi(a,b),i =1,...,n— 2 (recall that D,(a) = 0, D,(b) = 1), and hence the
element D,,_1 = D,,_1 — T satisfies the equality [D,, T| = 0. Replacing D,,_1 with D,,_1 we get
the needed basis of the Lie algebra FL + | and see that FL can be embedded into the Lie L, of
W(A). So in case of Cpp (FI) = FI the Lie algebra FL can be isomorphically embedded into the
Lie algebra of type L, from the statement of the theorem.

Further, suppose Cpp(FI) # FI. Since Cpr(FI) 2 FI one can easily show that
D,—1 € Cpr(FI)\ FI (note that FL/FI has the unique minimal ideal FD,,_1 + FI). Then
[Dy,—1, FI] = 0, and therefore [D,, FI| # 0. Therefore by Lemma 4 there is an element ¢ € R

such that
Du(c) =1, Dy_1(c) =0, Dij(c) =0,i=1,...,n—2.

Moreover, each element of F1 is of the form g1 (c)Dy + - - - + gn—2(¢) Dy, for some polynomials
gi(u) € Flu]. By Lemma 5, the quotient algebra FL/FI is of the form

bi k
FL/FI=F {i—'Dnl 4 FI}

for some b € R,k > 1such that D,(b) =1, D,_1(b) = 0. But then
D, 1(b—c¢c)=0, Dy(b—c)=0, Di(b—c) =0,

,Dy+FI
i=0

and hence b — ¢ = « for some & € F. Without loss of generality we can assume b = c. The
locally nilpotent subalgebra

[ee]

a'b/ a'b/ * b ®
Li=F {ﬁDl} ,---/{ﬁDnz} ,{.—an—l} , Dy
1.]. i,j=0 1] i,j=0 L i=0

of the Lie algebra W(A) contains FL and satisfies the conditions for the Lie algebra of type L,
from the statement of the theorem, possibly except the condition [Dy,, D,_1] = 0. If
[Dy, D,,—1] # 0, then from the inclusion [D,,, D,,_1] € FI it follows that

[Dn, Dy—1] = f1(b)D1+ -+ + fu—2(b)Dn—2
for some polynomials f;(u) € F[u].
One can easily show that there is such an element

D =hy(b)D1+ -+ hy_2(b)Dy— € Ly,

that [Dy, D] = [Dy, D;,—1] (one can take antiderivations #; for polynomials f;, i = 1,...,n — 2).
Replacing D,,_1 with D,,_1 — D we get the needed basis over R of the Lie algebra L;. O
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Remark 1. Any Lie algebra of dimension n over F can be realized as a Lie algebra of rank n
over R by Theorem 2 from [5]. So the Lie algebra of type 1) from Theorem 1 can be chosen in
any way possible.

As a corollary we get the next statement about embedding of Lie algebras of derivations.

Theorem 2. Let L be a nilpotent subalgebra of rank n over R of the Lie algebraW(A), Z = Z(L)
be the center of L and F be the field of constants of L in R. If tkr Z > n — 2, then the Lie
algebra FL can be isomorphically embedded (as an abstract Lie algebra) into the triangular Lie
algebra u, (F).

Proof. First, suppose dimp FL = n. If FL is abelian, then FL is isomorphically embeddable into
) d

a—xl, ooy m
n over F. So one can assume that FL is nonabelian. Then by Theorem 1, FL = M; © M, where
M; is an abelian Lie algebra of dimension n — 3 over F and M is nilpotent nonabelian with
dimp M, = 3. The subalgebra H, = F <3871, % + x3 %, %> of the Lie algebra u,(F) is obvi-

ously isomorphic to My. The abelian subalgebra H; = F <aaT4' ceey %

the Lie algebra M;. So FL ~ H; & H; is isomorphic to a subalgebra of i, (F). Note that H; & Hp
is of rank n over the field K(x1, ..., x,) of rational functions in n variables.

Next, let dimp FL > n. By Theorem 1, the Lie algebra FL lies in one of the subalgebras
of types L or L. Therefore it is sufficient to show that the subalgebras L, L, of W(A) from
Theorem 1 can be isomorphically embedded into the Lie algebra u, (F). In case L1, we define a

the Lie algebra u, (F) because the subalgebra F < > of u, (F) is abelian of dimension

> ,n > 4,is isomorphic to

mapping ¢ on the basis D1, ..., Dy, {IZ’.—:DZ-}?O : of L, over R by the rule ¢(D;) = %,i =1,...,n,
. ’ 1= !

qo(%Di) = %%,i =1,...,n—1, and then extend it on L; by linearity. One can easily see that

the mapping ¢ is an isomorphic embedding of the Lie algebra L; into u,(F). Analogously, on

L, we define a mapping ¢ : Ly — u,(F) by the rule

d a'bl Xy X0 0
Dj)==—, i=1,... — D) =" k=1,...,n—2
$D) =g =l WGEDY = Fpm e et
b xi, 0
—Dypq) ==t >1,j>1
A e T
and further by linearity. Then ¢ is an isomorphic embedding of the Lie algebra L, into the Lie
algebra u, (F). O
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Hexait K — moae xapakTepuctuky HyAb, A — obaacTb miricHocTi Haa K 3 moaeM vacTtok R =
Frac(A), i Derg A — aarebpa Ai K-audpepenuitosans A. Hexait W(A) := RDergA i L — HiabIO-
TeHTHa mipaArebpa panry n Haa R Ai aarebpu W(A). Mu nokasyemo, 1o sikiuo uentp Z = Z(L)
Mae paHr > n — 2Haa RiF = F(L) — noae xoHcTaHT aarebpu Ai L B R, To aarebpa Ai FL micturbest
B AOKAABHO HiABIIOTEHTHIl MiaaArebpi paHry n Haa R 3 mpupoaHiM 6asmcom Hap moaem R. Takox
AOBOAMTBCST, O Ai aarebpa FL mMoxe 6yTi i3oMopdHO BKAaaeHa (K abcTpakTHa Ai aarebpa) B
TpUKyTHY aArebpy Ai u,(F), mo 6yaa AOCAiAXeHa paHillle {HIIVIMY aBTOpaMIL.

Kntouosi cnosa i ppasu: AvdpepeHIIiFOBaHHS, BEKTOPHE TIOAe, aATebpa Ai, HiABIIOTeHTHa aATebpa,
obaacThb 1iAicHOCTI.
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LOCAL NEARRINGS ON FINITE NON-ABELIAN 2-GENERATED p-GROUPS

It is proved that for p > 2 every finite non-metacyclic 2-generated p-group of nilpotency class
2 with cyclic commutator subgroup is the additive group of a local nearring and in particular of
a nearring with identity. It is also shown that the subgroup of all non-invertible elements of this
nearring is of index p in its additive group.

Key words and phrases: finite p-group, local nearring.
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INTRODUCTION

Nearrings are generalizations of associative rings in the sense that with respect to the ad-
dition they need not be commutative and only one distributive law is assumed. In this paper
the concept “nearring” means a left distributive nearring with a multiplicative identity. The
reader is referred to the books by Meldrum [6] or Pilz [8] for terminology, definitions and basic
facts concerning nearrings.

Following [3], the nearring with identity will be called local, if the set of all non-invertible
elements forms a subgroup of its additive group. The main results concerning local nearrings
are summarized in [11].

In [4] it is shown that every non-cyclic abelian p-group of order p" > 4 is the additive
group of a zero-symmetric local nearring which is not a ring. As it was noted in [5], neither a
generalized quaternion group nor a non-abelian group of order 8 can be the additive group of
a local nearring.

Therefore the structure of the non-abelian finite p-groups which are the additive groups of
local nearrings is an open problem [2].

It was proved that every non-metacyclic Miller-Moreno p-group of order p" > 8 is the
additive group of a local nearring and the multiplicative group of such a nearring is the group
of order p"~!(p — 1) [9]. In this paper finite non-abelian non-metacyclic 2-generated p-groups
(p > 2) of nilpotency class 2 with cyclic commutator subgroup are studied.
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1 PRELIMINARIES

Let G be a finite non-abelian non-metacyclic 2-generated p-group (p > 2) of nilpotency
class 2 with cyclic commutator subgroup.

Denote by G’ and Z(G) the commutator subgroup and the centre of G, respectively.

Let a and b be generators for G such that G/G' = (aG') x (bG’), aG’ has order p™ and
bG' has order p". Then ¢ = [a,b] generates G', ¢ has order pd with1l < d < n < m, and
c € Z(G) = {(a?",b"",c).

Suppose that (a) NG’ = (b) NG’ = 1. Then

m n d
G={a, b, cla? =b" =c* =1, a" =ac, c”:cb:c>

and each element of G can be uniquely written in the form a*1b™2¢*, x; € Cym, x2 € Cpn,
x3 € Cpu. Therefore the group G with p > 2 will be denoted by G(p™, p", p).

Lemma 1. For any natural numbers k and | the equality [a*, b'] = c* holds.

Proof. Since b~lab = ac, it follows that b~'ab! = ac'. Therefore, b~'akb! = (ac')* = a*c¥, thus
a kp=lgkp! = (K. O

Corollary 1. Let the group G(p", p", p) be additively written. Then for any natural numbers
k and [ the equalities —ak — bl + ak + bl = c(kl) and bl + ak = —c(kl) 4 ak + bl hold.

Lemma 2. For any natural numbers k, | and r the equality

(kb = aFplreHG) (1)
holds.
Proof. For r = 1, there is nothing to prove. By induction on r, we derive

(@Dl) = abrplreHG),

Replacing r by r + 1 in equality (1), we have

(@)D = ghrplrakple —kl(3) — k(r+1)pl(r+1) o=kl ,—KI(})
— D) plr+1) (=Kl (r+(3)) — k1)l (1) KIS
Thus, equality (1) holds for an arbitrary r. O

Corollary 2. Let the group G(p", p", p) be additively written. Then for any natural numbers
k, | and r the equality (ak + bl)r = akr 4 blr — ckl(}) holds.

Obviously, the exponent of G(p™, p", p?) is equal to p" for 1 < d < n < m.

Lemma 3. If x is an element of order p" of G( P, ) then there exist generators a, b, c of

this group such thata = x and a?" = bP" = ' =1a =ac,c" =ct =c.
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Proof. Indeed, for each x € G(p™, p",p?) there exist positive integers «, f and 7 such that
x = a*bPc7. Thus, we have

" = (a"bPeT)P" = (atDP)P P = " BB " (%)

_ apmlxbpmlgcpm(,yialg(l’ 2*1>) _ 1

by Lemma 2. Since |a| = p™ and 1 < d < n < m, where m > 1and p > 2, it follows that the
exponent of G(p™, p", p?) equals p™.
If

m—1_
xpmfl _ apmfllxbpmflﬁcpmfl(,yialg(P > 1)) # 1’

then either («,p) =1, 0r (B,p) = 1for m = n, or (,p) = 1 for m = n = d. So, without loss of
generality, we can assume that (¢, p) = 1. Then
(x,b) = (a*bPc7,b) = (a®,b) = (a,b) = G
and
b~ lxb = b= (a*bPc)b = (ac)*bPc? = (a*bPc)c® = xc®.
Furthermore, substituting c* instead of c for generators x and b of G(p™, p", p), we have simi-
lar expressions as for generators a and b, thus replacing the element a by x. O

The following assertion concerning the automorphisms group of G(p™, p", p?) is a direct
consequence of statement (B1) [7].

Lemma 4. Let G = G(p™, p", p*) and let Aut(G) be the automorphism group of G. Then the
following statements hold:

1) if m = n, then |Aut(G)| = p*4"=5(p?> —1)(p — 1);
2) ifm > n, then |Aut(G)| = p?#+3+m=2(p — 1)2.

An information about a group of automorphisms of G(p™, p™, p?) is given by the following
lemma.

Lemma 5. Let G = G(p™,p™, p?) and let there exist a subgroup A of Aut(G) of order
p?m+d=2(p2 1), where m, d > 1 with odd p. If an element g € G of order p™ and A contains
Sylow normal p-subgroup, then G # ¢4 U ®(G).

Proof. Assume that G = ¢4 U®(G). Then G = ({a) x {(c)) x (b) with generators a, b of order
p" and a central commutator ¢ = [a, b] of order p* by the definition. Hence

D(G) = ((aF) x (c)) = (b),
and thus all elements of order p™ are contained in gA. Furthermore, a = g" for some u € A,
hence ¢ = a4,i.e. G = a2 UP(G). Since |G| = p?"*+4 and ®(G) = p?" 92, it follows that
] = |G| = [@(G)] = p*" 2 (p? ~ 1),
and so the centralizer C4(a) of a in A equals 1. In particular, (a(c?))? = (a(c?))B = a(cP) for

the normal subgroup B = C4(a(c)) of order p?~! in A.
Considering the factor-group G = G/(c?) and A = A/B. Taking into consideration, that

74| = p*"1(p? — 1), we have G = a4 U P(G). Since |P(G)| = |Z(G)| and xy = yx for all
x € ®(G), y € G, we have ®(G) = Z(G). Therefore, G is a Miller-Moreno group. Since
G = a2 U Z(G), the latter equality is impossible by [9, Lemma 7]. This contradiction completes

the proof. O
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2 NEARRINGS WITH IDENTITY ON GROUP G(p™, p", p?)

First recall some basic concepts of the theory of nearrings.

Definition 1. A set R with two binary operations “+” and “-” is called a (left) nearring if the
following statements hold

(1) (R,+) = R is a (not necessarily abelian) group with neutral element 0;
(2) (R, ) is a semigroup;
(3) x(y+z) = xy+xz forallx,y,z € R.

If R is a nearring, then the group R™ is called the additive group of R. If in addition 0 - x = 0,
then the nearring R is called zero-symmetric and if the semigroup (R, -) is a monoid, i.e. it has
an identity element i, then R is a nearring with identity i. In the latter case the group R* of all
invertible elements of the monoid (R, -) is called the multiplicative group of R.

The following assertion is well-known.

Lemma 6. Let R be a finite nearring with identity i. Then the exponent of R™ is equal to the
additive order of i which coincides with additive order of every element of R*.

As a direct consequence of Lemmas 3 and 6 we have the following corollary.

Corollary 3. Let R be a nearring with identity i whose group R™ is isomorphic to a group
G(p™,p", p?). Then R* = (a) + (b) + (c) with elements a, b and c, satisfying relations ap™ =
bp" = cpd =0, -bt+ta+b=a+cand —a+c+a=—-b+c+b=cwithl <d<n<m,
wherea = i.

The following statement [10, Lemma 1] establishes a connection between the automorphism
group of the additive group of the nearring with identity and its multiplicative group.

Lemma 7. Let R be a nearring with identity i. Then there exists a subgroup A of the

automorphism group Aut(R™) which is isomorphic to R* and satisfying the condition
iA=1{i"|a € A} = R".

The subgroup A defined in Lemma 7 is called the automorphism group of the group R™
associated with the group R*.

The following statement [11, Theorem 54] concerns the structure of L which is the subgroup
of all non-invertible elements of finite local nearring R. Let ®(G) denote the Frattini subgroup
of G.

Theorem 1. Let R be a local nearring of order p" and let G(R) = R™ x R* be a group associated
with R. Then H = R™ x (i + L) is a Sylow normal p-subgroup of G(R) and L = Rt N ®(H).
In particular, if L is non-abelian, then its center is non-cyclic.

Considering ®(R™) < ®(H), we have the following corollary.

Corollary 4. ®(RT) < L =®(H)NR*.
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Let R be a nearring with identity i whose group R is isomorphic to a group G(p™, p", p?).
It follows from Corollary 3 that R™ = (a) + (b) + (c¢) with elements 4, b and ¢, satisfying re-
lations ap™ = bp" = cp? =0, ~b+a+b=a+cand —a+c+a = —b+c+b = cwith
1 <d < n < m, where a = i and each element x € R is uniquely written in the form
x = axy + bxy + cx3 with coefficients 0 < x; <p™,0 < xp <p"and 0 < x3 < p.

Furthermore, we can assume xa = ax = x for each x € R. Then there exist uniquely
defined mappings a: R = Zyn, f: R = Zpr and 7v: R — Z,,4 such that

xb = an(x) + bB(x) + cy(x). (2)
Lemma 8. If x = ax; + bxy + cx3 and y = ay; + by, + cys are arbitrary elements of R, then
xy = a(xay1 +yae(x)) +b(x2y1 + y2p(x))
+ C< — X122 <y21> - <y22> a(x)B(x) — xay1y20(x)
+ x3y1 + y27(x) + x1ysp(x) — xzysfx(x))r
where mappings«: R — Zyn, p: R — Zpn and y: R — Z,,q satisfy the conditions

(0) «(0) =0 (mod p™), B(0) = 0 (mod p") and 7(0) = 0 (mod p*) if and only if the near-
ring R is zero-symmetric;

(1) a(xy) = x1a(y) + a(x)B(y) (mod p™ );
(2) B(xy) = xa(y) + B(x)B(y) (mod p");
3) 7(xy) = —010(*Y)) — a(x)B(x) (PY) — xae(x)(y)B(y)
+x30(y) + 7(x)B(y) + 118(x)7(y) — 120(x)7(y) (mod p? ).
Proof. If R is a zero-symmetric nearring, then
0=0-b=aw(0) +bB(0) + cv(0),

thus «(0) = 0 (mod p™), B(0) = 0 (mod p") and ¥(0) = 0 (mod p?). On the other hand, if
the last congruences hold, then 0-b = a-0+b-0+c-0 = 0. Since a is the multiplicative
identity in R, we have 0-a = a - 0 = 0. Moreover, from the equality c = —a — b+ a + b and the
left distributive law it follows that0-c = —0-a—0-b+0-a+0-b = 0, hence

0-x=0-(axy +bxy+cx3) = (0-a)x;+ (0-b)x, + (0-c)x3 = 0.

This proves statement (0).
Next, using (2) and Corollary 1, we obtain

x¢c = —xa— xb+xa+xb=—cx3—bxy —ax; —cy(x) — bB(x) — an(x)
+ axy + bxy + cxz + an(x) + bB(x) + cy(x)
= —bxy —ax; — bB(x) —an(x) +axy + bxy +an(x) + bB(x)
= —bxy + cx1B(x) — bB(x) —ax; —a(a(x) — x1) + bxpy + an(x) + bB(x)
= cx1B8(x) — b(xp + B(x)) — an(x) + bxy + an(x) + bB(x)
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= cx1B(x) — b(xp + B(x)) — aa(x) — cxpu(x) + an(x) + bxy + bB(x)
= c(x1p(x) — xaa(x)) — b(xa + B(x)) + bx2 + b (x) = c(x15(x) — x2a(x)).

Therefore

xy = (axy + bxy + cxz)yr + (aw(x) + bB(x) + cy(x))y2 + (cx1B(x) — xa0(x))ys.

Corollary 2 implies that
(ax1 + bx)y1 = ax1y1 + bxoy; — cx1x n ,

(@0(x) + bB(x) )y = nyan(x) + byaB(x) — ¢ )a()p(x)
and
bxoy1 + ayru(x) = ayra(x) + bxoyy — cxoy1y20(x).
By the left distributive law, we have

xy = a(x1y1 + yau(x)) + b(xoy1 + v28(x)) + C( — X0 <y21>
_ <y22> w(x)B(x) — Xay1ya0(x) 4 x3y1 + Y2y (x) + x1y38(x) — x2y3a(x))_

Finally, the associativity of multiplication for all x, y € R implies that

D (xy)b = x(yb).
Thus

2) (xy)b = ana(xy) + bp(xy) + cy(xy)

and yb = aa(y) + bp(y) + cy(y) by formula (2). Substituting the last expression in the right
part of equality 1), we get

3) x(yb) = a(xia(y) +a(x)B(y)) + b(x2a(y) + B(x)B(y))
+o(—0120(*Y)) — a(2)B(x) (PY) — xoa(x)a(y)B(y)
+ x30(y) + (%) B(y) + x18(x)y(y) — 20 (x)y(y)).

Comparing the coefficients a, b and c in 2) and 3) by equality 1), we derive statements (1)—(3)
of the lemma. 0

3 LOCAL NEARRINGS ON GROUP G(p™, p", p*)

Let R be a local nearring with identity i, whose group R™ is isomorphic to the group
G(p™,p",p?). Then R* = (a) + (b) + (c) with elements a, b and ¢, satisfying relations
ap™ = bp" = cpd =0, -btat+b=a+cand—a+c+a=-b+c+b=cwithl <d<n<m,
where a = i and each element x € R is uniquely written in the form x = ax; + bxy + cx3 with
coefficients 0 < x; <p™, 0 < x, <p"and 0 < x3 < p.

We show that the set L of all non-invertible elements of R is a subgroup of index p in R™.
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Theorem 2. The following statements hold

1) L={(a-p)+(b)+ (c) and, in particular, the subgroup L is of index p in R™ and
[R¥| = pmtrtd=i(p —1);

2) x = ax1 + bxy + cx3 is an invertible element if and only if x; Z 0 (mod p).

Proof. Assume that [RT : L| = p!, t > 1. Since R = R* U L, it follows that

|R*| _ |R| . |L| _ pm+n+d _ pm+n+d—t — pm+n+d—t(pt . 1).

According to Lemma 7, the group R* is isomorphic to the subgroup A of the automorphism
group of R™ and so |R*| divides |Aut(R")|. According to statement 1) of Lemma 4 it is possible
onlyif t =2 and m = n.

Assume that |[RT : L| = p?and m = n. If d = 1, then it is impossible because of [9, Theorem
2]. Now letd > 1. Since |[R* : ®(R")| = p? and Corollary 4, we have L = ®(R"). Hence
by Lemma 7, we get RT = ad U ®(R™"), which is impossible by Lemma 5. This contradiction
shows that our assumption is false and so |[R* : L| = p.

It is clear that R/L is a nearfield and so the factor-group R /L" is an elementary abelian
p-group. Thus fora ¢ L wehaveap € Land so L = (a- p) + (b) + (c). Therefore R* = R\ L
and hence

R* = {ax;+bxy+cx3|x1 0 (mod p)}.

O

Applying statement (1) of Theorem 2 to Lemma 8, we get the following formula for multi-
plying elements x = ax; + bxy + cx3 and y = ay; + by, + cy3 in the local nearring R.

Corollary 5. If x,y € Rwith1 < d <n < m and xb = an(x) + bp(x) + c¢y(x), then

xy = a(x1y1 +y20(x)) + b(xay1 +y28(x)) + c< — X1%2 <y21>
_ <y22> a(x)B(x) — xay1y20(x) + X351 + Y2y (%) + x1y38(x) — Xzygrx(x)),

where mappings a: R — Zyn, p: R = Zpn and v: R — Z,: and the following statements
hold

(0) a(0) = 0 (mod p™), B(0) = 0 (mod p") and ¥(0) =0 (mod p) if and only if the

nearring R is zero-symmetric;

(1) a(x) =0 (mod p);

() if B(x) =0 (mod p), then x; = 0 (mod p);

3 a(xy) = xa(y) + a(x)B(y) (mod p™);

@ B(xy) = xoa(y) + B(x)B(y) (mod p" );
) -

(6) v(xy) = —01x0:(*"Y) — a(x)B(x) (*Y) = xa(2)a(y)By) +x30(y) +7(x)B(y)
+x18(x)7(y) — x2a(x)7(y) (mod p* ).
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Proof. Indeed, statements (0), (3)—(5) repeat statements (0)-(4) of Lemma 8. Since L = (a - p) +
(b) + (c) by Theorem 2 and L is an (R, R)-subgroup in R by statement 2) [1, Lemma 3.2], it
follows that xb € L and hence a(x) = 0 (mod p), proving statement (1). Taking y = ¢, we
have xc = c¢(x18(x) — xpa(x)). Thus, if (x) = 0 (mod p), then xc = 0 (mod p), and so x € L.
Thus x; = 0 (mod p) by Theorem 2, proving statement (2). O

The following theorem shows the conditions given in Theorem 2 are sufficient for existing
of finite local nearrings on G(p™, p", p?). Moreover, each group G(p™, p", p*) is the additive
group of a nearring with identity.

Theorem 3. For each prime p and positive integers m, n and d with1 < d < n < m there exists
a local nearring R whose additive group R* is isomorphic to the group G(p™, p", p*).

Proof. Let R be an additively written group G(p™, p", p?) with generators a, b and c satisfy-
ing the relations |a| = p™, |b| = p", |c| = p%, b"'ab = ac and a~'ca = b~'ch = c. Then
G = (a) + (b) + (c) and each element x € R is uniquely written in the form x = ax; + bxy + cx3
with coefficients 0 < x; <p™,0 < x; <p"and 0 < x3 < pd. In order to define a multiplication
“.” on R in such a manner that (R, +, -) is a local nearring.

Assume that 1 < d < n < m and let the mappings from Corollary 5 be defined by the
congruences (x) =0 (mod p™), B(x) = x; (mod p") and y(x) = 0 (mod p?) for each
x € G. Then

x -y = axiyy + b(xoy1 + x1y2) + C< — X1X2 <y21> + X3y1 + x%yg).

It suffices to show that the mappingsa : G = Zyn, p: G = Zpr and vy : G = Z,a with
respect to the multiplication “-” satisfy statements (0)—(5) of Corollary 5.

Indeed, «(0) = 0 (mod p™), B(0) = 0 (mod p") and (0) =0 (mod p*) by the de-
finition. Since 0-y =a-0+4+b-0+4c¢-0=0 for each y € G, this implies that a multiplica-
tion “-” is zero-symmetric and so, proving statement (0) of Corollary 5. Indeed, we have
a(x) =0 (mod p) and x; = 0 (mod p), if B(x) =0 (mod p), so that statements (1) and (2) of
Corollary 5 hold. Clearly, we derive statements (3)—(5) of Corollary 5. O

As corollary we have the following assertion.

Corollary 6. FEach group G(p™, p", p) is the additive group of a nearring with identity.
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In this article, we study properties of a class of functional spaces, so-called pn-spaces, which
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INTRODUCTION

This paper is concerned with some features of a class of functional spaces6 which are emer-
ged from investigation of nonlinear differential equations. Studying boundary value problems
(BVPs) require to examine and understand the functional spaces6 which are directly related
with the considered problem. In other words, it is required to work on the domain of the
operator generated by the addressed boundary value problem. We specify that it is better
to study each BVPs on its own space. Furthermore, detailed analysis of these spaces and
examining their topology, structure etc. cause to gain better results of the possed problem (for
example, regularity of the solution).

The spaces generated by boundary value problems for the linear differential equations are
generally linear spaces such as Sobolev spaces and different generalizations of them. Apart
from boundary value problems for linear differential equations, the spaces generated by non-
linear differential equations (essentially the domain of the corresponding operator) are subsets
of linear spaces and do not have linear structure. The class of spaces of this type were intro-
duced and investigated by Soltanov in the abstract case (see, e.g. [21-26]), and also in the case
of functions spaces (see, e.g. [23-30] and references therein, where various subsets of linear
spaces of this type were searched). In the mentioned articles, topology of these spaces were in-
vestigated and shown that under what circumstances they are metric or pseudo-metric spaces.
Starting from these features of the introduced spaces, they were defined as the class of pseudo-
normed spaces or pn-spaces and the class of quasi-pseudo normed spaces or qn-spaces.

In this work, we focus on the characteristics of certain class of functional pn-spaces. Essen-
tially, we deal with the following class of functional pn-spaces.

YAK 517.98
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Let O C R" (n > 1) be bounded domain with sufficiently smooth boundary. In this work
the class of functions u : (3 — R of the following type will be investigated

Smap () = {u e LN(Q) s [ulg'F () < oo},

where

B
Dku‘ dx |, D= (Dy,Dy,...,Dy),

sl y= T | [l
(@)

0<|k|<m

- n
D, = %, Dk = D’l(lDlz(z, e, D],i", i=1,n, |k| = ¥ k;. Here, we only address the cases m =1, 2.
’ i=1
It is important to note that the following subset of L¥ (Q)), p > 2,

M := ueLl(Q):i

/|u|P*2|Diu|2dx < 00,1 | 90 = 0
i=1 o)

was arose in the article of Dubinskii earlier ([7, 8, 11]) while studying the following nonlinear

problem

Jdu & p—2
55— LD (JulP > D) =h(x,t), (t,x) € (0,T) xQ,
i=1

u(0,%) =uo(x), u|rxn=0.
Here, compact inclusion of subset M to the space L? ()) and also necessary compactness the-
orems for analysis of the parabolic problem were proved. Later on, different new subsets of
L! (Q) appeared in the articles of Soltanov (see, e.g. [23-25]) while studying the mixed prob-
lem for the following nonlinear equation, which is type of the Prandtl-von-Mises equation

ou o%u
2

-7 p-Z =
5 55

For example, one of the emerged class in the case of (3 = (2,b) C R can be expressed in the
form

=h(t,x),p>0 (t,x)e(0,T)xQ. (1)

uecLll(Q): / |ul|® Dzu’ﬁdx <oo,u(a)=u(b)=0,,

Q
and also as type of subsets in the form S, , 5 ((2). Here, we specify that different problems to
the equation (1) were studied under various additional conditions as well (see, e.g. [12,14,18,
35-37]).

Accordingly, in the papers [24, 25] etc. different classes of sets of this type were examined
and it was shown that these sets are nonlinear topological spaces, moreover they are either
metric or pseudo-metric spaces. Many other properties of the introduced spaces were investi-
gated as well in these works. For instance, relations of these spaces amongst themselves and
with well known functional spaces (e.g. Lebesgue or Sobolev spaces etc).

Consequently, in the mentioned works pn-spaces and qn-spaces were defined with taking
into account the principal attributes of the presented spaces.

These spaces may arise from the research of the existence of smooth solution of the follow-
ing differential equation

—Au+u+ufu=h(x), xe QCR", n>2,
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Ju
—_ H — ! / >
<817+|u| u) ‘an P (x'), v €y, pu>0,

which was studied by Soltanov [32]. We emphasize that equation of this form was considered
by many authors, who tried to answer various questions of different problems for this equa-
tion, (see, e.g. Berestycki ve Nirenberg [3], Brezis [4], etc.). In [15], Pohozaev employed another
approach for this problem that led to gaining distinct results other than [32].

This kind of nonlinear spaces are generated by the differential equations, which ensue from
the mathematical models of some processes in flood mechanics. For example, we may present
the nonlinear equation of type

?)—L; —|uP 2 Au=h(x,t), p>2,

where this equation were studied [24,31] and [33]. Similar equations were handled by Oleynik
[14], Walter [36] only using the approximation way and Tsutsumi, Ishiwata [35] focused on
understanding the behavior of the solution.

In recent years, there have been an increasing interest in the study of equations with vari-
able exponents of nonlinearities. The interest in the study of differential equations that in-
volves variable exponents is motivated by their applications to the theory of elasticity and
hydrodynamics, in particular, the models of electrorheological fluids [17] in which a substan-
tial part of viscous energy, the thermistor problem [38], image processing [5] and modeling of
non-Newtonian fluids with thermo-convective effects [2] etc.

In the most of these papers, that concern with equations, which have non standard growth,
authors studied the problems, which involve p(.)-Laplacian type equation or equations, which
fulfill monotonicity conditions, where enable to apply monotonicity methods. Unlike these
works, in the articles [19, 20] investigating some properties of nonlinear spaces with variable
exponent, we developed an approach based on the spaces corresponding to problem under
consideration. It is necessary to note, that the questions mentioned above may arise for the
problems, which have variable exponent nonlinearity. Eventually, here we also study vari-
able exponent nonlinear spaces that are essential for the investigation of the following type of
equations

- [(19072 4w O2) S| = (x,u).

Since we want to establish the regularity of solution of the nonlinear differential equations
related with mentioned pn-spaces, thus our aim is to understand the structure and nature of
these spaces better, that allows to investigate the characteristics of solutions. For this reason,
in this article we prove some embedding results, which indicate the relation of these spaces
between Sobolev and Lebesgue spaces. We show that these spaces are not merely subsets of
Lebesgue spaces also subsets of Sobolev spaces.

This paper is organized as follows. In the next section, we give the definitions of certain
type of pn-spaces with variable and constant exponents ([20, 33] and for general definition
see [34]) as well as recall some basic results for these spaces and variable exponent spaces. In
Section 2, we prove embedding theorems for constant exponent pn-spaces and give certain
results with examples in one dimensional case. In Section 3 firstly, we establish some inte-
gral inequalities with variable exponents, which are required to prove embedding theorems
of variable exponent nonlinear spaces then investigate some attributes of variable exponent
pn-spaces.
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1 PRELIMINARIES

In this section in the beginning we will give the general definition of spaces that are studied
here in the functional case. Let X, Y be locally convex vector topological spaces, B C Y be a
Banach space and g : D (g) C X — Y. Let’s introduce the following subset of X

Mg ={xeX:g(x) €B,ImgNB # T}.

Definition 1. A subset M C X is called a pn-space (i.e. pseudonormed space) it S is a topo-
logical space and there is a function [-] ,, : M — RY. = [0, 00) (which is called p-norm of M)
such that

qn) [x],>0,Vxc Mandx =0= [x],=0;
pn) [x1]y # [x2)py = %1 # xp forxq,xp € M, and [x],, =0 = x = 0.
The following conditions are often fulfilled in the spaces M.

Nj) There exist a convex function v : R — ﬂ and number K € (0, co] such that [Ax],, <

v(A)[x]\, forany x € M and A € R!, [A| < K, moreover, |)\|hi>n)\.v(/\AI) =¢,j =01,
]

where A\g =0,A = Kandcy=c; =1orcg =0,c1 = o, i.e. if K = oo then Ax € M for
any x € M and A € RL.

Let g : D(g) € X — Y be such a mapping that Myp # @ and the following conditions are
fulfilled

G1) §:D(g) «— Imgis a bijection and g (0) = 0;

G,) thereis a function v : Rl — ﬂ satsfying the condition Ny such that

lg (Ax)[l5 < v (A) llg (¥)l5, ¥x € Mgp, VA € R.

If the mapping g satisfies the conditions G; and G; then M,p is a pn-space with p-norm
defined in the following way: there is a one-to-one function ¢ : RL, — RY, ¢ (0) = 0,
¥, =1 € CY such that [x]MgB = ¢ 1 (|lg (x)[|p)- In this case M,p is a metric space with a
metric: d g (x1;%2) = [|g (x1) — & (x2)|| 5. Further, we consider just such type of pn-spaces.

Definition 2. The pn-space Mgp is called weakly complete if g (M,p) is weakly closed in
B. The pn-space Mg is “reflexive” if each bounded weakly closed subset of Mp is weakly
compact in M.

It is clear that if B is a reflexive Banach space and Mp is a weakly complete pn-space, then
M ¢B 18 “reflexive”. Moreover, if B is a separable Banach space, then M ¢B is separable, also.
For complementary properties see, e.g. [23,33,34].

We now remind certain integral inequalities and facts about the functional pn-spaces with
constant exponent that are concerned in this paper (for general case see [21-25] and for func-
tional case [21,25,27] etc).

Let Q C R" (n > 1) be a bounded domain with Lipschitz boundary Q2. Throughout the
paper, we denote by |()| the Lebesgue measure of Q).
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Lemmal. Leta > 0,8 >1,|Q| < coandi = 1,n, then forallu € C(Q) NC}(Q) the inequality

/\u]‘”ﬁ dx < C / lul|® ]Diuyﬁdx+C2/ |u|* P dx’

Q Q Q)
is satisfied. Here, Cy = C1 (&, B, |Q}]), Co = C (|Q}]) > 0 are constants.
Lemma 2. Assume thatwa,a; > 0,8 >1and > B1 >0, gl > g, a1 + B1 < a + B be satistied.
Then foru € C(Q) N CY(Q)

/|”|{X1 |Dz‘u|l31 dx < C3/ lu|® |D1-u|/5dx+C4/ |u|”‘+ﬁdx’+C5

holds. Here, forr = 3,4,5, C, = C, (a, B, a1, B1, |Q2]) > 0 are constants.
Lemma3. Leta > 0, Bo+ 1 > 2 and B1 > Bo > 0 be fulfilled. Then forallu € C' (Q) NC? (Q)

[l 1Dl d < ¢ [ a0 [ D2ul™ dx

LGy /(‘u’a+ﬁo+ﬁl + ’u’DéJrl ’Diu’ﬁoJr,Blfl)dxl
Q)
holds. Here, forj = 6,7, C; = C; («, B, Bo) > 0 are constants.

n

Definition 3. Leta > 0,8 > 1, k = (ky,...,k,) be multi-index and |k| = Y} k;, m € Z*,
i=1

Q C R"(n > 1) is bounded domain with sufficiently smooth boundary (at least Lipschitz

boundary)

Smap (Q) = {u e L' (Q): [u]g;ffﬁ( (/ |u|®
’ 0<|k\<m
ém,oc,ﬁ (Q) == Spap ()N {Dku laa =0, 0 < k| <mg < m}

and
We state a proposition which can be easily proved by the help of Lemmas 1-3 and Defini-

tion 3.

Proposition 1. Assume that« > 0, B > 1, then we have the following equivalence

n
51,4, (Q) = {u eL! (Q): g;ﬁﬁ = Z (/ |u|® Diuﬁdx) < oo}

Sozl,xlﬁ (Q) := {u cL'(Q): [u]g;i = i (/ ﬁdx) < oo} :
T\

1 S1,, (Q) is a complete metric space with the following metric

and!

sy, (1,0) = |[Jul? u— o] o]

WiB(Q) , Yu,v € Sl,a,ﬁ (Q) .
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Theorem 1. Leta > 0,6 > 1, theng: R — R, g(t) := M% t is an one to one correspondence
from Sy ,,5(Q2) onto WP (Q)).

Now, we recall some basic definitions and results about variable exponent Lebesgue and
Sobolev spaces [1,6,9,10,13].

Let Q) be a Lebesgue measurable subset of R"” such that || > 0. The function set M ()
denotes the family of all measurable functions p : 3 — [1, 0] and the set M (Q}) is defined

by
My(Q):={peM(Q): 1<p <p(x)<p" <o, ae xeQ},
where p~ = e(s)sinf|p(x)| ,pt = ess sup lp (x)]-

Forp € M (Q), O = Qo = {x € Q| p(x) = }. On the set of all functions on €}, define
the functional 0 and ||. ||, by

0, (1) = / ") dx + ess sup |1 (x)|
0\ O ”

and
Il pora) = inf{A >0: 0, (%) < 1} .

If p e L*(Q), thenp € My(Q), 0 (u) = [ u|P™) dx and the variable exponent Lebesgue
o

space is defined as follows
LPX) (Q) := {u : u is a measurable real-valued function such that o, (1) < oo} .

If p~ > 1, then the space LP(*) (Q) becomes a reflexive and separable Banach space with the
norm ||. |, p() (- Which is so-called Luxemburg norm.

If0 < |Q| < oo, and py, po € M(Q), then the continuous embedding L") (Q)
L2 (Q) exists <= po (x) < py (x) fora.e. x € Q.

Foru € LP®™ (Q) and v € L1 (Q)), where p, g € My (Q) and ﬁ + ﬁ = 1, the following
inequalities be satisfied

[ vl < 2 ull o g o000

and

min { ||}, b <0 () < max {ull] ) / lull}

LP x) || HLp x) Ly x) Lp(x( )}

Lemma 4. Letu, u; € LPx) (), k=1,2,.... Then the following statements are equivalent to
each other:

L kh—>nolo [ — ”HLP(X)(Q) =0;
2. limo, (up —u) =0;
P p (e — 1)

3. uy converges to u in () in measure and 1}51300’7 (ug) = op (u).
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Let OO C R" be a bounded domain and p € L* (Q)), then variable exponent Sobolev space
is defined by

W () == {u e L' (Q) |Vl € L'O) () }

and this space is a separable Banach space with the norm
HuHWLP(X)(Q) = ”uHLP(X)(Q) + Hvu”LP(X)(Q)

In the following discussion, we give the definition of generalized nonlinear spaces (func-
tional pn-spaces with variable exponent) and features of them that indicate their relation
with known spaces. These classes are nonlinear spaces, which are generalization of nonlin-
ear spaces with constant exponent studied in [24] (see also references therein). We also specify
that some of the results and its proofs can be found in [19,20].

Definition 4. Let O C R" (n > 2) be a bounded domain with Lipschitz boundary and vy, f8
€ My (Q)) . We introduce Sy () g(x) ((2) , the class of functions u : (3 — R, and the functional
[-]s,5 * St1y(x),p(x) () — Ry as follows

Sl,’y(x),ﬁ(x) (Q) = {u € Ll /|u|’Y )+B(x dx+ Z/|u|7 |D u|l3 dx < Oo}

i= 1Q
- (x) B(x)
x B
[t]s , :=inf A>0:/‘E‘7 dx—{—z /M dx <1
7.8 A )41

‘s efines a pseudo-norm ON 51 ~(y) A(x , actually 1t can be readily veritied that
VB defi pseud S (%), B(x) Q lly i b dily ified th
- |s.. . fulfills all axioms of pseudo-norm (see [33, ,le (uls. , 20,u=0= |us , =0,
. fulfills all axi f pseud (see [33,34]), i s >0 0 s =0
[uls,; # [vls,;, = u#vand [ulsg , =0=u=0.

Let 51 ,(x),p(x) ((?) be the space given in the Definition 4 and 0 (x) € My (Q2), we denote
S1,4(x),8(x)0(x) () , the class of functions u : O — R, by the following intersection
S1(3)p(0)6(x) (Q) = Stp),pi) () N L7 ()

with the pseudo-norm

[u]s, 50 = [Uls, ; + [l o) VU € St5(),p(x) 0(x) () -
Proposition 2. If vy, B, 0 € My (Q)) and 6 (x) > v (x) + B (x) + &9 a.e. x € Q) for some gy > 0,

then we have the following equivalence

Sl,’y(x),ﬁ(x),é‘(x) (Q) = {u el (Q) : R1PO (u) < OO} ,

where RYPP () := f u|?) dx + 1 1f u|"™) |D;u|P¥) dx, and the pseudo-norm on this

space is

v_ IS(X)

ﬁ
dx <1

’Y_

A Bk

_ u|0(x) i
[uls, ;, = inf )\>0:/)X) dx+§ /
O =1\a
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Lemma 5. Assume that conditions of Proposition 2 are fulfilled. Let u € Sy, (y)(x)0(x) ((2)

and A, := [u]s_ ,,, then the following inequality

max {)\Zﬂfﬁi,)\ff} > R7PP (1) > min {)\Zﬂfﬁi,)\ff}
holds.

Theorem 2. Suppose that conditions of Proposition 2 are satisfied and letp € My (Q)), p (x) >
6 (x) a.e. x € Q. Then, the embedding

WEPEI(Q) C 810 p)000) (Q)
holds.
Definition 5. Lety € M (Q), we introduce L") (Q) the class® of functions u : Q — R
Llrﬂ(x) (Q) = {u el (Q) : Dju € Lq(x) (Q) , 1= 1,—7’1} .

Theorem 3. Lety, B € My (Q)NC'(Q) and L P (Q) be the space given in Definition 5.

7(x)
Then the function ¢ : O xR — R, ¢(x,t) = ]t\g(@ t is a bijective mapping between
S1(0),px)0(x) () and LY (Q) N LX) (Q), where  (x) := 180

Theorem 4. Suppose that conditions of Theorem 3 are satistied. Let p € My (Q)), additionally
1< B~ <B(x) <n x € Qholds and for e > 0, the inequality

p(x) +e< MOHIEN), v e,

is satisfied. Then the following compact embedding

Sl,v(x),ﬁ(x),e(x) Q) — LP(x) (Q)

exists.

2 SOME RELATIONS BETWEEN CONSTANT EXPONENT PN-SPACES AND SOBOLEV SPACES

In this section, we give some embedding results for constant exponent pn-spaces with
proofs.

Theorem 5. Let« > 0, B > 1. Then for all p satisfying the following conditions
(i) if B =n, thenp > B,
(ii) if B > n, thenp > B,

(iii) if B < n, then p > "&tb)

a+n 7

the embedding
Wyt (Q) C $1,45(Q) )

holds.

2 This space is not Banach one unlike to the space W' () (Q) [6].
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Proof. The cases (i) and (ii) are evident as by virtue of the Sobolev imbedding theorems occurs
the inclusion
W7 (Q) € C(Q).

For the last case (iii), if B < n and p > n, then the proof is same with the proofs of the cases
(i) and (ii).
On the other side, let p < nand p € {"('Xﬂs ) n) , by Sobolev imbedding theorems we have

atn 7
Wy (Q) C LI(Q) (3)

forall § [1, . p] Hence, for u € Wol’p (Q)) we have the following estimate by Young’s in-
equality

/|u|”‘|Diu|5dx < <H> /|u|?“f’7% dx + <%> /|Diu|pdx. @)

Q P74 Q

: +B)—p(at +
We deduce from the equation :Tpﬁ . % = p[n((v;_/;))(np_(v;) ") and pE {ﬂ&ﬂ;nﬁ), n) that
ap_ o _"P_
p—p " n-—

Thus, by (3) and (4) we arrive at

D‘+ﬁ _ B < P ~ p
3, = 10t 1D e < CLulf €l

a+p < p
Sl,zx,ﬁ C2 Hu|| 170 + Cs.

To complete the proof if p = n > B, by employing the embedding Wé’p (Q) C L'(O),
1 <r < o0, one can obtain the desired result by the help of above approach. O

which implies [u]

Remark 1. Under the conditions of Theorem 5, if p > « + p is satisfied, then we have the
imbedding (2) independently from dimension of Q).

Actually for u € Wé’p (Q)), we deduce from Lemma 2 that

/}mﬂmedxgc/HDmvdx+ch

which yields [u ]:ifﬁ < Cllu Hp (o) +Cy.

Theorem 6. Suppose that B > « > 0, B > 2. Then for all p satistying the following conditions
(i) ifa + B =n,thenl < p < 2B,
(ii) ifa + B > n, then1 < p <2,
i) i 2np(a+p)
(iii) ifa + B < mn, then1 < p < B (atB) (P—a)

the embedding
S2a8 (Q2) € Wy P (QQ) (5)

holds.
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Proof. Considering these conditions, by Lemma 3 when 1 < p < a + f following inequality

u)ﬁdaﬁ— Cy

/|Diu|pdx < C/|u|”‘
@) @)

holds independently of the dimension #, that yields the imbedding (5). So, if 1 < p < 2, then

1 < p < a+ B, which concludes the proof.

First, we prove (5) in line with conditions of (i). Let « + f = n and p > 2 (from now on we

assume p > 2).
Foru € Soz,,x,ﬁ (Q)),, by Lemma 3 we have the following estimate

Ja

Q

u‘ﬁdx.

On the other hand, from Sobolev imbedding theorems
Wy P (Q) c L7(Q) Vg, g € [1,00).
Hence, from (6) and (7) for all g satisfying 1 < g < oo we get

1
[ n wtp a+p _ n a o [P o ~
lully < C (L IDmlsth) < Co| X | [ Iul D3| x| | =Colulg,, -
i=1 1 Q

i=1

Therefore, for all u € Sozl,xlﬁ (Q)andi=1,n

/\Diu]pdx = / <Diu \Diu\p_2> Djudx = (p—1) /uDZ-Zu |Dju|P 2 dx
Q Q Q

p-a a
< p_1)/yu\ * |uf | D?u| |Du 2 dx.

Employing Holder’s inequality in (9) with exponents </3—ﬁ B, Lz) we obtain

rp=2
P
(B—a)
/|Diu|de <cC (/u"zw dx) (/u D2 ) (/D updx)
(@)

o 1wl
= Cllull oy llgy WDl
26
Estimating (10) by using (8) we get
p TN =2 _ & p—2
/|Du| dr<Cluld Wl IDul} > = Culi,,, Dl

By using Young’s inequality in (11), we arrive at

Dl < € (&) -+ Ce D]},

(6)

()

(8)

)

(10)

(11)
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choosing ¢ such that Ce < 1, then we acquire

IDiu]], < Culs

I
5248 <

which completes the proof for the case (i).
Assume that (ii) holds,i.e. « + > nand 2 < p < 28. Then

WAtk Q) c C(Q),

by (6) and (8), we obtain

lullcay < Cluls (12)

Forall u € 502,,,(,5 (Q) from (9) one concludes

B—u o _
IDull} < <p—1>/|u| # |ul# | DPu D2 dx

< (p-1)C ()/w Jul* | D2 dx + (p - e [ D) T ax

Q Q
B IS(P 2)
< (p=1)C (&) Iulld [ 1 [DFul”dx-+ (p = Dl
BT
Q

ﬁ(r’ 2)
By using (12) and % —p= pﬁ 26 with p < 2f to estimate Hu||’3 * and || Djul ,° s(p_2) T€Spec-
BT 1

tively, we arrive at

Dy < C &) (p=1) [l " ()3 " + (p = 1)eCC | Dt} + (p = 1)eCy

= C (e) [u]?:w +eCC | Djul|’ + £y,

which implies
%12
IDully < Clulf +Cr,

that ends the proof.
For the last case (iii), leta + p < nand 1 < p < % From Sobolev imbedding
theorems &+ )
WP (Q) C L1(Q) Vi, §e [1, L] . 13
() CLY(Q) V4, q Py (13)
By (6) and (13), we attain
lully < Clulg,,., (14)
3 ; ; 2np(at+p)
Forall u € 53,5 (Q2), we deduce from the inequality p < B (et B) (=) < 2 that
Dl < C el o Ll I (15)
If we take the inequality £ 2(5:;‘) < n"_('zjf 23) into account and estimate ||u|| s Zﬁ Z) in (15) by (14)
we obtain
b 2 _ A 2
1Dl < € [u]s" [u]sefw D[y~ = Clulg,  IIDwll}™ (16)

S 52,0,
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Applying Young’s inequality in (16) we attain

Dl < € (&) -+ Ce D]},

that yields

1Dl < Cluls, .
so, the proof is complete. O

We now turn our attention to some examples and results for one dimensional case.

Definition 6. Leta > f — 1 > 0 we define the following function space

Soplab) = {u e L'(a,b) : [u)""P /\uy“+ﬁdx+/\uy“ B |Du|? dx

Slrxﬁ ab
p
u‘ dx < oo}.

The proofs of the following lemmas can be attained readily, thus we skip the proofs for the
sake of brevity.

Lemma 6. Let S5, 5(a,b) be the space given in Definition 6, then the imbedding
52,“,5(11, b) C Sll,,(,/;(a, b)
holds.

Lemma 7. Leta > f—1 > 0and g(t) = |t|% t for any t € R. Then following assertions are
true

1) ifu € S5,8(a,b), then g (u) € WP (a,b);
2) fora functionu € L' (a,b), if g (u) = v € W>F(a,b), thenu € Sy, p(a,b).

Consequently, we can define the space S5, 4(a,b) in the following way by virtue of the
general definition of the nonlinear spaces.

Definition 7. Letg: R — R, g(t) = |t|% tanda > B—1> 0, then Sy, 4(a,b) has the following
representation

Souplab) = {u €LY ab): [y’ = ¥ D)) < oo} = Sw2s(a,b).

2
S g 5 0<s<2

Remark 2. The following equivalences are true

S~2,,x,ﬁ(a,b) N{u:u|yn=0}= Soz,,x,ﬁ(a,b)

and eip
Df¢(u ﬁz (D?
L 10501 Wng ),
fork =0,1, but fork =2
/ 2 |IP _ 2 atp
D], = s (o) |
and
a+pB

() (D2 = ¢ (5 ) (Du)?)

a+pB ’
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The following example shows the nonlinear structure of the pn-spaces.

Example 1. Suppose that B > 1. Then S11,4(0, 1) is a nonlinear space.

LetT € <%, %] and define the functions

up (x) :==x"and u; (x) :=6,x € (0,1), (6 € R" isa constant) .

It is easy to show that ug, u1 € S1314(0,1) by the definition of Sq74(0,1). Besides
u(x):=ug(x)+up(x) =x"4+0¢S115(0,1).
1
[u ]g:lﬁ 01) /]u]’g+1 dx —{—/]u\ |Du|Pdx —/(x +6)Pt! dx—{—rﬁ/ (x" +60) Py

1
/ xT 4 0)PH! dx+T/5/ (A1) 5+9x5(771)) dx.
0

Since B(T — 1) < —1 so, the right and side of the above equation is divergent which implies
u € Sl,l,ﬁ(oll)'

3  VARIABLE EXPONENT NONLINEAR SPACES AND EMBEDDING THEOREMS

In this section, we present certain new results with detailed proofs for variable exponent
pn-spaces mentioned in Section 1. First, we derive integral inequalities (see, also [20]) to un-
derstand the structure of these spaces. Afterwards, we prove some lemmas and theorems on
continuous embeddings of these spaces and on topology of them. Throughout this section, we
assume that O C R” (n > 2) is a bounded domain with Lipschitz boundary.

Lemma 8. Leta, p € Mp(Q) and a (x) > B (x) a.e. x € Q). Then the inequality

/|u|ﬁ<X> dx < /|u|”‘(x) dx 10|, VueL*® () (17)
Q

holds.
Proof. Let O :={x € Q:a(x) = B (x)} and Oy := QO \ 3. Hence
/|u|/S dx—/|u daH—/|u|/3 dx.
M

Estimating the second integral on the rlght member of the above equation by utilizing Young
inequality (« (x) > B (x) on €)y), we achieve that

Z\u!ﬁ()dxga/\u]()dx—i—({(a(x))" d+/< )d

1

since % < land % < 1, for x € ) we deduce from the last inequality that
/]u]’g(x) dx < /\u]“(x)dx—{—/\u\“(x)dx—l—]Q\ :/\u]“(x)dx—l—\()\.
0 0 0 Q

On the other side if a (x) = B (x) a.e. x € ), then (17) is clear. O
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Lemma 9. Assume that { € Mo(Q) and B > 1, ¢ > 0. Then for every u € L¢(¥)+¢(Q)

/|u|€<X> In [u] |P dx < N1/|u|€<X>+€dx+N2
0 0
is satisfied. Here N1 = Nj (¢, ) > 0 and N, = N; (¢, B, |Q2|) > 0 are constants.

Proof. Let us consider the function f () = [t| —In|t| for t € R — {0}. Since f is an even
function it is sufficient to investigate only f (t) = t* —Int, t > 0. It can be readily shown that

this function is decreasing on (0, % and increasing on the interval [%, oo) .Also f ' o0

when x N\, 0 and x o and f <%) = L1 (1+1Ine¢). Here we have two situations: (i) if

e € <%,oo), then f <%) > 0; (ii) if e € <O,%], then f <%) < 0. For the first case (i)
Vt € (0,00), f (t) > 0 or equivalently Int < t°. For the case (ii), the function f has two zeros,
say my > 0and my > 0, and for t € Rt — (mq, my) it is obvious that Int < t. For t € [my, my],
dNg > 1 <N0 = NO<%>) such that Int < Npt*. Hence, the inequality Int < Nyt® will be
satisfied on (0, 00) . As a result, from the cases (i) and (ii) for arbitrary ¢ > 0 and t € R — {0},
we have the inequality
In ] < No (&) ¢,
that implies on the set {x € O : [u (x)| > 1} the inequality |u|*® |In|u||f < Ny (¢, B) |u|**)+¢

o(x B
be fulfilled. Moreover, from lim #* [Int|f = 0 and for every fixed xy € Q, lim GO inje P 0,
t—0* -0+ 00t

we arrive at the inequality \u]é(x)_l u| |In |u||P < No <]u]§(x)+€ + 1) is fulfilled on the set
{xe Q:|u(x)| <1} for some Ny = Ny (¢,B) > 0. So, the proof is complete by the combi-
nation of these inequalities. O

Lemma 10. Let € > 0 and B : 3 — [§, o) be a measurable function, which satisfies
E< By <PB1(x) < By <ooand(, B € My(Q), then the inequality

/|u|¢<X> ln Jue]|P®) dx < € / uffETR) gy 4y Wu e LEWHAG) () (18)
Q Q

holds. Here C; = C1 (§,") > 0 and C; = C; (§,81,|Q)|) > 0 are constants.

Proof. For arbitrary v € (0,1), ﬁ;(—;r)y > 1, by utilizing the Young’s inequality with this expo-

nent to |In |u| \Mx) we obtain the following inequality|In |u| ]ﬁ(x) < |In |u| ]’3++’Y + 1, by multi-
plying each side of this inequality with |u| 80 we get

145 I fua| [P <[] |ln|u||’3++7+ u)*®, xeq.
Thus, integrating both sides over (),
/\u]g(x) IIn [u| [P*) dx g/\uy“x) ]ln]u\\ﬁ++7dx—|—/]u\g(x) dx
Q Q Q

is established. For ¢ < g, estimating the first integral on the right side of the last inequality by
Lemma 9, we acquire

/|u|¢<X> In [u]|B®) dx < C3/|u|§(x)+8dx+C4+/|u|§(x) dx.
@) (@) (@)



222 SOLTANOV K., SERT U.

As 6;(5835 > 1, applying Lemma 8 to estimate the second integral on the right member of the
last inequality, we gain

/]u\g(x) IIn [u| |P*) dx < Cl/]u\g(x)Jredx—l—Cz,

here C; = Cy (¢,7) > 0and C; = C; (¢, 7, |Q)|) > 0 are constants.
Since ¢ (x) +¢& < ¢ (x) + B1 (x), a.e. x € (), estimating the integral on the right side of the
above equation by using Lemma 8, we attain (18). O

In the following discussions, we examine elaborate properties of the pn-spaces
S1,9(x),6(x),6(x) (€2), presented in Section 1 (for other results, see [19,20]).

Lemma 11. Let Sy (x) 8(x),0(x) (©2) and S1g(x) a(x),6,(x) ((2) be the spaces given in Definition 4.
Assume that one of the conditions given below are satistied

(i) 61 (x) <60 (x),B(x) >a(x)and (x)B(x) =7 (x)a(x),ae x €,
(ii) 61 (x) < 0(x), & (x)B(x) >y (x)a(x),v(x)+B(x) =& (x)+a(x)andp(x) = a(x)+

e for some e > 0.
Under these conditions the embedding
S1,(x),8(x)8(x) () C S1a(x),a(x),6(x) () (19)
holds.

Proof. First, suppose that (i) holds. Let u € Sy, (x) g(x),6(x) (€2), to show the embedding (19) it
is sufficient to verify the finiteness of

RO ( /|u|91 dx+2/|u|5 |Dyu|*

11Q

estimating the first integral on the right member of the above equation with the help of Lem-
ma 8 and second one by employing Young’s inequality, we acquire

RE®O1 (1) < n+1|Q|+/|u| dx+z/|u S| Dy )
i=1
(@)

From the conditions, C(z)(i gx) = v (x) that yields

REAP (1) < RV (u) + (n+1) |0,

so (19) is gained. We note that when the case B (x) = a (x) a.e. x € Q, then ¢ (x) = 7 (x),
hence (19) can be obtained by similar operations as above.
Now, assume that (ii) fulfills. We need to show that R&*%1 (1) is finite. We have

REO1 (y /]u]el dx+z/yu\¢ D"

11Q

y(x)a(x)
—/]u]el dx—{—Z/]u\g ]u\ ﬁ(x \Du\

11Q
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If we estimate the first integral on the right member of the above equation with the help of
(x)

Lemma 8 and second one by employing Young’s inequality with the exponent Blx) a(x) At every
point, one can acquire that

S)B(x)—y(x)a(x)
RE&%1 (y /\u] dx—{—]Q\—{—Z/]uW \Du!’s dx+n/\u] O Oa dax.
i=1
Q

In the light of the condition (ii), the inequality g(x)’z((i)):zgim(x) < v (x) + B (x) holds, so esti-

mating the third integral in the right side of the last inequality by Lemma 8, we arrive at

R&™H1 (1) < (n+1)/\uy Vdx + (n+1) yoHZ/W | Dl
0 =16
< (n+1) (R () + | ),

hence from here desired inequality is achieved. Alsoif 6; (x) = 0 (x) a.e. x € (), by employing
the same operations one can show (19). O

Lemma 12. Let B, y and ¢ satisty the conditions of Theorem 3, then Sy (x) s(x)6(x) () is a
metric space with the metric which is defined below

ds, (1,0) := [l (1) = 9 (@) yeo ) + Z |9} () Ditt — @} (0) D[ o

(x)
Vi, v € S 4(x),(x)0(x) (1), here ¢ (x,t) = |[¢] 5 t and for every fixed x € ()

(0= (e +1) 159

Proof. Tt has been shown in Theorem 3 that® ¢ (1) € LY (Q) and ¢, (u) Du € LP®) (Q)
whenever u € Sy (x) g(x)0(x) (€2), thus one can verify that ds (-, - ) : $1,(x),8(x)6(x) (2) = R
satisfy the metric axioms, i.e.

(i) ds, (u,v) >0,
(i) ds, (u,0) =ds, (v,u),
(iii) u = v = dg, (u,v) =0,
(iv) ds, (u,v) = 0= ||¢ (u) — ¢ (v)|\L¢(x>(Q) =0= ¢ (u) = ¢(v)since ¢ is 1-1, then u = v,

(v) from the subadditivity of norm, dg, (u,v) < dg, (u,w) +ds, (w,v).

7(x)
3 From now on, we denote ¢ (x,u) := ¢ (1) = |u|P® u for simplicity.
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Theorem 7. Under the conditions of Theorem 3, ¢ is a homeomorphism between the spaces
Sl,’y(x),ﬁ(x),()(x) (Q) and Ll’ﬁ(x) (Q) N Llp(x) (Q) .

Proof. The function ¢ is a bijection between Sy, (x) g(x)6(x) ((2) and LY A () N L¥Y™) (Q) by
Theorem 3. Thus it is ample to prove the continuity of ¢ as well as ¢! in the sense of topology
induced by the metric dg, (-, - ). For this, we need to show that

LLBX) (Q)NLY®) (O
(@Q)NL#(Q)

(i) ds, (um, o) m—/‘; 0 = ¢(um) ¢(ug) for every {un} € Sllv(x),ﬁ(x),g(x)(())

m /oo
which converges to 1y and
- LVPO)NLY(Q) -1 -1 1, B(x) (x)
(i) vy 7) vo = ds, (@~ (vm), ¢~ (v0)) 7> 0 for every v, € LA (Q) N LY (Q)
m /o0 m /o0

which converges to vy.

Since for every vy, and vy there exist a unique uy, and ug € Sy ,(x) (x),6(x) () such that

¢ (Um) = vy and ¢ (ug) = v, the implication (7i) can be written equivalently as follows
Ll/ﬁ(x)(Q)mL‘/’(x)(Q)
@ (ttm) n;; ¢ (ug) = ds, (um, up) n;; 0 for every {um} € Siq(x)8(x)0(x) ()

which converges to 1.
Since the proofs of (i) and (ii) are similar, we only prove (ii). Let vy, v, € L¥P¥) (Q) N

1, B(x) p() 1, B(x) y()
LY™) (Q) and O (@0 (Q)vo < ¢ (um) Lrang (Q)go (1) .
To verify dg, (um, up) — 0, by definition of metric dg, it is ample to demonstrate that

|9t (1m) Dittw — @t (10) Ditio| g ) = 0 and @ (tm) — @ (10)l| yey ) — O

asm .

L B(x) p(x)
From ¢ (u,) LNy (Q)go (up) , we have

l¢ () — @ (40)[| Ly (o) =0 and  |[Di (@ (um) — ¢ (40)) | s () = O-
Hence, we only need to show that
| @ (tm) Ditim — @ (1) Diuo}‘Lﬁ(x>(Q) —0 asm ' oo.
From Lemma 4, we have

@t (1m) Dittw — @t (10) Ditto| sy ) — O > 0p (@} (m) Dittm — @} (tt0) Diuag) — 0. (20)

Based on (20), fori = 1,n

5 (9} (1n) Dyt = 1 1t0) Dito) = [ ¢} (1) it — ¢} (10) Dyuo|*™ dix,  (21)
Q

one can show that the following equality holds

9} (1) Ditt — 9} (110) Dyt = (55222 ) Di ( (1) — 9 (10))

Djy.B—.D; () 1
B < yﬁég’ﬁ"yﬁ) 5) (‘um’MX) Uy I [t | — [1o] P g In |ug] ) -

(22)
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Substituting (22) into (21), we acquire

Ip ((Pi (um) Djuy, — 902 (lxl()) Diuo)
= [ G&%) Di (9 (1) = 9 (w0))
@)

D;y.p—7.D; (1) () pe)
= (2422 (1wl s ] = 07w )
taking B(x) into the absolute value and applying known inequality, we gain
% (9} (1) Dyt = 9} (1t0) Dito) < 2#' ™1 [/ Di (g (1)) — D (g (10)) P
O
7(x) 7(x) B @3)
+ C3/ [t | ) 1y I |10 | — 10| P 1o I |11 dx,

Q

here C3 = C3 </3+, 17llcr iy - ”ﬁ”cl(())) > 0 is constant.

Since ||D; (¢ (um) — ¢ (19)) ”Lﬁ(x)(ﬂ) —0as m ' oo, the first integral in the right member
of (23) converges to zero when m tends to infinity (Lemma 4).

From Theorem 3, function ¢ is bijective between the spaces L) (Q) and LY™) (Q). Also
since || ¢ (um) — @ (1) ||L¢<x>(0) — 0, we arrive at

@ (ttm) % ¢ (uy) = um% U (24)

and

) P(x)

(%)
/ |um| B Uy

0p (Um) = / ) dx =
Q QO

dx = / 1 (1) |?™) dx < M (25)
Q

for some M > 0.
Employing (24), (25) and Vitali’s Theorem*, we attain

/\um\g(x) dx —>/\u0]9(x) dx, m ~ oo. (26)
(@) (@)

Since u,;, converges to 1 in measure on (), using this and (26), we deduce from Lemma 4 that
09 (thm — 1g) —> 0 = ||um — uOHLg(x)(Q) — 0. (27)
4 Theorem (Vitali, [16]). Let (Q), %, u) be a finite measure space, and f, : ) — R be a sequence of measurable

functions converging a.e. to a measurable f. Then ||fu — fll;1(q) — 0 asn — oo iff {fy : n > 1} is uniformly
integrable. When the condition is satistied, we have

lim [ fudye = | pap.
(@) (@)
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=
N

7(x r(x
Denote wyy, = |ty |P® 1y In |uy,| and wo := |ug|F®) ugIn |up|, then

aﬁ(umg::‘/ﬁuWJV“)+ﬁ&>un|umuﬁ“>dx.
@)

Estimating the above integral by using Lemma 10, one can obtain

%wmgq/mm@m+gzq@ww+@
9]

From (27), o (wm) < M for all m > 1, for some M > 0. Thus as shown above for 1, similarly
we conclude thatas m 7 oo

[th| PO 1y I |1y | — |10] PO g I g | — 0,

Uﬁ(wm—wo)—>02>/
Q

hence from (23) we attain,

H(Pg (um) Diuty — (Pg (u()) DiMOHLﬁ(X)(Q) —0, m J oo.

So, the proof is complete. O
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Y aaHiif poboTi MM BMBUAEMO BAACTMBOCTI KAacy (PYHKIiOHAABHMX IPOCTOPiB, TaK 3BaHMX
PN-TIPOCTOPIB, SIKi 3’ IBASIIOTHCSI IPY AOCAIAXEeHHI HeAiHIHIX AMdpepeHITiaAbHVIX PiBHSIHD. M1 BcTa-
HOBUAM A@sIKi iHTerpaAbHi HEPiBHOCTI AASI aHAAI3y CTPYKTYPU pN-IIPOCTOPIB 3i CTAAVMIUL Ta 3MiHHN-
MM HOKasHuMKaMm. Mu AOBeAM TeOpeMI MPO BKAAAEHHS, SIKi BCTAHOBAIOIOTH CIiBBiAHOLIIEHHS IIIX
IIPOCTOPiB 3 A0bpe BiaoMmMu KaacuaHMMM IpocTopamu Aebera i CoboaeBa 3i crarymu Ta 3MiHEN-
MJ IOKA3HUKAMIL

Kntouosi cnosa i hpasu: pn-pocTip, 3MiHHIIT TOKa3HNK, iHTerpaAbHa HepiBHICTD, HeAiHilHe A-
depeHITiaAbHe PiBHSIHHSI, TeOpeMa PO BKAAAEHHSL.
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ON TWO LONG STANDING OPEN PROBLEMS ON L,-SPACES

Porov M.M.1.2

The present note was written during the preparation of the talk at the International Confer-
ence dedicated to 70-th anniversary of Professor O. Lopushansky, September 16-19, 2019, Ivano-
Frankivsk, Ukraine. We focus on two long standing open problems. The first one, due to Linden-
strauss and Rosenthal (1969), asks of whether every complemented infinite dimensional subspace of
L, is isomorphic to either L; or ¢1. The second problem was posed by Enflo and Rosenthal in 1973:
does there exist a nonseparable space L, () with finite atomless y and 1 < p < oo, p # 2, having
an unconditional basis? We analyze partial results and discuss on some natural ideas to solve these
problems.

Key words and phrases: L,-spaces, complemented subspace, unconditional basis.
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1 INTRODUCTION

Investigation of the geometry of Lebesgue spaces L, := L,[0,1] has long and rich history
(see [3]) due to famous mathematicians: D.E. Alspach, S. Banach, J. Bourgain, D.L. Burkholder,
L.E. Dor, P. Enflo, W.B. Johnson, M.I. Kadets, N. Kalton, J. Lindenstrauss, B. Maurey, E. Odell,
R.E.AC. Paley, A. Pefczyniski, H.P. Rosenthal, G. Schechtman, T.W. Starbird, S. Szarek,
M. Talagrand, L. Tzafriri and others. More is known on the isomorphic structure of these
classical spaces. Isomorphic embeddability of L,(v) into L, is completely known. We use the
notation X — Y to express that X embeds isomorphically into Y, and X ~ Y means that the
Banach spaces X and Y are isomorphic. The relation £, < L,, which is easily seen, was first
noted by S. Banach [4, p. 175]. The embedding ¢, — L, follows from Khintchin’s inequa-
lity [30, p. 66]. It is not hard to see that £, #+ L for p # 2 (for the proof, see [4, p. 175]). The
relation £, #+ L, for2 < p <rand 1 <r < p < 2 was proved by S. Banach [4, p. 175]. Paley’s
results [37] imply ¢, /> Lyfor1 <r <2 <p,2<r<pand1<p<2<r.

A special case is 1 < p < r < 2, where isometric embeddings of L, into L, are possible.
First it was proved by P. Levy [25] that ¢, is finitely representable! in L, if 1 < p < r < 2. Later
M.I. Kadets proved that £, < L, for 1 < p <r < 2[20]. Then the latter result was strengthen
to the embedding L, — L, by ]J. Bretagnolle, D. Dacunha-Castelle and J. L. Krivine [9] and
independently by ]J. Lindenstrauss J. and A. Pelczynski [27], who proved more: if a Banach
space X is finitely representable in L, then X < L,.

YAK 517.982

2010 Mathematics Subject Classification: Primary 46B03; secondary 46B15, 46B26.

1 A Banach space X is said to be finitely representable in a Banach space Y if for every ¢ > 0 and every finite
dimensional subspace F of X there exists a subspace G of Y of the same dimension such that d(F,G) < 1+e¢,
where d(F, G) denotes the Banach-Mazur distance between F and G.
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As we see, the properties of the spaces L, are different for the cases p < 2and p > 2.
Moreover, if 2 < p < oo then every subspace of L, possesses the following properties:

— either is isomorphic to a Hilbert space or contains a complemented subspace isomorphic
to 4, [21];
p 7

— either contains a subspace isomorphic to £, or embeds isomorphically into £, [19].

On the other hand, if 1 < p < 2 then every subspace of L, either contains a complemented
subspace isomorphic to £, or embeds isomorphically into L, for some p < r < 2 [44].

Acknowledgments. The author is grateful to W. B. Johnson and G. Schechtman for valuable
remarks.

2 COMPLEMENTED SUBSPACES OF Lp

2.1 As p goes to 1, the complementability properties of subspaces of L, p # 2, get worse

By Khintchin’s inequality, the closed linear span R of the Rademacher system in L, is iso-
morphic to ¢, and is actually independent on p, as a set. Remark that R is complemented in
Ly for1 < p < o0 [30, p. 66] and is uncomplemented in L,, as well as any other subspace of L;
isomorphic to ¢, [38]. So, it became interesting, whether there exists an uncomplemented sub-
space of L, isomorphic to £, for p > 1. If 2 < p < oo then every subspace X of L, isomorphic
to £ is complemented, and, moreover, the L,- and L,-norms? on X are equivalent [21]. To the
contrast, if 1 < p < 2 then there exists an uncomplemented subspace of L, isomorphic to /,
(first it was proved for 1 < p < 4/3 in [42] and then for the rest of values in [5]).

It is clear that L, contains a complemented subspace isomorphicto £,. If 1 < p < oo, p # 2,
then there is an uncomplemented subspace of L, isomorphic to £,, and hence, it is not difficult
to show that there is an uncomplemented subspace of L, isomorphic to L, itself (first it was
proved for2 < p < ccand 1 < p < 4/3 in [43], then in a different way forall 1 < p < 2in [5],
and finally for p = 1in [6]).

2.2 Primarity of L, and Enflo operators

By the famous Enflo theorem, if L, = X @Y, 1 < p < oo, is a decomposition into mutually
complemented subspaces, then at least one of the subspaces X, Y is isomorphic to L, (first it
was announced by P. Enflo; then B. Maurey [34] published a proof, see also [2] for all p, [14]
for p = 1 and [31, p. 179] for a generalization to rearrangement invariant spaces). This nice
property of the spaces L, is called the primarity.

Let X, Y be Banach spaces. Denote by £(X, Y) the Banach space of all continuous linear op-
erators from X to Y, and write £(X) instead of £(X, X). Recall that an operator T € L(X,Y)
is said to fix a copy of a Banach space Z, if there exists a subspace X; of X isomorphic to Z
such that the restriction T|x, of T to X; is an into isomorphism. An operator T € L(L,,Y),
1 < p < oo, is called an Enflo operator provided T fixes a copy of L,. Note that every Enflo op-
erator T € L(L,) fixes a complemented copy of L,, that is, there is a complemented subspace
Xj of X isomorphic to L, such that the restriction T|x, is an into isomorphism, because every
subspace X of L,, which is isomorphic to L, contains a further subspace Y C X isomorphic to

2 which are well defined for these values of p
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L, and complemented in L, (see [18, p. 239] for p > 1 and [14] for p = 1). The Enflo theorem
implies that, if the identity operator Id on L, is a sum of two projections Id = P + Q, then at
least one of the projections P, Q is an Enflo operator. Moreover, the range of a projection P on
L, is isomorphic to Ly if and only if P is an Enflo operator (to prove, use the mentioned above
result from [18] and Pelczyriski’s decomposition method [31, p. 54]).

2.3 Isomorphic types of complemented subspaces of L,

How many do there exist pairwise non-isomorphic complemented subspaces of L, for
1< p<oo,p#2?If p> 1 then there are obviously the following pairwise non-isomorphic
Banach spaces isomorphic to complemented subspaces of Ly:

Ly, Ly by, L, @0, (é ez)p.
n=1

Further finitely many examples, different from the above obvious ones, was obtained by
H.P. Rosenthal in [43]. Later G. Schechtman provided infinitely many pairwise non-isomor-
phic examples in [48], and then J. Bourgain, H.P. Rosenthal and G. Schechtman constructed
uncountably many pairwise non-isomorphic complemented subspaces of L, for 1 < p < oo,
p # 2in [8] (it is unknown, whether there exists continuum such subspaces).

The exceptional case is p = 1: there are only two known obvious examples of pairwise
non-isomorphic infinite dimensional subspaces of L, they are L, itself and /.

Problem 1 (Lindenstrauss and Rosenthal, 1969, [29]). Is every complemented infinite dimen-
sional subspace of Ly isomorphic to either L, or ¢1?

2.4 Progress in the solution of Problem 1

The following assertions have been established for an arbitrary complemented subspace E
of Ll-

Theorem 1 (Petczynski, 1960, [38]). E contains a subspace isomorphic to {1 and complemented
in Ll .

Theorem 2 (Lindenstrauss, Pelczyniski, 1968, [27]). If E has an unconditional basis then E is
isomorphic to ¢;.

Recall that the Radon-Nikodym property (RNP) for a Banach space X means that for every
finite measure space (), %, 4) and every p-continuous X-valued measure G : ¥ — X of
bounded variation there exists ¢ € Li(y, X) such that G(A) = [, gdu forall A € ¥. One
can show that the characteristic function G(A) = 14 is an example of Li-valued such measure
for which the function g does not exist [12, p. 61]; thus, L; does not have the RNP. However,
/1 has the RNP (this can be proved directly, using the Radon-Nikodym theorem for separate
coordinates [12, p. 64]).

Theorem 3 (Lewis, Stegall, 1973, [26]). If E has the RNP then E is isomorphic to /1.

A Banach space X is said to have the Schur property if the weak convergence of a sequence
in X implies its norm convergence. It is well known that ¢; has the Schur property.
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Theorem 4 (Rosenthal, 1975, [45]). If E does not have the Schur property then ¢; embeds into
E.

Theorem 5 (Enflo, Starbird, 1979, [14]). If E contains a subspace isomorphic to L then E is
itself isomorphic to L.

Simultaneously, W.B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri [18] obtained the
same result as Theorem 5 asserts for L, with 1 < p < oco.
The next result strengthens Theorem 4.

Theorem 6 (Bourgain, 1980, [7]). If E does not have the Schur property then (5, {2)1 embeds
into E.

There is a natural idea to solve Problem 1. Obviously, the hypothesis that every comple-
mented infinite dimensional subspace of L; is isomorphic to either L; or ¢4, is equivalent
to the hypothesis that the following two climes hold true.

Let E be an infinite dimensional complemented subspace of L;.

Claim 1. If E has the Schur property then E is isomorphic to ¢.
Claim 2. If E does not have the Schur property then E is isomorphic to L.

As to the best of our knowledge, there is no information about Claim 1 in the literature.
Remark that there is no direct way to prove Claim 1 without taking into account peculiarity of
Ly, because there exists a Banach space with the Schur property but without the RND, and so,
not isomorphic to ¢; (see J. Hagler [17]).

However, Claim 2 has been considered by different mathematicians as a weak version of
Problem 1 in the sense that a positive solution to Problem 1 implies a positive answer to Prob-
lem 2.

Problem 2 ([45], [14] and [7]). Must a non-Dunford-Pettis projection P € L(L1) be an Enflo
operator? Equivalently, whether each non-Schur complemented subspace of L is isomorphic
tol,?

The most unclear thing concerning Problem 2 is how to use the information that P is a
projection, not just a continuous linear operator. H.P. Rosenthal constructed an example of
a non-Dunford-Pettis operator T € L(L,) failing to be an Enflo operator [45]. This is the so-
called biased coin convolution operator. To explain the details, recall that the Rademacher system
is defined by r,(t) = sign sin(2"*17t) for each n € N and t € [0,1]. Denote by N<¢ the set
of all finite subsets of IN. The Walsh system (w;) en<w is defined by setting w; = [];c; i, where
(rn)fle is the Rademacher system (in particular, wy = 1, by convention). The Walsh system
with respect to the lexicographical order wg, w1y, Wiy, W12y, W3}, W13}, Wi23}, W(1,23}s---
is a Schauder basis of L, for 1 < p < oo, an orthonormal basis of L, a conditional basis of L,
for p # 2, and a Markushevich basis of L;.

Theorem 7 (H.P. Rosenthal, [45]). There is ¢y € (0,1) such that for every € € (0,¢) there is an
operator R, € L(L,) possessing the equality Rew; = elllw; for all I € IN<¢, where |I| is the
cardinality of I.

The operator R; is called the e-biased coin convolution operator. Since R.r, = er, for all
n € IN, the operator R, is not Dunford-Pettis. H.P. Rosenthal proved in [45] that R, is not an
Enflo operator.
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2.5 All operators on L; are regular

Recall some information. Let E, F be vector lattices. An operator T : E — F is called positive
if T(ET) C F',and T : E — Fis called regular if T equals a difference of two positive operators.
Obviously, every positive (and hence, every regular) operator T : E — F is order bounded, that
is, T sends order bounded subsets of E to order bounded subsets of F. Two elements x,y € E
are said to be disjoint (write x L y) if |x| A |y| = 0. The notation x = | J{_; x; means that
x=Yyi_qxcand x; L x;fori # j.

It is an amazing and seldom used fact on operators on L that all of them are regular [47,
p. 232]. More precisely, every operator T € £(L;) admits the representation T = T+ — T,
where for every x € L] one has

m n
T*x:sup{ZTxk: x=|]x n E]N}.
k=1 k=1
As a consequence, we obtain that for any operator T € £(Ly) the modulus |T| =TT+ T~ €
L(L,) exists and could be defined by setting for every x € E*

xp, xx €ET, ne ]N}.

n
=1

n
IT|x = sup{Z‘Txi} D x =
k=1 k
Moreover, |||T||| = ||T|| for every T € L(L;) [47, p. 232].
As was noted by H.P. Rosenthal [46], the regularity of operators T € L(Lq(p),L1(v)) is

a consequence of the following Grothendieck’s inequality [16, Corollaire, p. 67]: given any
fi,---, f1 € L1(n), one has

[ max|TAldv < T [ max |Tf dp.
Q, i Q, i

A very useful development of Grothendieck’s inequality is M. Lévy’s extension theorem
(see [24]) asserting that, for every subspace X of Li(p) every order bounded operator
T € L£(X,Li(v)) has an extension to some operator T € £(L;(u), L1(v)), which is therefore
order bounded as well. The latter fact was then generalized to regular operators from L, () to
Ly(v) for 1 < p < oo by G. Pisier in [40].

The regularity of all operators on L; in fact means that there are few operators on L, only
regular ones. This explains why common subspaces of all L, (like the closed linear span of
the Rademacher system), which are complemented in L, for p > 1 becomes uncomplemented
in Lq: they are complemented in L, by means of non-regular projections. The same reason
makes the Haar system a conditional basis in L;. This argument made the authors of [33]
and [41, Problem 10.45] to generalize Probleml as follows. We say that a subspace X of a
Banach lattice is regularly complemented if there is a regular projection of E onto X.

Problem 3. Let 1 < p < oo, p # 2. Is every regularly complemented subspace of L, isomor-
phic to either £, or L,?

2.6 Complemented subspaces of L, for0 < p <1

Consider now the quasi-Banach spaces L, for 0 < p < 1. The list of known isomorphic
types of complemented subspaces of these spaces becomes smaller by one space, namely by £,
because Ly has trivial dual and hence cannot have a complemented subspace with nontrivial
dual, like those that are isomorphic to £,. So, the problem is as follows.



234 Porov M. M.
Problem 4. Let 0 < p < 1. Is every complemented subspace of L, isomorphic to L,?

This problem has been systematically studied by N.J. Kalton in a number of papers. The
best progress is Kalton’s theorem, which asserts that, if there exists a complemented subspace
of L, not isomorphic to Ly, then at most one, up to an isomorphism [22].

3 UNCONDITIONAL BASES IN Ly ()

3.1 Preliminary information

For convenience of the reader, we recall some necessary information on bases [1,30]. A
sequence (x;)5" ; of elements of a Banach space X is called a Schauder basis (or just a basis) of
X if for every x € X there is a unique sequence of scalars (a,)$>_; such that

X = Z X (1)
k=1

A sequence in X, which is a basis in its closed linear span, is called a basic sequence. The
partial sums P,x = Y }_; agxy of the expansion (1) are linear bounded projections on X with
K :=sup,, ||Py|| < o, and the number K is called the basis constant of (x,){’_;. In particular, the
coefficients x}(x) := ay of the expansion (1) are elements of X* with sup,, ||x,|||/x;|| < 2K and
are called the biorthogonal functionals to (x,)S_,. The best possible basis constant is 1; a basis
with basis constant 1 is said to be monotone. The biorthogonal functionals (x;},);>_; form a basic
sequence in X* with the same basis constant K. A basis (x;)_; of X is called unconditional if for
every x € X the series x = Y 2° ; x; (x)x; converges unconditionally; otherwise the basis is said
to be conditional. If (x,);>_; is unconditional then for every sequence of signs @ = (6,,)5° ,,
0, € {—1,1}, and every x € X the series Tox := Y, 1 0, (x)x, converges and Tg is a linear
bounded operator. Moreover, M := supg, || Te|| < co. The number M is called the unconditional
constant of the unconditional basis (x,,)$ ;.

Let (x,)5_; be a basic sequence in X, (a,)5,_; be a sequence of scalarsand 0 < k; <k, < ...
be integers. A sequence (u,);’_; of nonzero elements of X of the form

kn+1
Un =) @ix;
i=ky+1

is called a block basis of (x,)> ;. It is not hard to see that (u,);’; is a basic sequence itself,
the basis constant of which does not exceed that of (x;); ;. Two basic sequences (x,)5" ; in X
and (y,)$>_; in Y are called A-equivalent if there exists an isomorphism T : [x,] — [y,] between
the closed linear spans of these systems with Tx, = y, for all # such that | T||[|T~!|| < A.
Basic sequences are said to be equivalent if they are A-equivalent for some A € [1,4o0). Us-
ing the Closed Graph theorem, one can easily show that basic sequences (x)S_; and ()5,
are equivalent if and only if for every sequence of scalars (a,);> ; the convergence of the se-
ries Y o 1 anxy and Y. | a,X, are equivalent. It is clear that if one of two A-equivalent basic
sequences is unconditional then the other one is unconditional as well, and the basic (uncon-

ditional) constants K;, K, are estimated as follows: A71K; < K, < AKj.
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3.2 The Haar systemin L,

Define the dyadic intervals by setting I,’§ = [k2711, 2%) forn =0,1,...and k = 1,...,2". The

Le-normalized Haar system is the following sequence in Le: 11 = 1 and

Mo e =Lz = 1zt @
forn =0,1,2,...and k = 1,2,...,2" (by 14 we denote the characteristic function of a set A).
The Haar system is a monotone basis of every space L, with 1 < p < o [30, p. 3], and an
unconditional basis of Ly, for any 1 < p < oo [31, p. 155] (the first fact one can obtain using a
criterium of bases, and the second fact is a deep result of Paley [36] (1932), the proof of which
was then simplified by Burkholder [11] (1985)). The unconditional constant of the Haar system
in L, equals K, = max{p,q} — 1, where 1/p +1/q = 1[10].

The Haar system possesses the following useful property, called the precise reproducibility
[28], [31, p. 158]: for every isomorphic embedding T : L, — X, 1 < p < oo, where X is a Banach
space with a basis (x;);’_;, and every ¢ > 0 there is a block basis (u,);_; of (x,)5_;, which
is (| T|I| T[] + ¢)-equivalent to the Haar system in L,. This gives that the Haar system is the
“best” basis: once we have an unconditional basis in L,, the Haar system is unconditional as
well, and its unconditional constant is the minimal possible one. Since the Haar system is a
conditional basis in L; [31, p. 156], we obtain that L; cannot be isomorphically embedded in a
Banach space with an unconditional basis (initially this was proved by A. Petczyniski [39]).

3.3 Nonseparable L, (yu)-spaces

There is a nice complete isomorphic classification of the spaces L,(u) over finite atom-
less measure spaces (), %, ). A canonical representative of measure spaces (Q), %, 1) with?
dim L, () = Ry for0 < p < oois ({—1,1}“, Loy, Ha, ), Where wy is the cardinal of cardinality
Ny, X, is the Borel o-algebra of subsets of {—1,1}“* endowed with the Tykhonov topology
on the power of the discrete two-point space {—1,1}, and p,,, is the corresponding power of
the measure jy on the subsets of {—1,1} defined by po{—1} = po{1} = 1/2. In other words,
Hew, is the Haar measure on the compact Abelian group {—1,1}“* with the point-wise prod-
uct. By the famous Maharam theorem (see [32] for the original paper, and [15,23] for different
proofs), every finite atomless measure space (), %, u) is isomorphic (in the sense of measure
spaces) to a unique (up to a permutation of summands) direct sum of the measure spaces
Dac A({—l,l}w“,zw“,eaywa), where A is an at most countable set of ordinals, called the
Maharam invariants of (O, X, i), and e, > 0 are weights with } ;¢ 4 €2 = p(€)). The Lebesgue
measure space ([0, 1],%, )\) , where A is the Lebesgue measure on the Borel o-algebra . of sub-
sets of [0, 1], is isomorphic to ({—1, 1}, %00, ywo). As a consequence, we obtain that every
L,(u)-space over a finite atomless measure y with 0 < p < co is isometrically isomorphic to
the £,-sum (e 4 Lp{—1, 1}“’ﬂ)p.

A (not ordered) family (x;);c; of elements of a (non-separable) Banach space X is called an
unconditional basis of X if every x € X admits a unique representation x = ) ;- a;x;, where the
set of all indices i € I with a; # 0 is at most countable, and the series converges uncondition-
ally. One can show directly, that a family (x;);c; with dense linear span is an unconditional
basis of X if and only if every its countable subfamily is an unconditional basic sequence. If
this is the case then the unconditional constants of countable subfamilies are bounded from

3 By dim X we mean the smallest cardinality of subsets of X with dense linear span.
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above, and their supremum equals the unconditional constant of the entire family, which is
defined similarly.

P. Enflo and H.P. Rosenthal (1973) [13] proved that, if dim L, () > R,, where p is finite
atomless and 1 < p < oo, p # 2, then L,(u) does not embed isomorphically into a Banach
space with an unconditional basis. They proved preliminarily that, for any n € IN, assuming
the isomorphic embedding T : L,{—1,1}*" — X into a Banach space X with an unconditional
basis (x;)e1, the finite Walsh system (wy) ;< is || Tl T~!||-reproducible in (x;);c;, even more,
| T||[|T~!||-equivalent to a suitable block basis of (x;);c;. As a consequence, the unconditional
constant My, of (wy) <, does not exceed M||T]||| T-!||, where M is the unconditional constant
of (x;)ier. Since for every n € IN the space Ly{—1,1}“" isometrically embeds into L (u), it
then remained to show that M,, — o0 as n — oo, which is true. Unfortunately, their method
could not give more, remaining the following problem to be open.

Problem 5 (P. Enflo and H.P. Rosenthal, 1973, [13]). Let1 < p < oo, p # 2, and let (), %, i) be
a finite atomless measure space with 8y < dim L,() < N,. Is there an unconditional basis
of Ly(u)?

Below we describe two different possible ideas to solve this problem.

3.4 The Olevskii system

In 1966 A.M. Olevskii constructed a system of functions on [0, 1], which is a basis of L; con-
taining the Rademacher system as a part [35]. This system, called in the literature the Olevskii
system, is a conditional basis in L, for p # 2, a result of E.M. Semenov [49]. If one tries to prove
that L,{—1,1}*? (and therefore, L,{—1,1}*" for each n > 1) has no unconditional basis, then
it would be enough to prove that the Olevskii system is reproducible in any unconditional ba-
sis of L,{—1,1}“1. Let us present an author’s description of the Olevskii system, which may
be convenient for this purpose.

First, we represent the Haar system (2), collected by bunches, via the Rademacher system
(rn)S>_, as follows:

n=1
bunch1: 1,
bunch2: ry,
o+l r1—1
bunch 3 : > o, > o,
o+l rn+l rn+1 rn-—1 rn—1 rn+1 rn—1 rn-—1
bunch 4 : > > 3, > 5 3, > > 3, > 5 3,

The Olevskii system can be constructed using the following scheme. First, we take the
function 1. Then, to obtain the (1 4 1)-th Olevskii bunch, we multiply the beginning of the
Haar system including its n-th bunch by 7,,.

bunch1: 1,
bunch2: 1,
bunch3: ry,, r1-7p,
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1 -1
bunch4: r3, ry-r3, rl;— “rp - 13, 7’12 VAR,
bunch5: r r{-r nti To -7 n—1 Tyt n+l rtl r3- 7
. 4, 174, 2 r4, 12 r4, : r3 - ra,
2 2 2 2
rn+1 rn-—1 .y rn—1 rm+1 -y rn—1 rn-—1 -y
> ) 3 T4, ) 2 34, 2 > 314,

A partial question to this concern: is the beginning 1, r1, rp, r1 - o of the Olevskii sys-
tem isometrically reproducible in any unconditional basis of L,{—1,1}*1? Remark that it is
isometrically reproducible in any unconditional basis of L,{—1,1}*2, by the Enflo-Rosenthal
results, because it coincides with the Walsh system of order two.

3.5 A close separable problem

Consider the following important partial case of Problem 5.
Problem 6. Let1 < p < oo, p # 2. Does there exist an unconditional basis in L,{—1,1}*1?

We now pose a separable problem and then provide arguments to show that it is close to
Problem 6. Let E, = L, [0, 1)? be the Ly-space over the Lebesgue measure space of Borel subsets
of the square [0,1]?, and let F, be the subspace of E,, consisting of all functions depending only
on the first variable.

Problem 7. Let 1 < p < oo, p # 2. Does there exist an unconditional basis (f,) U (¢n) in E,
consisting of two parts such that [f,] = F, and the unconditional constant of (f,) equals the
unconditional constant of the entire basis (f;,) U (gn)?

Theorem 8. An affirmative answer to Problem 6 implies an affirmative answer to Problem 7.

Before the proof, we provide with some necessary information. Given an infinite set I,
iclxe{-1,1\} and 6 € {-1,1}, we denote by 6 x x the element y € {—1,1} such
that y(i) = 0 and y(j) = x(j) for all j € I\ {i}. Following [13], a yj-measurable function
f: {-1,1}1 — R is said to be independent of i € I, if f(1 x x) = f(—1 x x) for Hi\(iv
almost all values of x € {—1,1}\}, In the opposite case we say that f depends on i. For any
measurable function f : {—1,1}! — R, theset {i € I : f depends on i} is at most countable.
By the obvious reason, the same terminology we apply to equivalence classes of measurable
functions.

Proof. Let (fx)a<w, be an unconditional basis of L,{—1,1}*1 with unconditional constant M.
For any & < w; we denote by X, the subspace of all f € L,{—1,1}** depending on coordinates
< « only. Obviously, X, is isometrically isomorphic to L,{—1,1}*, which is separable and
atomless, and hence, isometrically isomorphic to L.

Lemma 1. There exists a strictly increasing w1 -sequence of limited ordinals (v )y<w,, ¢y < w1,
such that [fu|s<z, = X¢, forall y < wy.

Proof of Lemma 1. Since every function f € L,{—1,1}*1 depends on at most countable set of
ordinals @ < wj, for every separable subspace Z of L,{—1,1}*1 the value ¢(Z) = min{a <
w1 Z C X, } is well defined. Then

Z C X,(z) for every separable subspace Z. 3)
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Since every function f € L,{—1,1}*? has an expansion f = Y, dafa, Where the set
{a < wy 1 ax # 0} is at most countable, for every separable subspace Z of L,{—1,1}*1 the
value $(Z) = min{B < w1 : Z C [fa]a<p} is well defined as well. Then

Z C [fula<y(z) for every separable subspace Z. (4)

Now define recursively wq-sequences (&), <w, and (B )y<w, possessing the following pro-
perties for every 17 < { < wy:

1oay < By <ag;

2. [fzx]zx<a,] g Xﬁn g Va]a<zx§-

Set g = wp and By = max{¢([fala<a,) wo}. Then ag < Bo and [fala<a, < Xg,. Given
any 0 < w;, we assume that J-sequences (ay),<s and (By),<s possessing 1 and 2 for every
7 < { < 6 have been already constructed. To define a5 and 5, we consider cases.

(i) ¢ is an isolated ordinal, thatis, § = ¢’ + 1. In this case we set
a5 = max{P(Xp, ), Bs + 1} and Bs = max{¢([fula<a;), s }-

(ii) ¢ is a limited ordinal. In this case we set

s =Ps=Jay=U By

n<d n<d

(the latter equality is guaranteed by property 1 for every n < ¢ < 9).

Property 1 for n < ¢ < ¢ follows directly from the construction. To prove 2, observe
that in case (i) by (3), (4), Xp, C [fﬂé]oc<lp(X5§,) C [fa)a<ay and [fa]a<a; < X[fm%S C Xg,. In
case (ii) inclusions 2 are obvious. Thus, the desired wi-sequences (ay);<w, and (By)y<w, are
constructed.

By (ii) and 2, for every limited ordinal § < wj one has [fy]a<a; = Xa,. By (ii), for every
limited ordinal § < wj, the ordinal a; is limited as well. Since there are uncountably many
such ordinals, we can renumber them to obtain the desired w;-sequence. O

Lemma 2. Let I C | be countable subsets with | \ I infinite. Then there is an isometric isomor-
phism T : E, — L,{—1,1} such that T(F,) equals the subspace of L,{—1,1}/ consisting of all
functions which depend on coordinatesi € I only.

Proof of Lemma 2. Tt is straightforward that the linear span of the Walsh system (w4 )aen<e
coincides with that of the Haar system, hence it is dense in L. So, to define an isometrical
isomorphism on the entire L, (), it is enough to define it on the Walsh system and prove that
it is an isometry on the linear span. Observe that the Walsh system in E,, = L, |0, 1) is given
by wa(x)wg(y), where A, B are finite subsets of IN.

Let I = {i1,ip,...} and J\ I = {j1, /2, ...} be any numerations. Given any A,B € IN<,
we define functions @y, @5 : {—1,1}) — R by setting @', (x) = [T,ca x(in) and @(x) =
[T.cpx(ju). Likewise, the Walsh system in L,{—1,1}/ can be represented as follows:
w'y - Wy, A,B € N<“. Now we define T : E, — Lp{—l,l}], first on the Walsh system by
Tw(x)wp(y) = @'y - Wy for all A, B € IN<%, and then extend to the linear span of the Walsh
system W by linearity. We omit a routine proof that the obtained mapping is an isometry on
W. It remains to observe that T(F,) = L,{—1,1}.. O
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We continue the proof of the theorem. Take a sequence (&, )y<w, satisfying the claims of
Lemma 1. Denote by M, the unconditional constant of the system (fi)s<¢,- Then M, T M.
Since there is no strictly increasing wi-sequence of reals, we obtain that there is y9 < w
such that M, = M for all 79 < 7 < wj. Choose by Lemma 2 an isometric isomorphism

T:Ep = Xg , withT(F,) = X, . Since (fa)a<e, v = (fa)a<e,, YU (fa)e, <a<g,, , is an un-
conditional basis of X o with unconditional constant M and (fy) w<g,, IS an unconditional

basis of Xz = with with the same unconditional constant M, we obtain that (T ) e Eror1 =
(Tflf,,(),K@rW0 U (Tflf,,c)gmS,,K@:m+1 is an unconditional basis of T~! (X§70+1) = E, with uncon-

ditional constant M and (T~!f,) w<¢,, is an unconditional basis of T_l(XCm) = F, with with
the same unconditional constant M. O

Remarks.

1. In Problem 7, one can equivalently replace the unconditional constants of unconditional
bases with the supremum of norms of projections with respect to the bases.

2. We do not know of whether an affirmative solution to Problem 7 formally implies an
affirmative solution to Problem 6, however, an affirmative solution to Problem 7 would
give a possible way to construct an unconditional basis of L,{—1,1}“? by a recursive
procedure.
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AaHy 3aMiTKy HaIMcaHO ITpM IIATOTOBII AOTIOBiAl Ha Mi>XKHapOAHil KOH(pepeHIii, pNUCBsUeHil
70-piuuio mpodpecopa O. Aomymrancbkoro, 16-19 sepecust 2019 p. Mu 30cepeaXyeMocsl Ha ABOX AaB-
HiX BiakpuTux mpobaemax. Ileprma, mo HarexuTs AiHaeHIITpaycy i PoserTanto (1969 p.), dpopmy-
AIOETBCSI TaK: UM KOXHII AOIOBHIOBAAbHIII HeCKiHUeHHOBMMIpHMIA HAIpOCTip mpocTopy Lp i30-
MopdpHmit a0 L wn a0 ¢1? Apyra mpobaema byaa mocraBreHa EHdao i Posentarem y 1973 p.: un
icHye HecemapabeabHMIt mpocTip Ly (1) 3i ckinyeHHOIO 6e3aToMHOI Mipoo ypTal < p < 0o, p # 2,
3 6e3yMOBHMM basymcom? Y 3aMiTIi HaBeA€HO aHAAi3 YaCTKOBMX Pe3yABbTATiB Ta MPUPOAHMX iAel
PO3B’sI3aHHs AQHUX ITPOOAEM.

Kmouosi cnosa i ppasu: mpocTopu Ly, AOTIOBHIOBAABHMI T AIIPOCTIp, He3yMoBHMIT 6asuc.
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THE GENERALIZED CENTRALLY EXTENDED LIE ALGEBRAIC STRUCTURES AND
RELATED INTEGRABLE HEAVENLY TYPE EQUATIONS

There are studied Lie-algebraic structures of a wide class of heavenly type non-linear integrable
equations, related with coadjoint flows on the adjoint space to a loop vector field Lie algebra on
the torus. These flows are generated by the loop Lie algebras of vector fields on a torus and their
coadjoint orbits and give rise to the compatible Lax-Sato type vector field relationships. The re-
lated infinite hierarchy of conservations laws is analysed and its analytical structure, connected
with the Casimir invariants, is discussed. We present the typical examples of such equations and
demonstrate in details their integrability within the scheme developed. As examples, we found
and described new multidimensional generalizations of the Mikhalev-Pavlov and Alonso-Shabat
type integrable dispersionless equation, whose seed elements possess a special factorized structure,
allowing to extend them to the multidimensional case of arbitrary dimension.
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1 INTRODUCTION

The main object of our study are integrable multidimensional dispersionless differential
equations, which possess modified Lax-Sato type representations, related with their hidden
Hamiltonian structures. Equations of this type arise and widely applied in mechanics, gen-
eral relativity, differential geometry and the theory of integrable systems. Among the most
one can mention the Boyer-Finley equation, heavenly type Plebariski equations, which are
descriptive of a class of self-dual four-manifolds, as well as the dispersionless Kadomtsev-
Petviashvili (dKP) equation, also known as the Khokhlov-Zabolotskaya equation, which arises
in non-linear acoustics and the theory of Einstein-Weyl structures. Their integrability have
been investigated by a whole variety of modern techniques including symmetry analysis,
differential-geometric and algebro-geometric methods, dispersionless o-dressing, factoriza-
tion techniques, Virasoro constraints, hydrodynamic reductions, etc. The first examples and
the importance of the related Hamiltonian structures were before demonstrated in [29, 36, 38]
and later were developed in [25,43], where there were analyzed in detail many examples of
dispersionless differential equations as flows on orbits of the coadjoint action of loop vector

YAK 976
2010 Mathematics Subject Classification: 17B68,17B80,35Q53, 35G25, 35N 10, 37K35, 58]70,58]72, 34A34,37K05,37K10.

@ Hentosh O.Ye., Balinsky A.A., Prykarpatski A.K., 2020



THE INTEGRABLE HEAVENLY TYPE EQUATIONS 243

field algebras dif f(T"), generated by specially chosen seed elements [ € diff(T")*. In these
works there was observed that many integrable multidimensional dispersionless differential
equations are generated by seed elements of a very special structure, namely for them there
exist such analytical functional elements 77, 5 € A?(C®(T";R)) ® C that [ = 7jdp. As the latter
naturally generates the symplectic structure @2 := Jpodif Ndp € A%(T") @ C on the mod-
uli space [2,42] of flat connections on T", related to coadjoint actions of the corresponding
Casimir functionals, the geometric nature of many integrable multidimensional dispersionless
differential equations can be also studied using cohomological techniques, devised in [2,10] in
the case of Riemannian surfaces. It is worth also to mention a revealed in [25] deep connec-
tion of the related Hamiltonian flows on c@f/f (T™)* with the well known in classical mechanics
Lagrange—d’Alembert principle.

In this article, in part developing the approach, devised in [29, 38], we describe a Lie al-
gebraic structure and integrability properties of a generalized hierarchy of the Lax-Sato type
compatible systems of Hamiltonian flows and related integrable multidimensional dispersion-
less differential equations. Such systems are called the heavenly type equations and were first
introduced by Plebaniski in [41]. The heavenly type equations were analyzed in many arti-
cles (see, e.g., [16,19-22,32,38,39] and [40, 46, 47, 52, 53]) using several different approaches.
In [7-9,50] the heavenly type equations were analyzed by using nonassociative and noncom-
mutative current algebras on the torus T™,m € IN. Mention also that [49, 51] B. Szablikowski
and A. Sergyeyev developed some generalizations of the classical AKS-algebraic and related
R-structures [11, 13, 15, 45, 54]. In [38,39] and recently in [25] these ideas were applied to a
semi-direct Lie algebra 7")* of the loop Lie algebra dif f(T") := Vect(T") of vector fields
on the torus T",n € Z,, and its dual space cﬂ};‘ (T™)*. Several interesting and deep results
about orbits of the corresponding coadjoint actions on the space G* ~ G and the classical Lie-
Poisson type structures on them were presented. It is worth to specially remark here that the
AKS-algebraic scheme is naturally imbedded into the classical R-structure approach via the
following construction.

Let (G;[,]) denote a Lie algebra over C and G* be its natural adjoint space. Take some
tensor element r € G ® G ~ Hom(G*;G) and consider its splitting into symmetric and anti-
symmetric parts

r=kodo,

respectively, and assume that the symmetric tensor k € G ® G is not degenerate. That allows
to define on the Lie algebra G a symmetric nondegenerate bi-linear product (-|-) : G ® G — C
via the expression
(alb) == k~a(b) 1)
for any a,b € G. The composed mapping R := cok~! : § — G, following the scheme G L
G* % G, defines the following R-structure on the Lie algebra G :
[a,b]r := [Ra,b] + [a, Rb]

for all elements a,b € G. The following theorem, defining the related Poisson structure [10,12,
45,48] on the adjoint space G holds.

Theorem 1. Letwa, B € G* be arbitrary and define the bracket

{0,B} i= adiy — adjpe. e
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Then the bracket (2) is Poisson if and only if the R-structure on the Lie algebra G defines the
Lie structure on G, that is there holds the Yang-Baxter equation

[Ra, Rb] — Ra,b]g = —[a, 1]
foranya,b € G.

The above theorem makes it possible to consider the Hamiltonian flows on the coadjoint
space G* as those determined on the Lie algebra G. The latter is exceptionally useful if for the
scalar product (1) there exists such a trace-type Tr(-) symmetric and ad-invariant functional
(of Killing type) that

Tr(ab) = (alb), (allb,<]) = (([a,b]l,c)

for any a,b and ¢ € §. Then any Hamiltonian flow of an element a € § is representable in the
standard Lax type form
da/dt = [V (h),a],

where V(h) € G is generated by the corresponding Gateaux derivative of the corresponding
smooth Hamiltonian function h € D(G).

Concerning the loop Lie algebra G := cﬂ}? (T") on the torus T", it is well known that such
a trace-type functional on G does not exist, thus we need to study the Hamiltonian flows on
the adjoint loop space G* ~ A!(T") of meromorphic differential forms on the torus T" and
obtain, as a result, integrable dispersionless differential equations as compatibility conditions
for the related loop vector fields, generated by Casimir functionals on G*. This procedure is
much more complicated for analysis than the standard one and employs more geometrical
tools and considerations about the orbit space structure of the seed elements [ € G*, generating
a hierarchy of integrable Hamiltonian flows. The latter, in part, is deeply related to its reduction
properties, guaranteeing the existence of nontrivial Casimir invariants on its coadjoint orbits.

By applying and extending these ideas to central extensions of Lie algebras, we construct
new classes of commuting Hamiltonian flows on an extended adjoint space G := G* @ C. These
Hamiltonian flows are generated by seed elements (4 x ;&) € G* and specially constructed
Casimir invariants on the corresponding orbits of G*. In most cases these seed elements ap-
peared to be represented as specially factorized differential objects, whose real geometric na-
ture is still much hidden and not clear. Moreover, we found that the corresponding com-
patibility condition of constructed Hamiltonian flows coincides exactly with the compatibility
condition for a system of related three Lax-Sato type linear vector field equations. As exam-
ples, we found and described new multidimensional generalizations of the Mikhalev-Pavlov
and Alonso-Shabat type integrable dispersionless equation, whose seed elements possess a
special factorized structure, allowing to extend them to the multidimensional case of arbitrary
dimension.

2 DIFFEOMORPHISMS GROUP Dif f(T") AND ITS DESCRIPTION

Consider the n-dimensional torus T" and call points X € T" as the Lagrangian variables
of a configuration € Diff(T"). The manifold T", thought of as the target space of a con-
figuration 7 € Dif f(T"), is called the spatial or Eulerian configuration, whose points, called
spatial or Eulerian points, will be denoted by small letters x € T". Then any one-parametric
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configuration of Dif f(T") is a time t € R dependent family [1,4, 6,28, 34] of diffeomorphisms
written as
T > x =5(X, t) :=m(X) € T"

for any initial configuration X € T" and some mappings #; € Diff(T"),t € R.

Being interested in studying flows on the space of Lagrangian configurations 7 € Dif f(T")
with respect to the temporal variable t € IR, which are generated by group diffeomorphisms
ne € Diff(T"), t € R, let us proceed to describing the structure of tangent T,,(Diff(T"))
and cotangent T;; (Diff(T")) spaces to the diffeomorphism group Diff(T") at the points
nt € Dif f(T") for any t € R. Determine first the tangent space Ty, (Dif f(T")) to the diffeo-
morphism group manifold Dif f(T") at point 7 € Dif f(T") for which we will make use of the
construction, devised before in [1,4,27]. Namely, let y € Dif f(T") be a Lagrangian configu-
ration and try to determine the tangent space T, (Dif f(T")) at # € Dif f(T") as the collection
of vectors ¢, := dn¢/dt|—o, where R 5 T — 5 € Diff(T"), 11¢|r=0 = 7, is a smooth curve
on Dif f(T"), and for arbitrary reference point X € T" there holds ¢, (X) = dn(X)/dt|.=o.
The latter equivalently means that the vectors ¢, (X) € T, x)(T"), X € T", represent a vector
field ¢ : T" — T(T") on the manifold T" for any # € Diff(T"). Thus, the tangent space
T, (Diff(T")) coincides with the set of vector fields on T" :

Ty(Dif f(T")) = {&y € T(T(T")) : &3 (X) € Ty (T") }

and similarly, the cotangent space T;; (Dif f(T")) consists of all one-form densities on T" over

n € Diff(T") :
T, (Dif f(T")) = {ay € AN(T") @ A%(T") = ay(X) € Ty (T") @ [A%(T")[}

subject to the canonical nondegenerate pairing (-|-)c on T, (Diff(T")) x T,(Diff(T")) : if
ay € Ty (Diff(T")), & € Ty(Diff(T")), where

aylx = (a0 (X)dx) @ X, &ylx = (§4(X)[0/0x),

then
(wyl2n)e = [ {og(X)12, (X)X,

The construction above makes it possible to identify the cotangent bundle T, (Dif f(T"))
at the fixed Lagrangian configuration # € Diff(T") to the tangent space T, (Dif f(T")), as
the tangent space T(T") is endowed with the natural internal tangent bundle metric (-|-) at
any point 7(X) € T", identifying T(T") with T*(T") via the related metric isomorphism
g:T*(T") — T(T"). The latter can be also naturally lifted to T, (Dif f(T")) at n € Dif f(T"),
namely: for any elements ay, B, € Ty (Diff(T")),ay|x = (ay(X)|dx) @ X and By|x =
(By(X)]dx) @ d®X € T (Diff(T")) we can define the metric

(g By) = |

where, by definition, (x%(X) = #(ay (X)]dx)), 5?7(}() 1= §(By(X)|dx) € T, x)(T") forany X €
T". Based on the notions above one can proceed to constructing smooth invariant functionals
on the cotangent bundle T*(Dif f(T")) subject to the corresponding co-adjoint actions of the

(o (X) 185 (X)X,

n
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diffeomorphism group Dif f(T"). Moreover, as the cotangent bundle T*(Dif f(T")) is a priori
endowed with the canonical symplectic structure, equivalent [1,4, 5,11, 13,26, 30, 31, 34,45] to
the corresponding Poisson bracket on the space of smooth functionals on T*(Dif f(T")), one
can study both the related Hamiltonian flows on it and their adjoint symmetries and complete
integrability.

Consider now the cotangent bundle T*(Dif f(T")) as a smooth manifold endowed with the
canonical symplectic structure [1,5] on it, equivalent to the corresponding canonical Poisson
bracket on the space of smooth functionals on it. Taking into account that the cotangent space
T;(Diff(T")) aty € Dif f(T"), shifted by the right R, -1- action to the space Tj,(Diff(T")),
Id € Diff(T"), becomes diffeomorphic to the adjoint space diff*(T") to the Lie algebra
dif f(T") ~T(T(T")) of vector fields on T”, as there was stated [34, 35,56,57] still by S. Lie in
1887, this canonical Poisson bracket on Ty (Dif f(T™")) transforms [4,5,24,31,33,34,55-57] into
the classical Lie-Poisson bracket on the adjoint space G*. Moreover, the orbits of the diffeomor-
phism group Diff(T") on T*(Dif f(T")) respectively transform into the coadjoint orbits on
the adjoint space G*, generated by suitable elements of the Lie algebra G. To construct in detail
this Lie-Poisson bracket, we formulate preliminary the following simple lemma.

Lemma 1. The Lie algebra dif f(T") ~ I'(T(T")) is determined by the following Lie commu-
tator relationships:

[a1, 2] = (1| V)az — (a2 V)ay 3)
for any vector fields a1, a; € T(T(T")) on the manifold T".

Proof. Proof of the commutation relationships (3) easily follows from the group multiplication

(160 @2,6)(X) = @2t(p1,4(X))

for any local group diffeomorphisms ¢4, g2+ € Dif f(T"),t € R,and X € T" under condition
that a;(X) := dg;,(X)/dt|;—o and @;4|;—o = Id € Dif f(T"),j =1,2. O

To calculate the Poisson bracket on the cotangent space Ty (Dif f(T")) atany 7 € Dif f(T"),
let us consider the cotangent space Ty (Dif f(T")) ~dif f*(T"), the adjoint space to the tangent
space T, (Dif f(T")) of left invariant vector fields on Dif f(T") at any 7 € Dif f(T"), and take
the canonical symplectic structure on T, (Dif f(T")) in the form w® (u, 1) = da(u,n), where
the canonical Liouville form a(p, 1) := (u|dn)c € A%y,n)(T;(Diff(T"))) at a point (u,7) €
T;(Diff(T")) is defined a priori on the tangent space T, (Diff(T")) ~ I'(T(M)) of right-
invariant vector fields on the torus manifold T". Having calculated the corresponding Pois-
son bracket of smooth functions (u|a)c, (u|b)c € C*(T; (Diff(T"));R) on Ty (Diff(T")) ~
dif f*(T"),n € Dif f(T"), one can formulate the following proposition.

Proposition 1. The Lie-Poisson bracket on the coadjoint space T;; (Dif f(T")),n € M, is equal
to the expression

1,83 (n) = (ullog(m)/op, 6 (u)/op])e @)
for any smooth right-invariant functionals f,g € C®(G*; R).

Proof. By definition (see [1, 5]) of the Poisson bracket of smooth functions (p|a)c, (u|b). €
C*(T; (Diff(T")); R) on the symplectic space Ty (Diff(T")), it is easy to calculate that

{u(a), u(b)} = da(Xe, Xp) = Xa(a|Xp)e — Xp ([ Xa)e — (a|[Xa, Xp])e, ()
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where X, = d(pla)./ou = a € dif f(T"), X, = 6(u|b)./ou = b € dif f(T"). Since the
expressions X, («|X,). = 0 and Xp(a|X,). = 0 owing the right-invariance of the vector fields
Xa, Xy € Ty (Dif f(T")), the Poisson bracket (5) transforms into

{(ula)e, (uIb)c} = —(a[[Xa, Xp))e = (ul[b,al)e = (ul[0(u[b)c /S, 6(pla)c /Sp])e
for all (u,n) € Ty (Diff(T")) ~ diff*(T"),n € Diff(T") and any a,b € diff(T"). The
Poisson bracket (5) is easily generalized to
{f 83 (w) = (|08 (w)/om, 8f (1) / p])c

for any smooth functionals f, g € C*(G*; R), finishing the proof. O

Based on the Lie-Poisson bracket (4), one can naturally construct Hamiltonian flows on the
adjoint space dif f*(T") via the expressions

o1 /0t = —adiyy

for any element | € diff*(T"),t € R, where, by definition, £h(I + em)|e—o := (m|Vh(1))c,
for some smooth Hamiltonian function h € C®(dif f*(T"); R). If the system possesses enough
additional invariants except the Hamiltonian function, one can expect its simplification often
reducing to its complete integrability. Below we proceed to developing an effective enough
analytical scheme, before suggested in [25, 37] for suitably constructed holomorphic loop dif-
feomorphism groups on tori, allowing to generate infinite hierarchies of such completely inte-
grable Hamiltonian systems on related functional phase spaces.

3 HEAVENLY TYPE SYSTEMS: THE MODIFIED LIE-ALGEBRAIC INTEGRABILITY SCHEME

Let Bﬁ’? L(T"), n € Z, be subgroups of the loop diffeomorphisms group 53? (T") :=
{C > 8! — Diff(T")}, holomorphically extended, respectively, on the interior D} C C and
on the exterior DL C C regions of the unit centrally located disk D' C C! and such that for

any 3(A) € 155‘?_(11"”), A € D!, g(c0) =1 € Diff(T"). The corresponding Lie subalgebras
Ji}?i(T”) ~ VectL(T") of the loop subgroups Diff_ (T") are vector fields on S! x T”, ex-
tended holomorphically, respectively, on regions D). C C!, where for any (1) € diff_(T")
the value d(c0) = 0. The loop Lie algebra splitting dif f (T") = %‘+(T")@ diff_(T") can be
naturally identified with a dense subspace of the dual space dfsz (T™)* through the pairing

(1) = res (1(6:1) a3 A)) o ©
with respect to the scalar product

(1) a6 ) = [ dxli(x2),a(x;))
']1—'71

on the usual Hilbert space H? := L,(T";C") for any elements [ € diff(T")*and a € dif f(T"),
naturally represented in their reduced canonical form

8 d
ax]- = <a(x, A), $> ,

(x; A)dx; := (I(x; A), dx),

IIM: ”M
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T
where we have introduced for brevity the gradient operator aa—x = <%, %, . %) in the

Euclidean space (E"; (-, -)). The corresponding Lie commutator [, b] € dif f(T") of any vector
fields 4,b € dif ff(T") is calculated the standard way and equals

- )

a,b] = ab — ba = <<a(x;)\), $> b(x; M), %> - <<b(x;}\), %> a(x;A), %> .

The Lie algebra G is naturally split into the direct sum of two Lie subalgebras
dif f(T") = dif f . (T") @ diff_(T"),
for which one can identify the following dual spaces:
diff (T = diff _(T"),  diff_(T")* = diff . (T"),

where for any [(A) € diff_(T")* there holds the constraint [(0) = 0.

Construct now the Lie algebra G := diff = dif f(T") dif f (T")* as the semi-direct sum of the Lie
algebra diff(T") and its dual space diff(T")*, whose Lie structure is given by the following
expression

[ﬁl X Tl,ﬁz X Tz] = [ﬁl,ﬁz] X (lllz‘l>l< Tl — ad;lfz) (7)
for any pair of elements (4 x [1), (42 x [) € G, where ad” T Cdif (T — diff(T")*,

(ad:1|b) := (I|[a, b)) for I € dif f(T")* and any a,b € dsz(T”) is the standard coadjoint map-
ping of the Lie algebra dif f (T") on its adjoint space dif f (T")* with respect to the pairing (6).
The Lie algebra G can be metricized, as it can be endowed with the nondegenerate symmetric
product

(ﬁl X T1|ﬁz X Tz) = (T2|ﬁl) + (T1|ﬁz), (8)
where @ x I1,d x I € G are arbitrary elements. Owing to the holomorphic structure of the
Lie algebra tﬂ?f (T™), the ad-invariant product (8) makes it possible to identify the Lie algebra
G with its dual G*, that is G* ~ G. Moreover, the Lie algebra G can be naturally split [38,39,49]
with respect to the pairing (6) and the Lie bracket (7) into two subalgebras G = G+ © G,
where, by definition,

Gy = diff (T"). w diff(T")*, G- i= diff(T")_ x dif f(T")}.
The latter allows to define on the Lie algebra G a new Lie bracket
[@1, W2 g 1= [R1, 2] + [W1, Ry

for any elements @, @, € G, where R := (P4 — P_)/2 is the standard R-matrix homomor-
phism [11,14,44,54] on G and, by definition, P4 : G — G C Gare projectors. The construction
above makes it possible to apply to the Lie algebra G the classical AKS-scheme and, respec-
tively, to generate a wide class of completely integrable Hamiltonian systems as the commuting
flows on the adjoint space G* ~ G, generated by the corresponding hierarchies of the Casimir
invariants subject to the basic Lie bracket (7).

To describe this scheme in more details, we need to find the corresponding Casimir func-
tionals h € 1(G*), satisfying, by definition, the following relationship:

a0 () =0 9)
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at ( ;@) € G* ~ G, where, by definition, the gradient Vh([;d) := Vhy x Vh; € EE}?(T") X
dif f(T")* =

G satisfies the following from (9) differential-algebraic equations:
for arbitrarily chosen element 4 x I €G. The equations (10) can be rewritten [25] in details as

(Vh;,0/0x)a— (a,d/0x) Vh; =0,

(11)
(0/0x,Vhy) I+ (1,(0/9xVhy)) — (9/9x,a) Vhy — (Vh,, (d/0xa)) =0,
where we put, by definition, that
Vhj:= (Vh;,9/0x), i:= (a,d/0x),
(12)

[:=(l,dx), Vha := (Vh,,dx) .

The system of linear equation (11) for a given element 4 x [ € G, singular as A — oo, can be, in
general, resolved by means of the asymptotical expressions

Viy~ Y VEOAT, Vi~ Y VRYA, (13)
j€Z+ J€Z+
giving rise to an infinite hierarchy of gradients Vh(p)(ﬁ, l~) = APVh(a, T) e g, p € Z,, for
the corresponding Casimir functionals h(P) € I1(G*),p € Z.. Similarly, if a given element
@ x [ € G is chosen to be singular as A — 0, the system of linear equations (11) can be resolved
by means of the asymptotical expressions

iy~ Y VRN, Yk~ Y VR, (14)
j€Z+ J€Z+

also generating an infinite hierarchy of gradients Vi(P)(I,a) = A=PVh(a,I) € G, p € Z., for
the corresponding Casimir functionals 1) € I(§*),p € Z..

Let us now assume that we have already found the gradients Vi) (a,1) := APy Vh( )(a,T),
Vh®(a,1) := APvWh2) (4,1) € G, related with two Casimir invariants h(1), h(2) € I(G*) (not
necessary different) for some integers py, p; € Z, satisfying the determining equations (11).
Then, owing to the classical AKS-scheme [11, 14,48, 54], one can construct two commuting to
each other flows with respect to the evolution parameters y, t € R on the adjoint space G* ~ §

0 0
CR ) &
and 3 3
[y AUy L * (v) Y7 g 7 * Et)
ayl adv Hl + ad; (Vh ) atl ath;l,il + ada(Vha,+), (16)

where, we have denoted by (Vhl(yl X Vhéyl) = P.VhW(a,I) € G, and (VhlgtjL X Vhfltl) =
P, VK" (4,1) € G, the corresponding projections on positive degree parts of the correspond-

ing asymptotic expansions (12)—(14). The flows (15) and (16) are, by construction, Hamiltonian,
as they are a result of the expressions

—(ax])={ax T,h@/)}R,E(a xI) = {axh}g (17)
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for a chosen elementd x [ € G* ~ G, stemming from the R-deformed Lie-Poisson [11,14,48,54]
bracket

{h, fir = (ax 1, [Vh(l,a),Vf(l,a)]r) (18)
on the adjoint space G* ~ G, defined for any smooth functionals i, f € D(G*). Their commu-
tativity condition is equivalent to two equations such as

W o1 9o ), 9 o) _
(VA V'] = = Vi) + @Wm -0, (19)
and
ad;P =0,
5 (t R Wy _ 9o | 9 oplt)
P =l (Vh{)) — a0 (Vis/) = 5pVialt + 5, Vs

for any @ x [ € G. Thus, the following important proposition holds.

Proposition 2. The Hamiltonian flows (17) generate the separately commuting evolution equa-
tions (15) and (16). The evolution equations (15) give rise to the Lax type compatibility con-
dition (19), being equivalent to some system of nonlinear heavenly type equations in partial
derivatives.

The presented above construction of Hamiltonian flows on the adjoint space G* still allows
the next important generalization. Namely, let us endow the point product gs' = H G of

zeSl!
the loop Lie algebra G with the central extension generated by a two-cocycle w, : G x § — C,

where
Wiy x I,y x ) i= /S (1, 982/32) — (12, 801 /32)

for any elements d; x I1,d x I, € G. The resulting centrally extended Lie-algebra G := G & C
is defined by the commutator

[(ﬁl X l~1; 0(1), (ﬁz X l~2,' 0(1)] = ([ﬁl,ﬂz] X (ﬂd;liz — lldzzil);wz(ﬁl X Tl,ﬁz X l~2)

for any pair of elements (d; x [1;a1), (A2 X Ip;a1) € G. The resulting R-deformed Lie-Poisson
bracket (18) for any smooth functionals , f € D(G*) on the adjoint space G* becomes equal to

{h fir = @xL[Vh({,a),Vf(L,a)r)

. . . . (20)
+wy(RVK(1,d),Vf(l,a))+w(Vh(l,d),RVf(l,a)).

The corresponding Casimir functionals h(P) € I(G*),p € Z, are defined with respect to
the standard Lie-Poisson bracket as

{n'P), f} = (aw L[VR')(T,4),Vf(@,D)]) + w2 (VAP (a,1),Vf(a,I)) =0 (21)
for all smooth functionals f € D(G*). Based on the equality (21) one easily finds that the

gradients VA(P) € § of the Casimir functionals h(?) € I(G*),p € Z., satisfy the following

equations:
d

9z

Vhl* = O, ad*Vhl_T— ad§th — thg =0

[Vhfl ﬁ] - oz
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for any chosen element 4 x [ € G*. Making use of suitably constructed Casimir functionals
h(y ), AONS| (G ), one can construct from (20) the following commuting Hamiltonian flows on
the adjoint space G* :

%(a x 1) ={ax,hW}g, i(a x 1) ={ax,h"}g, (22)

which are equivalent to the evolution equations

2= — (Vi) 2] + iwlﬁy)

9 oy (1)
oy 0z +’ ot Vhf ’ (23)

and

7 * 7 * a
[ = —adwlgy)l +ady(Vh)) + Ewg‘{j,
~+

0

7 x 7 * (1) (1)
tl = —athlgil + ad} (Vhﬁ,+) + EWLM

(24)

o &

QU

The commutativity condition for these flows is split into two equations such as

wn?, vn ) = 2on + Lont — o

Vi = g Vi gy Vi =0 (25)

and

Son) 4+ 2

()
ot a,+ ay Vhd

B % t * ()
P=ad. (V) —ad o (Vh Y~ "

I+

for any @ x [ € G. The first of them can be considered as the Lax type compatibility condi-
tion for the evolution equations (23). As a consequence of the obtained above results one can
formulate the following proposition.

Proposition 3. The Hamiltonian flows (22) on the adjoint space G* generate the separately
commuting evolution equations (23) and (24). The evolution equations (23) give rise to the
Lax type compatibility condition (25), being equivalent to some system of nonlinear heavenly
type equations in partial derivatives. Moreover, the system of evolution equations (23) can be
considered as the compatibility condition for the following set of linear vector equations

W)y — i — () p —
oY /oy + Vhi,+l/] =0, oY/0z+ayp =0, oY /ot + Vhi,_i_l[J =0
forall (y,t; A, z,x) € R? x (C x S') x T") and a function p € C>(R? x C x(S! x T");C).
The following example demonstrates the analytical applicability of the devised above Lie-

algebraic scheme for construction a wide class of nonlinear multidimensional heavenly type
integrable Hamiltonian systems on functional spaces.
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3.1 Example: the modified Mikhalev-Pavlov heavenly type system

Let a seed element @ x [ € G* be chosen in its reduced form as
ix ] = ((ux+va—A2)a/ax X (wy + {xA)dx, (26)

where u,v,w,{ € C?>(R? x S! x T!;R). The asymptotic splits for the components of the gradi-
ent of the corresponding Casimir functional i € I(G*), as |A| — oo have the following forms:

Vh; ~1— oA —u A2 — A — (uz + vy0; — 2(8;10”02))}\’4
+ vy}\*S — (—uy — vxvy + 2(8;10xxvy))}\*6 +...,

Vha = =A™ —wed ™2 = AT — (wy — §avz + 202z + (95 '0xx)2)A ™
+ ZyA T — (—wy + Gxvy — 2028y + (07 0xla)y)A O+

In the case when
Vhlgy) =AY — 0 A3 — A2 — oA — (u; + vy0, — 2(8;10xxvz)),
Vhfiy+ - _Cx)\?) — Wy A2 — (A — (wz — {x0; + 20405 — (a;lvxgx)z)'
and
Vhlgt}r =A% — 0 A5 — At — A% — (uz + vyv, — 2(8;1vxxvz)))\2
VI, = A% — weh* = A — (W — Loz + 20,0 — (35 02li)2) A
+ CyA — (—wy + Cx0y — 20xy + (aglvxgx)y)/

the compatibility condition of the Hamiltonian vector flows (22) leads to the system of evolu-
tion equations:

Uy + Uyy = —Uyllxz + Uzlyxy — UyUxy + V04 — UzVyUxx + UyVz0xx
— vgzcvzvxy + vgzcvyvxz — 2euyy — 28Uz + 2ep — 28y + 200, Uxx + 250, Uxx,
Uzt + Uyy = —UyUxz + Uz0xy — Uylyz + Vzlxy — 20y — 250y — 2050y Vxz + 2050, Vyxy,
—Uyy — Uzz = UxUyz — Uzlyx — UxxUxVz + UxUxz0x — UxUxx0Vz + (vaz)z + 2uyxe — 2e;, (27)

2
—Uxy — Uzz = UxzUx — UzUxx — UxxUz + UxUxz — 20xxUx0Vz + UyUxz + 20xx€,

_uxt + uyz — _uxuxy + uyuxx —‘I_ uxxvxvy - uxvxyvx —‘I_ uxvxxvy - (vay)z —‘I_ 2uxxs - 2SZ/
2
_Uxt + Uyz = _uxyvx + uyvxx + uxxvy - uxvxy + vaxvxvy - vaxy + vaxs,
where
€xx = Uxx0z, Sxx = —Uxx0Uy. (28)

Under the constraint v = 0 one obtains a set of independent scalar differential equations before
listed in [17,18,23]; two equations are spatially four-dimensional:

and
—Uxt + Uyz = —UxUyy + Uylxy, (30)
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a one is spatially three-dimensional:
_uxy _— MZZ - uxuxz — uzuxx. (31)

In particular, under the spatial variable reductions x — v € R, t — z € IR, the second equation
becomes trivial and the first (32) and third (31) equations bring about the reduced Mikhalev-
Pavlov type equation

Proposition 4. The constructed set of heavenly type equations (27), (28) has the Lax-Sato vector
tield representation (19) with the “spectral” parameter A € C, which is related with the seed
element i x [ € G* in the form (26).

Remark 1. The following remark concerning the dimensionality of the differential systems
obtained above proves to be essential. The generalized Mikhalev-Pavlov ditferential system
(29) as the one considered on the related jet-manifold ] (R*;IR?) for smooth mappings (u,v) :
R* — R? presents, in reality, a differential system with effective dimension equal 2 = 4 — 2.
This fact is important from the geometric point of view devised recently in E.V. Ferapontov and
others [19,22] works, devoted to the Pliicker manifold imbedding into the Grassmannians and
a classification of related integrable ditferential systems. There was, in particular, stated that
the corresponding integrable systems associated with fourfolds in Gr(3,5) also appeared to be
effectively two-dimensional, ensuing at the present time in some sense a challenging problem.
As it was also mentioned above concerning a generalization of spatially multidimensional
Mikhalev-Pavlov type equations by means of the seed element (33), there is a possibility to
check directly the existence of effectively three and more dimensional integrable differential
systems and then, eventually, to construct them.

We can here observe that the seed element (26) can be presented in the following special
compact form:
axl:= Z—Za/ax X dp, 7T = u+vA — A%x,p = w+ (A,
deeply connected with geometry of the related moduli space of flat connections, related to

coadjoint actions of the corresponding Casimir functionals. Its possible generalization to spa-
tially multidimensional Mikhalev-Pavlov type equations can be done by the seed element

axl:=(Vi, V) xdp (33)

for some elements 77,9 € Q°%(T") ® C,n € IN. An analysis of the case (33) and corresponding
systems of spatially multidimensional Mikhalev-Pavlov type equations is planned to be done
in a separate study.

3.2 The modified Martinez Alonso-Shabat heavenly type system

If the seed element @ x [ € G* is chosen in its reduced form as

ax = (((uy, + ctixy) + A)3/0x1 + ((vy, + cVx,) +cA)d/0x2)

(34)
X ((wx1 + waz)dxl + (€x1 + ngz)dXZ)/
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where u,v,w,{ € C?(R? x S! x T R), c € R\{0}, one has the following asymptotic splits for
the components of the gradients of the corresponding Casimir functionals 11, h(2) € 1(G*) as
|A| — oo

vh) ~ 1+ (ux, + Cuxz))\_l — U AT
! c+ (vxl + CUJCz)A_l - va_z 4 ... !
thl) ~ ( (wxl + waZ))\il - wz)\iz + e )
! (Cxl + Csz)Ail - CZA*Z + ... !
and
thz) ~ ( 1+ (uxl - Cuxz))t_l + A2 4. )
/. _ _ —1 -2 s
c+ (vx1 C’(Jx;_))L + WA+
(2) (wy, — cwy, )AL+ 0A72 4.
Vhﬁ = -1 -2 s
(gxl - CCJCZ)A + X)\ =+ ...
where
Py €y = = (Uzry — Cllzxy) + 20 (U Uiy — Uyl + Vs Uiyry — Oxylhnyxg)s (35)
Wy, + Wy, = —(Vzx, — CVzxy) + 2¢(Ux; Vxyxy — UxyVxyx; + Vg Vstyxy — Vs Uy 2z )
and
0x; + COxy = — (Way, — ClWizxy) + 20 (U Wayxy — Uy Wieyyy + 2Way Uy, 3,

- 2wxluleC2 + vx1 waJCZ - UXwale + wXQle.Xz - wXQUxZXQ + é’vaxlxl - Cxl vxl.')(z)/
Xx; T CXxy = — (gle - ngxz) + ZC(le Cxoxn — UxyCxyxy + 200, Uy xy

- 2€x1 Uxyx7 + Uy gxlxz - ux2Cx1x1 + gxz Uxixg — €x1ux1x2 + Wy Uxyxp — wxluxzxz)'

In the case when

vhW . ( A2 + (1t + iy )A — >
A2 + (vy, + o)A —0; )

vhlY) .— ( (W, + cwy)A — w, ) )
ot (gxl + ngz))\ -z

and
vplt) A2+ (thy, — Cligy)A + 3¢
I, —cA? + (g, — o)A+ w )’
i = (e ),
’ (€X1 - ngZ))L + X
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the compatibility condition of the Hamiltonian vector flows (22) leads to the system of evolu-
tion equations:

Uzt + 2y = — Uz 2 — Uzyy, W + Uz My + Uz,
Uzt + Wy = —Uzx) 7 — Uzxy, W + Uz Wy + VzWx,,
Uyx; + Clyx, = _(uxl + cuxz)ule - (le + Cvxz)uzxz + (ux1x1 + cuxle)uZ
+ (uxlxz + Cuxzxz)vz — Uzz,
Oyxq + COyx, = _(uxl + cuxz)vle - (le + Cvxz)vzxz + (lexl + Cvxlxz)uz

(36)
+ (vxlxz + Cvxzxz)vz — OUzz,

Uty + Cllpxy, = (Uxy + Clhxy ) 20y + (Vxy + CUxy ) 50wy — (Uiyzy + Clhyyxy ) 72
- (uxlxz + Cuxzxz)w + sz,
Utxy + CUtxy = (ux1 + Cuxz)wx1 + (UX1 + C’(sz)wxz - (lexl + Cvxlxz)%

— (Uxyx, + COxyxy )W + W
Thus, the following proposition holds.

Proposition 5. The constructed system of heavenly type equations (36) and (35) has the Lax-
Sato vector field representation (19) with the “spectral” parameter A € C, which is related with
the element i x [ € G* in the form (34).

The system of equations (36) and (35) admits the reduction when v = 1 and w = . In this
case, under ¢ = 1 one obtains

Uzt + 2ty = _(ule + uzxz)% + uz(%xl + %xz)/

(37)
Py F 2y = = (Uzxy = taxy) = 2((tho Uy ); = (U Uy )3y )-

The change u, = uy, + uy, in (37) leads to the system:

(ufxl + u?x2> - (uﬁxl - uﬁx2> = uxlxz(uxl - uxz) — Uy Uy T Unpxp Uy
- uxlxz(uazq - uyzcz) — gy Uy (g + Uy) + Unyy Uy (g + Uhxy)
— 205+ (ayxy + 263y + Uy, )0,

Px; + Px, = (uxluxz)x1 - (ux1ux2)x2'

where f = 2t and 7 = 2y. Thus, the system (37) can be considered as some modification of the
Martinez Alonso-Shabat one [3].

4 HEAVENLY TYPE SYSTEMS: THE GENERALIZED LIE-ALGEBRAIC STRUCTURES

Concerning a further generalization of the multi-dimensional case related with the loop
group 53? (T") on the torus T", n € Z., one can proceed, as before, [25] the following nat-
ural way: as the Lie algebra dif f(T") consists of the loop group elements, holomorphically
continued from the circle S! := 9ID!, being the boundary of the disk D! C C, by means of the
complex “spectral” variable A € C both into the interior D1 C C and the exterior D! C C
parts of the disk D! C C, one can take into account its analytical invariance subject to the
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circle §! := 9D! diffeomorphism group Diff(S'). The latter gives rise to the naturally ex-

tended holomorphic Lie algebra diff(T") = diff (T @ cﬂfﬁ (T™) on the Cartesian prod-
uct C x T", whose elements are representable as

A - . a . a < . a
a:=(a(x;A), =)= ao(x,)\)ﬁ + Z%aj(x,A)a—Jq
]:

for some holomorphic in A € D} vectors a(x;A) € E x E" for all x € T", and where we
denoted by % = (%, %, %, e %)Tthe generalized Euclidean vector gradient with respect
to the vector variable x := (A, x) € T".

Construct now the semi-direct sum G := dif f(T") x dif f(T")* of the loop Lie algebra
dif f(T") and its adjoint space dif f(T")*, taking into account their natural pairing

(Tla) = res (I(x)]a(x)) o

for any [ := (I(x;A),dx) = lo(x;A)dA + i li(x; A)dx; € dif f(T")* and @ € dif f(T"). The
corresponding Lie commutator on the loogiie algebra G is naturally given by the expression
a1 x [, ay x ] = [ay, a2 x ady, [ — ad; I
for any @ x [, x I € G. The Lie algebra G also splits into the direct sum of two subalgebras
g=G+0G_,
allowing to introduce on it the classical R-structure
a1 x I, 83 % D] g = [R(a1 x 1), 35 x ] + [y x I, R (a2 % )]
for any a; x I,y x I; € G, where, by definition,
R := (P, —P_)/2, and P.G:=G. CQG.

The space G* adjoint to the Lie algebra G can be functionally identified with the space G subject
to the nondegenerate symmetric product

(@ax 1|7 xm) = res (axI|Fx m)yo,
where we put, by definition, that
(@ax 17 x m) o = (m|a) go + (I|7) o (38)

for any pair of elements a x [,7 x m € G.
Owing to the convolution (38), the Lie algebra G becomes metricized. If now to take arbi-
trary smooth functions f, g € D(G*), one can naturally determine two Lie-Poisson brackets

{f.8} = (axI|[Vf(,a),Vg(La)])

and

{f.8}r = (@xI|[Vf(La), Vg a)lr), (39)
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where at any seed element @ X [ € G* ~ G the gradient element Vf(I,a) := Vf; x Vfz ~
(Vf(l,a),(9/9x,dx)T) € Gand Vf; = (Vf,9/0x), Vfz = (Vfa,dx), and, similarly, the gra-
dient element V¢(I,a) := Vg; x Vgz ~ (Vg(l,a),(d/9x,dx)T) € G* and Vg; = (Vg;,9/0x),
Vga = (Vga,dx) are calculated with respect to the metric (38).

Let now assume that a smooth function h € I(G*) is a Casimir invariant, that is

Ay 1) (@ X T) =0 (40)

for a chosen seed element  x [ € G* ~ §G. Since for an element @ X [ € G* ~ G and arbitrary
f € D(G*) the adjoint mapping

ad*vf(l—,ﬁ)(ﬁ x [) = ([Vhy,a] x (ad*wl_l_— ad;Vh),
the condition (40) can be rewritten as
[Vhy,a]l =0, ad*Vh[l_— ad;Vh; =0,

from which one easily obtains that the Casimir functional i € I(G*) satisfies the system of
determining equations

(Vh;,0/0x)a — (a,d/9x) Vh; =0,

(@/3%, Vi) 1+ (1,(3/3xVhy)) — (3/0x,a) Vhy — (a, (3/9xVh,)) = 0. “h

For the Casimir functional 1 € D(G*) the equations (41) should be solved analytically. In
the case when an element [ x 7 € G* is singular as [A\| — oo, one can consider the general
asymptotic expansion
VhP) (La) ~ AP Y (VI P A (42)
iEZ, /] a,]
for some suitably chosen p € Z., which is substituted into the equations (41). The latter is
then solved recurrently giving rise to a set of gradient expressions for the Casimir functionals
h(P) € D(G*) at the specially found integers p € Z.
Assume now that #¥), 1Y) € I(G*) are such Casimir functionals for which the Hamiltonian
vector field generators

v (I,a), = (VR ([Ta)),,  VhWO(La), := (VAP)([a)),, (43)
where VA®) (I,a), = (VA x Vi) € G; and VRO (La), = (Vi) x Vi) € G, are,

respectively, defined at some specially found integers Py, Pt € Z+. These invariants generate
owing to the Lie-Poisson bracket (39) the following commuting to each other Hamiltonian
flows:

@(ﬁ X 1) ad*w(y)(l ﬁ)+(ﬁ X 1),
Jd, _ = « _ 7
g(a X [) ath<t)(l-ﬁ)+(a x I)

of an element 7 x [ € G* ~ G with respect to the corresponding evolution parameters t,y € R.
The flows (43) can be rewritten as

da/dy = — <Vhl(”y), %> a+ <a, ;—X> vt

0 ) (44)
da/dt = — <vhl<pf), &> ot <a, &> v,
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and

2 2 2 2
a1 /dy = — <& Vhl(”y)> - <l, (&wf’?y))> + <&a> VA" + <a, (&wfﬂ))>,
al/at = — <;—X Vhl(”f)> - <z, (%w}””)> 4 <%a> Vi) 4 <a, (a—iwlg”f>>>,

where y,t € R are the corresponding evolution parameters. Since the invariants h(y), QNS
1(G*) are commuting to each other with respect to the Lie-Poisson bracket (39), the flows (44)
are commuting too. This is equivalent that the following equalities

W) w01 Lo 4 9 gy
(VL VI = gV 5 L =0, (45)
and
ad;P =0,
. . d d
—adg (VR ) - o0 (Vh)) = SV + = 5 Zonlt),

hold for any @ x [ € G. On the other hand, the equation (45) is equivalent to the compatibility
condition of three linear equations

oY W), _ _ P
s +Vhlp=0,  (a,0/0x)9 =0, = T Vh = (46)

for a function ¥ € C2(R? x C x T";C), ally,t € R and any x € T". The obtained above results
can be formulated as the following proposition.

Proposition 6. Let a seed element a x [ € G* and h'¥),h(") € [(G*) are some Casimir func-
tionals subject to the product (-|-) on the holomorphic Lie algebra G and the natural coadjoint
action on the co-algebra G* ~ G. Then the following dynamical systems

= 7 * = T d T * _ 7
—(axl)= —adw<y)(l-ﬁ)+(a x 1), at( X)) = ath<t)(l-,a)+(a x [)

are commuting to each other Hamiltonian flows for evolution parameters y,t € R. Moreover,
the compatibility condition of these flows leads to the vector field representation (46).

Remark 2. As it was mentioned above, the expansion (42) is effective if a chosen seed element
ax I € G* is singular as || — oo. In the case when it is singular as |A| — 0, the expression
(42) should be respectively replaced by the expansion

VHP La) ~ A7 Y Vi (T a)N
JEZ+
for suitably chosen integers p € Z,, and the reduced Casimir function gradients then are
given by the Hamiltonian vector field generators

VW (L a)_ = AA PP a)) ., vEO(@a)_ = AA PRI (T a))

for suitably chosen positive integers py, p; € Z and the corresponding Hamiltonian tlows
are, respectively, written as

9 - . - J ,_ -
at( x 1) =ad, (l)(axl), —(axl)=ad’

for evolution parameters y,t € R.

onn () (@ % I)
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As in Section 3 the presented above construction of Hamiltonian flows on the adjoint space

G* can be generalized proceeding to the point product G5' := [ ] G of the holomorphic Lie
zeS!
algebra G endowed with the central extension, generated by a two-cocycle w, : G x G — C,

where

wa(@y x I, 8y X Ip) = /51[(1_1,352/32)1 — (I, 9a1/9z)1]

for any pair of elements 4y X I, X [ € G. The resulting R-deformed Lie-Poisson bracket (18)
for any smooth functionals i, f € D(G*) on the adjoint space G* to the centrally extended loop
Lie algebra G := G @ C becomes equal to

{h, fir = (axL[Vh(l,a),Vf(a)lr) (47)
+ wo(RVK(I,a),Vf(I,a)) 4+ wa(Vh(l,a), RVf(I,a)).

The corresponding Casimir functionals h(P) € I(G*) for specially chosen p € Z, are defined
with respect to the standard Lie-Poisson bracket as

(P, 1y = (aw I, [V (I,a),Vf(I,a)]) + w2 (VAP (T,a),Vf(I,a)) =0

for all smooth functionals f € D(G*). Based on the equality (21) one easily finds that the
gradients Vi(P) € G of the Casimir functionals h(?) € I1(G*),p € Z., satisfy the following

equations:
9 T 0
(Vh;, a] — $Vhl- =0, adwl_l —ad;Vh; — $th =0
for a chosen element 7 x I € G*. Making use of the suitable Casimir functionals 1), h(t) ¢
I(G*), one can construct, making use of (47), the following commuting Hamiltonian flows on
the adjoint space G* :

0

@(a xI) = {ax [ h¥}g, %(ﬁ xI) = {ax [ h}g, (48)
which are equivalent to the evolution equations
9, _ O 24 Svn® 2 ron® a4 Lgp®
—ya = —[Vhl-,+,a] + EVhZ}L’ 5= —[Vhl-,Jr,a] + EVhl_,Jr (49)
and
O —ad T+ adi(Vh?) + Lyp
gy et T ) T g Ve 0
Of — ad* T+ad:(Vh)+ Lyn Y
FYi —a Vhl(/fl adg a4 oz Mt
The commutativity condition for these flows is split into two equations
W) 01— Lo L gyt
[Vhl',+’Vhl',+] - §Vhl',+ + @th =0, (51)
and
oP -
E —+ ﬂdﬁp = 0,
b — ad* (1)) _ ag* IR A R VD
P = ﬂthlg/yl(Vhﬁ/+) ath;lfi(Vhﬁ’Jr) at Vhﬁ,+ + ay Vhﬁ,+

for any @ x I € G. The obtained above results one can be formulated as the following proposi-
tion.
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Proposition 7. The Hamiltonian flows (48) on the adjoint space G* generate the separately
commuting evolution equations (49) and (50). The evolution equations (49) give rise to the
Lax type compatibility condition (51), being equivalent to some system of nonlinear heavenly
type equations in partial derivatives. Moreover, the system of evolution equations (49) can be
considered as the compatibility condition for the following set of linear vector equations

op Wy _o Y _o, W () 4 =
5 +VIp =0, ="+ 0,0/ =0, =+ Vi p=0

for all (y,t,z;x) € (R? x S!) x T" and a function ¢ € C?((R? x CxS!) x T"; C).

4.1 Example: the generalized Mikhalev-Pavlov heavenly type system

Let a seed element @ x [ € G* be chosen as
ax T = ((1tx — A)3/dx +0xd/N) X (wydx + 1xdA), (52)

where u,v,w,7 € C?(R? x (S' x T!);R). The asymptotic splits for the components of the
gradients of the corresponding Casimir functionals #(P) € 1(G*), p € Z, as |A\| — oo have the
following forms:

Vhy = AP ( T—u A 4 (—uz + (p— 1)0)A2 + (uy + (p — 2) (—uxv + 50)) A3 + .. ),

—0x A =0 A2 4 (vy — (p — 2)vx0)A 3 4L

Vha ~ AP ( —WxA™h = w A2 A+ (wy — (p = 2)(wo))A 7+ )

1A = (112 + (p = Dw)A2 + (1y — (p — 2) (—ux0 + v1jx + W))A? ..
where p € Z and

My = Uz + UxUy, Wy = Wz — UyWx — Oxl]x. (53)
In the case when

opw A% —uyA + (—uz +0)
l’+ ' _va - vz !

() ._ —WyA — W,
Vha s = < — 1A — (72 + w) )

and

up . A% — uxA? + (—uz 4+ 20)A + (uy — uyv + 3)
' —0 A2 — A+ (vy — vx0) !

Ho._ ( —wxA? — wA + (wy — (wo)y) >
2 —11xA% — (2 + 20)A + (y + uxw — vy —w) )’

DN~

Vh
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the compatibility condition of the Hamiltonian vector flows (48) leads to the system of
evolution equations:

uzt + uyy - _uyuzx + uzuxy - uxyv - uzzv - %uxz,
) 2 2
vzt + Uyy —_— UUx - UZ - Uny - UUZZ - uyvxz + uzvxy - uzvx - %sz,

—Uxy — Uzz = UxUyz — Uzlyxy + UxxT,

» (54)
—Uxy — Uzz = Uy + UxxU + UxUxz — UzUxy,
—Uxt + Uyz = —UxUyy + Uylyx + Uxz0 + Uxx X,
_Uxt —‘I_ Uyz — _uxvxy + uyvxx + Mx'(')i —‘I_ sz'(') + %vxx + 2vxvz.

Under the constraint v = 0 one obtains the set of equations (29)—(31). Thus, the following
proposition holds.

Proposition 8. The constructed system of heavenly type equations (54) and (53) has the Lax-
Sato vector field representation (51) with the “spectral” parameter A € C, which is related with
elementa x [ € G* in the form (52).
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BuBuaroThCs IEHTPAaAbHO po3lmpeHi Ai-aarebpaiuHi CTpyKTypH Ta aolilioBaHi iHTerpoBHi piB-
HSTHHSI HeOeCHOTO TMITY SIK ITOTOKIB Ha OpbiTax KoIpreAHaHOI Aiil miBIpsIMOi cyMM aATe6py BeKTOp-
HMX TIOAIB Ha TOpi Ta ii crpsikeHoro npocropy. IloxasaHo, IIo I MOTOKM MOPOAXYIOTh CyMicHi Be-
KTOpHi moAst Tmiry Aaxca-Cato, 3 sSIKMMM TiCHO ITOB’sI3aHa HeCKiHJYeHHa iepapxisi 3aKoHiB 36epexe-
HHsI, IOPOAKEeHMX BiamoBiaHMMY iHBapianTamy Kasimipa. HaBoaeHO THIIOBI IpMKAaAM TakMX piB-
HSIHD i AeTaAbHO ITPOAEMOHCTPOBaHa iX IHTErpOBHICTh B MeXax 3alpONOHOBOHOI cxeMu. Sk mpw-
KAAAM MM OTPVIMaAM Ta OIMCAAM HOBi 6araTOBMMIipHi iHTerpOBHi y3araabHeHHs 6e3AVCIIepCilfHix
piBHSHb MuxaaboBa-ITaBaoBa Ta AroHco-Illabarta, AAsT KOTPUX TeHEpaTOPHI eAeMEHTH MalOTh OCO-
6AMBY paKTOPM30BaHy CTPYKTYPY, IO AO3BOASIE TTOIIMPUTH IX Ha BUIIAAOK AOBIABHOTO BUMIpY.

Kntouosi cnoea i ppasu: piBHSHHS HebeCHOTO THITY, iHTeTPOBHICTD 3a AakCOM, AMHaMiUHa cucTeMa
I'aminbTOHA, AMdeoMopdizmu Topa, arrebpa Ai IleTeAb, IeHTpaAbHe po3IperHs, Ai-aarebpaiura
cxeMa, imBapianTu Kasimipa, crpyxrypa Ai-Ilyaccona, R-cTpyxTypa, piBHsiHHA MixaaboBa-l1aBaoBa.



